umfpack_get_numeric.c
26.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
/* ========================================================================== */
/* === UMFPACK_get_numeric ================================================== */
/* ========================================================================== */
/* -------------------------------------------------------------------------- */
/* UMFPACK Copyright (c) Timothy A. Davis, CISE, */
/* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */
/* web: http://www.cise.ufl.edu/research/sparse/umfpack */
/* -------------------------------------------------------------------------- */
/*
User-callable. Gets the LU factors and the permutation vectors held in the
Numeric object. L is returned in sparse row form with sorted rows, U is
returned in sparse column form with sorted columns, and P and Q are
returned as permutation vectors. See umfpack_get_numeric.h for a more
detailed description.
Returns TRUE if successful, FALSE if the Numeric object is invalid or
if out of memory.
Dynamic memory usage: calls UMF_malloc twice, for a total space of
2*n integers, and then frees all of it via UMF_free when done.
*/
#include "umf_internal.h"
#include "umf_valid_numeric.h"
#include "umf_malloc.h"
#include "umf_free.h"
#ifndef NDEBUG
PRIVATE Int init_count ;
#endif
PRIVATE void get_L
(
Int Lp [ ],
Int Lj [ ],
double Lx [ ],
#ifdef COMPLEX
double Lz [ ],
#endif
NumericType *Numeric,
Int Pattern [ ],
Int Wi [ ]
) ;
PRIVATE void get_U
(
Int Up [ ],
Int Ui [ ],
double Ux [ ],
#ifdef COMPLEX
double Uz [ ],
#endif
NumericType *Numeric,
Int Pattern [ ],
Int Wi [ ]
) ;
/* ========================================================================== */
/* === UMFPACK_get_numeric ================================================== */
/* ========================================================================== */
GLOBAL Int UMFPACK_get_numeric
(
Int Lp [ ],
Int Lj [ ],
double Lx [ ],
#ifdef COMPLEX
double Lz [ ],
#endif
Int Up [ ],
Int Ui [ ],
double Ux [ ],
#ifdef COMPLEX
double Uz [ ],
#endif
Int P [ ],
Int Q [ ],
double Dx [ ],
#ifdef COMPLEX
double Dz [ ],
#endif
Int *p_do_recip,
double Rs [ ],
void *NumericHandle
)
{
/* ---------------------------------------------------------------------- */
/* local variables */
/* ---------------------------------------------------------------------- */
NumericType *Numeric ;
Int getL, getU, *Rperm, *Cperm, k, nn, n_row, n_col, *Wi, *Pattern,
n_inner ;
double *Rs1 ;
Entry *D ;
#ifndef NDEBUG
init_count = UMF_malloc_count ;
#endif
Wi = (Int *) NULL ;
Pattern = (Int *) NULL ;
/* ---------------------------------------------------------------------- */
/* check input parameters */
/* ---------------------------------------------------------------------- */
Numeric = (NumericType *) NumericHandle ;
if (!UMF_valid_numeric (Numeric))
{
return (UMFPACK_ERROR_invalid_Numeric_object) ;
}
n_row = Numeric->n_row ;
n_col = Numeric->n_col ;
nn = MAX (n_row, n_col) ;
n_inner = MIN (n_row, n_col) ;
/* ---------------------------------------------------------------------- */
/* allocate workspace */
/* ---------------------------------------------------------------------- */
getL = Lp && Lj && Lx ;
getU = Up && Ui && Ux ;
if (getL || getU)
{
Wi = (Int *) UMF_malloc (nn, sizeof (Int)) ;
Pattern = (Int *) UMF_malloc (nn, sizeof (Int)) ;
if (!Wi || !Pattern)
{
(void) UMF_free ((void *) Wi) ;
(void) UMF_free ((void *) Pattern) ;
ASSERT (UMF_malloc_count == init_count) ;
DEBUGm4 (("out of memory: get numeric\n")) ;
return (UMFPACK_ERROR_out_of_memory) ;
}
ASSERT (UMF_malloc_count == init_count + 2) ;
