dpoch.f
3.63 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
double precision function dpoch (a, x)
c august 1980 edition. w. fullerton, c3, los alamos scientific lab.
c error handling when poch (a, x) is less than half precision is
c probably incorrect. grossly wrong arguments are not handled right.
c
c evaluate a generalization of pochhammer-s symbol
c (a)-sub-x = gamma(a+x)/gamma(a). for x a non-negative integer,
c poch(a,x) is just pochhammer-s symbol.
c
double precision a, x, absa, absax, alnga, alngax, ax, b, pi,
1 eps, sqeps, cospix, sinpix, cospia, sinpia, errpch, den, err,
2 sgnga, sgngax, dfac, dlnrel, d9lgmc, dgamma, dgamr, dint,
3 d1mach, dcos, dexp, dlog, dsin, dsqrt
external d1mach, d9lgmc, dfac, dgamma, dgamr,
1 dlnrel
data pi / 3.1415926535 8979323846 2643383279 503 d0 /
data eps, sqeps / 2*0.0d0 /
c
if (eps.ne.0.0d0) go to 10
eps = d1mach(4)
sqeps = dsqrt(eps)
c
10 ax = a + x
if (ax.gt.0.0d0) go to 30
if (dint(ax).ne.ax) go to 30
c
if (a.gt.0.0d0 .or. dint(a).ne.a) call seteru (
1 48hdpoch a+x is non-positive integer but a is not, 48, 2, 2)
c
c we know here that both a+x and a are non-positive integers.
c
dpoch = 1.0d0
if (x.eq.0.d0) return
c
n = x
if (dmin1(a+x,a).lt.(-20.0d0)) go to 20
c
ia = a
dpoch = (-1.0d0)**n * dfac(-ia)/dfac(-ia-n)
return
c
20 dpoch = (-1.0d0)**n * dexp ((a-0.5d0)*dlnrel(x/(a-1.0d0))
1 + x*dlog(-a+1.0d0-x) - x + d9lgmc(-a+1.0d0) - d9lgmc(-a-x+1.d0))
return
c
c a+x is not zero or a negative integer.
c
30 dpoch = 0.0d0
if (a.le.0.0d0 .and. dint(a).eq.a) return
c
n = dabs(x)
if (dble(float(n)).ne.x .or. n.gt.20) go to 50
c
c x is a small non-positive integer, presummably a common case.
c
dpoch = 1.0d0
if (n.eq.0) return
do 40 i=1,n
dpoch = dpoch * (a+dble(float(i-1)))
40 continue
return
c
50 absax = dabs(a+x)
absa = dabs(a)
if (dmax1(absax,absa).gt.20.0d0) go to 60
c
if (dabs(x).gt.absax/sqeps) call seteru (67hdpoch answer lt half
1 precision, a+x cannot be computed accurately, 67, 1, 1)
dpoch = dgamma(a+x) * dgamr(a)
c error handling above is probably bad when a almost = -n and when x is
c small. maybe use reflection formula below in modified form?
return
c
60 if (dabs(x).gt.0.5d0*absa) go to 70
c
c abs(x) is small and both abs(a+x) and abs(a) are large. thus,
c a+x and a must have the same sign. for negative a, we use
c gamma(a+x)/gamma(a) = gamma(-a+1)/gamma(-a-x+1) *
c sin(pi*a)/sin(pi*(a+x))
c
b = a
if (b.lt.0.0d0) b = -a - x + 1.0d0
dpoch = dexp ((b-0.5d0)*dlnrel(x/b) + x*dlog(b+x) - x
1 + d9lgmc(b+x) - d9lgmc(b) )
c
if (a.ge.0.0d0 .or. dpoch.eq.0.0d0) return
call entsrc (irold, 1)
cospix = dcos (pi*x)
call erroff
sinpix = dsin (pi*x)
call erroff
cospia = dcos (pi*a)
call erroff
sinpia = dsin (pi*a)
call erroff
call entsrc (irold2, irold)
c
errpch = dabs(x)*(1.0d0+dlog(b))
den = cospix + cospia*sinpix/sinpia
err = (dabs(x)*(dabs(sinpix) + dabs(cospia*cospix/sinpia))
1 + dabs(a*sinpix)/sinpia**2)*pi
err = errpch + err/dabs(den)
if (err.gt.1.0d0/eps) call seteru (73hdpoch answer has no precis
1ion, a or a+x too close to a negative integer, 73, 3, 2)
if (err.gt.1.0d0/sqeps) call seteru (74hdpoch answer lt half pre
2cision, a or a+x too close to a negative integer, 74, 2, 1)
c
dpoch = dpoch/den
return
c
70 call dlgams (a+x, alngax, sgngax)
call dlgams (a, alnga, sgnga)
dpoch = sgngax * sgnga * dexp(alngax-alnga)
c
return
end