-
_ moved *.f to *.f90 in fvn_integ as these files are f90 syntax to be compiled free-format
_ corrected ci and si in fvn_fnlib
Note : this is not yet ansi compliant codegit-svn-id: https://lxsd.femto-st.fr/svn/fvn@50 b657c933-2333-4658-acf2-d3c7c2708721
dqag_2d_inner.f90
8.47 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
! fvn comment :
! Modified version of the dqag quadpack routine from http://www.netlib.org/quadpack
!
! + The call to xerror is replaced by a simple write(*,*)
! + The external 'f' function is a 2 parameters function f(x,y). The routine
! takes one more parameter 'x' and evaluate the integral of f against y between a and b
! for a given x
subroutine dqag_2d_inner(f,x,a,b,epsabs,epsrel,key, &
result,abserr,neval,ier,limit,lenw,last,iwork,work)
!***begin prologue dqag
!***date written 800101 (yymmdd)
!***revision date 830518 (yymmdd)
!***category no. h2a1a1
!***keywords automatic integrator, general-purpose,
! integrand examinator, globally adaptive,
! gauss-kronrod
!***author piessens,robert,appl. math. & progr. div - k.u.leuven
! de doncker,elise,appl. math. & progr. div. - k.u.leuven
!***purpose the routine calculates an approximation result to a given
! definite integral i = integral of f over (a,b),
! hopefully satisfying following claim for accuracy
! abs(i-result)le.max(epsabs,epsrel*abs(i)).
!***description
!
! computation of a definite integral
! standard fortran subroutine
! double precision version
!
! f - double precision
! function subprogam defining the integrand
! function f(x). the actual name for f needs to be
! declared e x t e r n a l in the driver program.
!
! a - double precision
! lower limit of integration
!
! b - double precision
! upper limit of integration
!
! epsabs - double precision
! absolute accoracy requested
! epsrel - double precision
! relative accuracy requested
! if epsabs.le.0
! and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
! the routine will end with ier = 6.
!
! key - integer
! key for choice of local integration rule
! a gauss-kronrod pair is used with
! 7 - 15 points if key.lt.2,
! 10 - 21 points if key = 2,
! 15 - 31 points if key = 3,
! 20 - 41 points if key = 4,
! 25 - 51 points if key = 5,
! 30 - 61 points if key.gt.5.
!
! on return
! result - double precision
! approximation to the integral
!
! abserr - double precision
! estimate of the modulus of the absolute error,
! which should equal or exceed abs(i-result)
!
! neval - integer
! number of integrand evaluations
!
! ier - integer
! ier = 0 normal and reliable termination of the
! routine. it is assumed that the requested
! accuracy has been achieved.
! ier.gt.0 abnormal termination of the routine
! the estimates for result and error are
! less reliable. it is assumed that the
! requested accuracy has not been achieved.
! error messages
! ier = 1 maximum number of subdivisions allowed
! has been achieved. one can allow more
! subdivisions by increasing the value of
! limit (and taking the according dimension
! adjustments into account). however, if
! this yield no improvement it is advised
! to analyze the integrand in order to
! determine the integration difficulaties.
! if the position of a local difficulty can
! be determined (i.e.singularity,
! discontinuity within the interval) one
! will probably gain from splitting up the
! interval at this point and calling the
! integrator on the subranges. if possible,
! an appropriate special-purpose integrator
! should be used which is designed for
! handling the type of difficulty involved.
! = 2 the occurrence of roundoff error is
! detected, which prevents the requested
! tolerance from being achieved.
! = 3 extremely bad integrand behaviour occurs
! at some points of the integration
! interval.
! = 6 the input is invalid, because
! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set
! to zero.
! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and
! work(limit+1) to b.
!
! dimensioning parameters
! limit - integer
! dimensioning parameter for iwork
! limit determines the maximum number of subintervals
! in the partition of the given integration interval
! (a,b), limit.ge.1.
! if limit.lt.1, the routine will end with ier = 6.
!
! lenw - integer
! dimensioning parameter for work
! lenw must be at least limit*4.
! if lenw.lt.limit*4, the routine will end with
! ier = 6.
!
! last - integer
! on return, last equals the number of subintervals
! produced in the subdiviosion process, which
! determines the number of significant elements
! actually in the work arrays.
!
! work arrays
! iwork - integer
! vector of dimension at least limit, the first k
! elements of which contain pointers to the error
! estimates over the subintervals, such that
! work(limit*3+iwork(1)),... , work(limit*3+iwork(k))
! form a decreasing sequence with k = last if
! last.le.(limit/2+2), and k = limit+1-last otherwise
!
! work - double precision
! vector of dimension at least lenw
! on return
! work(1), ..., work(last) contain the left end
! points of the subintervals in the partition of
! (a,b),
! work(limit+1), ..., work(limit+last) contain the
! right end points,
! work(limit*2+1), ..., work(limit*2+last) contain
! the integral approximations over the subintervals,
! work(limit*3+1), ..., work(limit*3+last) contain
! the error estimates.
!
!***references (none)
!***routines called dqage,xerror
!***end prologue dqag
double precision a,abserr,b,epsabs,epsrel,f,result,work,x
integer ier,iwork,key,last,lenw,limit,lvl,l1,l2,l3,neval
!
dimension iwork(limit),work(lenw)
!
external f
!
! check validity of lenw.
!
!***first executable statement dqag
ier = 6
neval = 0
last = 0
result = 0.0d+00
abserr = 0.0d+00
if(limit.lt.1.or.lenw.lt.limit*4) go to 10
!
! prepare call for dqage.
!
l1 = limit+1
l2 = limit+l1
l3 = limit+l2
!
call dqage_2d_inner(f,x,a,b,epsabs,epsrel,key,limit, &
result,abserr,neval, &
ier,work(1),work(l1),work(l2),work(l3),iwork,last)
!
! call error handler if necessary.
!
lvl = 0
10 if(ier.eq.6) lvl = 1
! if(ier.ne.0) call xerror(26habnormal return from dqag ,26,ier,lvl)
! we use a simple write for error
if (ier.ne.0) then
write(*,*) "Abnormal return from dqag_2d_inner"
write(*,*) "ier=",ier
end if
return
end subroutine