}
/* ---------------------------------------------------------------------- */
/* get contents of Numeric */
/* ---------------------------------------------------------------------- */
if (P != (Int *) NULL)
{
Rperm = Numeric->Rperm ;
for (k = 0 ; k < n_row ; k++)
{
P [k] = Rperm [k] ;
}
}
if (Q != (Int *) NULL)
{
Cperm = Numeric->Cperm ;
for (k = 0 ; k < n_col ; k++)
{
Q [k] = Cperm [k] ;
}
}
if (getL)
{
get_L (Lp, Lj, Lx,
#ifdef COMPLEX
Lz,
#endif
Numeric, Pattern, Wi) ;
}
if (getU)
{
get_U (Up, Ui, Ux,
#ifdef COMPLEX
Uz,
#endif
Numeric, Pattern, Wi) ;
}
if (Dx != (double *) NULL)
{
D = Numeric->D ;
#ifdef COMPLEX
if (SPLIT (Dz))
{
for (k = 0 ; k < n_inner ; k++)
{
Dx [k] = REAL_COMPONENT (D [k]) ;
Dz [k] = IMAG_COMPONENT (D [k]) ;
}
}
else
{
for (k = 0 ; k < n_inner ; k++)
{
Dx [2*k ] = REAL_COMPONENT (D [k]) ;
Dx [2*k+1] = IMAG_COMPONENT (D [k]) ;
}
}
#else
{
D = Numeric->D ;
for (k = 0 ; k < n_inner ; k++)
{
Dx [k] = D [k] ;
}
}
#endif
}
/* return the flag stating whether the scale factors are to be multiplied,
* or divided. If do_recip is TRUE, multiply. Otherwise, divided.
* If NRECIPROCAL is defined at compile time, the scale factors are always
* to be used by dividing.
*/
if (p_do_recip != (Int *) NULL)
{
#ifndef NRECIPROCAL
*p_do_recip = Numeric->do_recip ;
#else
*p_do_recip = FALSE ;
#endif
}
if (Rs != (double *) NULL)
{
Rs1 = Numeric->Rs ;
if (Rs1 == (double *) NULL)
{
/* R is the identity matrix. */
for (k = 0 ; k < n_row ; k++)
{
Rs [k] = 1.0 ;
}
}
else
{
for (k = 0 ; k < n_row ; k++)
{
Rs [k] = Rs1 [k] ;
}
}
}
/* ---------------------------------------------------------------------- */
/* free the workspace */
/* ---------------------------------------------------------------------- */
(void) UMF_free ((void *) Wi) ;
(void) UMF_free ((void *) Pattern) ;
ASSERT (UMF_malloc_count == init_count) ;
return (UMFPACK_OK) ;
}
/* ========================================================================== */
/* === get_L ================================================================ */
/* ========================================================================== */
/*
The matrix L is stored in the following arrays in the Numeric object:
Int Lpos [0..npiv]
Int Lip [0..npiv], index into Numeric->Memory
Int Lilen [0..npiv]
Unit *(Numeric->Memory), pointer to memory space holding row indices
and numerical values
where npiv is the number of pivot entries found. If A is n_row-by-n_col,
then npiv <= MIN (n_row,n_col).
Let L_k denote the pattern of entries in column k of L (excluding the
diagonal).
An Lchain is a sequence of columns of L whose nonzero patterns are related.
The start of an Lchain is denoted by a negative value of Lip [k].
To obtain L_k:
(1) If column k starts an Lchain, then L_k is stored in its entirety.
|Lip [k]| is an index into Numeric->Memory for the integer row indices
in L_k. The number of entries in the column is |L_k| = Lilen [k].
This defines the pattern of the "leading" column of this chain.
Lpos [k] is not used for the first column in the chain. Column zero
is always a leading column.
(2) If column k does not start an Lchain, then L_k is represented as a
superset of L_k-1. Define Lnew_k such that (L_k-1 - {k} union Lnew_k)
= L_k, where Lnew_k and (L_k-1)-{k} are disjoint. Lnew_k are the
entries in L_k that are not in L_k-1. Lpos [k] holds the position of
pivot row index k in the prior pattern L_k-1 (if it is present), so
that the set subtraction (L_k-1)-{k} can be computed quickly, when
computing the pattern of L_k from L_k-1. The number of new entries in
L_k is stored in Lilen [k] = |Lnew_k|.
Note that this means we must have the pattern L_k-1 to compute L_k.
In both cases (1) and (2), we obtain the pattern L_k.
The numerical values are stored in Numeric->Memory, starting at the index
|Lip [k]| + Lilen [k]. It is stored in the same order as the entries
in L_k, after L_k is obtained from cases (1) or (2), above.
The advantage of using this "packed" data structure is that it can
dramatically reduce the amount of storage needed for the pattern of L.
The disadvantage is that it can be difficult for the user to access,
and it does not match the sparse matrix data structure used in MATLAB.
Thus, this routine is provided to create a conventional sparse matrix
data structure for L, in sparse-row form. A row-form of L appears to
MATLAB to be a column-oriented from of the transpose of L. If you would
like a column-form of L, then use UMFPACK_transpose (an example of this
is in umfpackmex.c).
*/
/* ========================================================================== */
PRIVATE void get_L
(
Int Lp [ ], /* of size n_row+1 */
Int Lj [ ], /* of size lnz, where lnz = Lp [n_row] */
double Lx [ ], /* of size lnz */
#ifdef COMPLEX
double Lz [ ], /* of size lnz */
#endif
NumericType *Numeric,
Int Pattern [ ], /* workspace of size n_row */
Int Wi [ ] /* workspace of size n_row */
)
{
/* ---------------------------------------------------------------------- */
/* local variables */
/* ---------------------------------------------------------------------- */
Entry value ;
Entry *xp, *Lval ;
Int deg, *ip, j, row, n_row, n_col, n_inner, *Lpos, *Lilen, *Lip, p, llen,
lnz2, lp, newLchain, k, pos, npiv, *Li, n1 ;
#ifdef COMPLEX
Int split = SPLIT (Lz) ;
#endif
/* ---------------------------------------------------------------------- */
/* get parameters */
/* ---------------------------------------------------------------------- */
DEBUG4 (("get_L start:\n")) ;
n_row = Numeric->n_row ;
n_col = Numeric->n_col ;
n_inner = MIN (n_row, n_col) ;
npiv = Numeric->npiv ;
n1 = Numeric->n1 ;
Lpos = Numeric->Lpos ;
Lilen = Numeric->Lilen ;
Lip = Numeric->Lip ;
deg = 0 ;
/* ---------------------------------------------------------------------- */
/* count the nonzeros in each row of L */
/* ---------------------------------------------------------------------- */
#pragma ivdep
for (row = 0 ; row < n_inner ; row++)
{
/* include the diagonal entry in the row counts */
Wi [row] = 1 ;
}
#pragma ivdep
for (row = n_inner ; row < n_row ; row++)
{
Wi [row] = 0 ;
}
/* singletons */
for (k = 0 ; k < n1 ; k++)
{
DEBUG4 (("Singleton k "ID"\n", k)) ;
deg = Lilen [k] ;
if (deg > 0)
{
lp = Lip [k] ;
Li = (Int *) (Numeric->Memory + lp) ;
lp += UNITS (Int, deg) ;
Lval = (Entry *) (Numeric->Memory + lp) ;
for (j = 0 ; j < deg ; j++)
{
row = Li [j] ;
value = Lval [j] ;
DEBUG4 ((" row "ID" k "ID" value", row, k)) ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
Wi [row]++ ;
}
}
}
}
/* non-singletons */
for (k = n1 ; k < npiv ; k++)
{
/* ------------------------------------------------------------------ */
/* make column of L in Pattern [0..deg-1] */
/* ------------------------------------------------------------------ */
lp = Lip [k] ;
newLchain = (lp < 0) ;
if (newLchain)
{
lp = -lp ;
deg = 0 ;
DEBUG4 (("start of chain for column of L\n")) ;
}
/* remove pivot row */
pos = Lpos [k] ;
if (pos != EMPTY)
{
DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n",
k, Pattern [pos], pos)) ;
ASSERT (!newLchain) ;
ASSERT (deg > 0) ;
ASSERT (pos >= 0 && pos < deg) ;
ASSERT (Pattern [pos] == k) ;
Pattern [pos] = Pattern [--deg] ;
}
/* concatenate the pattern */
ip = (Int *) (Numeric->Memory + lp) ;
llen = Lilen [k] ;
for (j = 0 ; j < llen ; j++)
{
row = *ip++ ;
DEBUG4 ((" row "ID" k "ID"\n", row, k)) ;
ASSERT (row > k && row < n_row) ;
Pattern [deg++] = row ;
}
xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ;
for (j = 0 ; j < deg ; j++)
{
DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ;
row = Pattern [j] ;
value = *xp++ ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
Wi [row]++ ;
}
}
}
/* ---------------------------------------------------------------------- */
/* construct the final row form of L */
/* ---------------------------------------------------------------------- */
/* create the row pointers */
lnz2 = 0 ;
for (row = 0 ; row < n_row ; row++)
{
Lp [row] = lnz2 ;
lnz2 += Wi [row] ;
Wi [row] = Lp [row] ;
}
Lp [n_row] = lnz2 ;
ASSERT (Numeric->lnz + n_inner == lnz2) ;
/* add entries from the rows of L (singletons) */
for (k = 0 ; k < n1 ; k++)
{
DEBUG4 (("Singleton k "ID"\n", k)) ;
deg = Lilen [k] ;
if (deg > 0)
{
lp = Lip [k] ;
Li = (Int *) (Numeric->Memory + lp) ;
lp += UNITS (Int, deg) ;
Lval = (Entry *) (Numeric->Memory + lp) ;
for (j = 0 ; j < deg ; j++)
{
row = Li [j] ;
value = Lval [j] ;
DEBUG4 ((" row "ID" k "ID" value", row, k)) ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
p = Wi [row]++ ;
Lj [p] = k ;
#ifdef COMPLEX
if (split)
{
Lx [p] = REAL_COMPONENT (value) ;
Lz [p] = IMAG_COMPONENT (value) ;
}
else
{
Lx [2*p ] = REAL_COMPONENT (value) ;
Lx [2*p+1] = IMAG_COMPONENT (value) ;
}
#else
Lx [p] = value ;
#endif
}
}
}
}
/* add entries from the rows of L (non-singletons) */
for (k = n1 ; k < npiv ; k++)
{
/* ------------------------------------------------------------------ */
/* make column of L in Pattern [0..deg-1] */
/* ------------------------------------------------------------------ */
lp = Lip [k] ;
newLchain = (lp < 0) ;
if (newLchain)
{
lp = -lp ;
deg = 0 ;
DEBUG4 (("start of chain for column of L\n")) ;
}
/* remove pivot row */
pos = Lpos [k] ;
if (pos != EMPTY)
{
DEBUG4 ((" k "ID" removing row "ID" at position "ID"\n",
k, Pattern [pos], pos)) ;
ASSERT (!newLchain) ;
ASSERT (deg > 0) ;
ASSERT (pos >= 0 && pos < deg) ;
ASSERT (Pattern [pos] == k) ;
Pattern [pos] = Pattern [--deg] ;
}
/* concatenate the pattern */
ip = (Int *) (Numeric->Memory + lp) ;
llen = Lilen [k] ;
for (j = 0 ; j < llen ; j++)
{
row = *ip++ ;
DEBUG4 ((" row "ID" k "ID"\n", row, k)) ;
ASSERT (row > k) ;
Pattern [deg++] = row ;
}
xp = (Entry *) (Numeric->Memory + lp + UNITS (Int, llen)) ;
for (j = 0 ; j < deg ; j++)
{
DEBUG4 ((" row "ID" k "ID" value", Pattern [j], k)) ;
row = Pattern [j] ;
value = *xp++ ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
p = Wi [row]++ ;
Lj [p] = k ;
#ifdef COMPLEX
if (split)
{
Lx [p] = REAL_COMPONENT (value) ;
Lz [p] = IMAG_COMPONENT (value) ;
}
else
{
Lx [2*p ] = REAL_COMPONENT (value) ;
Lx [2*p+1] = IMAG_COMPONENT (value) ;
}
#else
Lx [p] = value ;
#endif
}
}
}
/* add all of the diagonal entries (L is unit diagonal) */
for (row = 0 ; row < n_inner ; row++)
{
p = Wi [row]++ ;
Lj [p] = row ;
#ifdef COMPLEX
if (split)
{
Lx [p] = 1. ;
Lz [p] = 0. ;
}
else
{
Lx [2*p ] = 1. ;
Lx [2*p+1] = 0. ;
}
#else
Lx [p] = 1. ;
#endif
ASSERT (Wi [row] == Lp [row+1]) ;
}
#ifndef NDEBUG
DEBUG6 (("L matrix (stored by rows):")) ;
UMF_dump_col_matrix (Lx,
#ifdef COMPLEX
Lz,
#endif
Lj, Lp, n_inner, n_row, Numeric->lnz+n_inner) ;
#endif
DEBUG4 (("get_L done:\n")) ;
}
/* ========================================================================== */
/* === get_U ================================================================ */
/* ========================================================================== */
/*
The matrix U is stored in the following arrays in the Numeric object:
Int Upos [0..npiv]
Int Uip [0..npiv], index into Numeric->Memory
Int Uilen [0..npiv]
Unit *(Numeric->Memory), pointer to memory space holding column indices
and numerical values
where npiv is the number of pivot entries found. If A is n_row-by-n_col,
then npiv <= MIN (n_row,n_col).
Let U_k denote the pattern of entries in row k of U (excluding the
diagonal).
A Uchain is a sequence of columns of U whose nonzero patterns are related.
The start of a Uchain is denoted by a negative value of Uip [k].
To obtain U_k-1:
(1) If row k is the start of a Uchain then Uip [k] is negative and |Uip [k]|
is an index into Numeric->Memory for the integer column indices in
U_k-1. The number of entries in the row is |U_k-1| = Uilen [k]. This
defines the pattern of the "trailing" row of this chain that ends at
row k-1.
(2) If row k is not the start of a Uchain, then U_k-1 is a subset of U_k.
The indices in U_k are arranged so that last Uilen [k] entries of
U_k are those indices not in U_k-1. Next, the pivot column index k is
added if it appears in row U_k-1 (it never appears in U_k). Upos [k]
holds the position of pivot column index k in the pattern U_k-1 (if it
is present), so that the set union (U_k-1)+{k} can be computed quickly,
when computing the pattern of U_k-1 from U_k.
Note that this means we must have the pattern U_k to compute L_k-1.
In both cases (1) and (2), we obtain the pattern U_k.
The numerical values are stored in Numeric->Memory. If k is the start of a
Uchain, then the offset is |Uip [k]| plus the size of the space needed to
store the pattern U_k-1. Otherwise, Uip [k] is the offset itself of the
numerical values, since in this case no pattern is stored.
The numerical values are stored in the same order as the entries in U_k,
after U_k is obtained from cases (1) or (2), above.
The advantage of using this "packed" data structure is that it can
dramatically reduce the amount of storage needed for the pattern of U.
The disadvantage is that it can be difficult for the user to access,
and it does not match the sparse matrix data structure used in MATLAB.
Thus, this routine is provided to create a conventional sparse matrix
data structure for U, in sparse-column form.
*/
/* ========================================================================== */
PRIVATE void get_U
(
Int Up [ ], /* of size n_col+1 */
Int Ui [ ], /* of size unz, where unz = Up [n_col] */
double Ux [ ], /* of size unz */
#ifdef COMPLEX
double Uz [ ], /* of size unz */
#endif
NumericType *Numeric,
Int Pattern [ ], /* workspace of size n_col */
Int Wi [ ] /* workspace of size n_col */
)
{
/* ---------------------------------------------------------------------- */
/* local variables */
/* ---------------------------------------------------------------------- */
Entry value ;
Entry *xp, *D, *Uval ;
Int deg, j, *ip, col, *Upos, *Uilen, *Uip, n_col, ulen, *Usi,
unz2, p, k, up, newUchain, pos, npiv, n1 ;
#ifdef COMPLEX
Int split = SPLIT (Uz) ;
#endif
#ifndef NDEBUG
Int nnzpiv = 0 ;
#endif
/* ---------------------------------------------------------------------- */
/* get parameters */
/* ---------------------------------------------------------------------- */
DEBUG4 (("get_U start:\n")) ;
n_col = Numeric->n_col ;
n1 = Numeric->n1 ;
npiv = Numeric->npiv ;
Upos = Numeric->Upos ;
Uilen = Numeric->Uilen ;
Uip = Numeric->Uip ;
D = Numeric->D ;
/* ---------------------------------------------------------------------- */
/* count the nonzeros in each column of U */
/* ---------------------------------------------------------------------- */
for (col = 0 ; col < npiv ; col++)
{
/* include the diagonal entry in the column counts */
DEBUG4 (("D ["ID"] = ", col)) ;
EDEBUG4 (D [col]) ;
Wi [col] = IS_NONZERO (D [col]) ;
DEBUG4 ((" is nonzero: "ID"\n", Wi [col])) ;
#ifndef NDEBUG
nnzpiv += IS_NONZERO (D [col]) ;
#endif
}
DEBUG4 (("nnzpiv "ID" "ID"\n", nnzpiv, Numeric->nnzpiv)) ;
ASSERT (nnzpiv == Numeric->nnzpiv) ;
for (col = npiv ; col < n_col ; col++)
{
/* diagonal entries are zero for structurally singular part */
Wi [col] = 0 ;
}
deg = Numeric->ulen ;
if (deg > 0)
{
/* make last pivot row of U (singular matrices only) */
DEBUG0 (("Last pivot row of U: ulen "ID"\n", deg)) ;
for (j = 0 ; j < deg ; j++)
{
Pattern [j] = Numeric->Upattern [j] ;
DEBUG0 ((" column "ID"\n", Pattern [j])) ;
}
}
/* non-singletons */
for (k = npiv-1 ; k >= n1 ; k--)
{
/* ------------------------------------------------------------------ */
/* use row k of U */
/* ------------------------------------------------------------------ */
up = Uip [k] ;
ulen = Uilen [k] ;
newUchain = (up < 0) ;
if (newUchain)
{
up = -up ;
xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ;
}
else
{
xp = (Entry *) (Numeric->Memory + up) ;
}
for (j = 0 ; j < deg ; j++)
{
DEBUG4 ((" k "ID" col "ID" value\n", k, Pattern [j])) ;
col = Pattern [j] ;
ASSERT (col >= 0 && col < n_col) ;
value = *xp++ ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
Wi [col]++ ;
}
}
/* ------------------------------------------------------------------ */
/* make row k-1 of U in Pattern [0..deg-1] */
/* ------------------------------------------------------------------ */
if (k == n1) break ;
if (newUchain)
{
/* next row is a new Uchain */
deg = ulen ;
DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ;
ip = (Int *) (Numeric->Memory + up) ;
for (j = 0 ; j < deg ; j++)
{
col = *ip++ ;
DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ;
ASSERT (k <= col) ;
Pattern [j] = col ;
}
}
else
{
deg -= ulen ;
DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k-1, deg));
ASSERT (deg >= 0) ;
pos = Upos [k] ;
if (pos != EMPTY)
{
/* add the pivot column */
DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ;
ASSERT (pos >= 0 && pos <= deg) ;
Pattern [deg++] = Pattern [pos] ;
Pattern [pos] = k ;
}
}
}
/* singletons */
for (k = n1 - 1 ; k >= 0 ; k--)
{
deg = Uilen [k] ;
DEBUG4 (("Singleton k "ID"\n", k)) ;
if (deg > 0)
{
up = Uip [k] ;
Usi = (Int *) (Numeric->Memory + up) ;
up += UNITS (Int, deg) ;
Uval = (Entry *) (Numeric->Memory + up) ;
for (j = 0 ; j < deg ; j++)
{
col = Usi [j] ;
value = Uval [j] ;
DEBUG4 ((" k "ID" col "ID" value", k, col)) ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
Wi [col]++ ;
}
}
}
}
/* ---------------------------------------------------------------------- */
/* construct the final column form of U */
/* ---------------------------------------------------------------------- */
/* create the column pointers */
unz2 = 0 ;
for (col = 0 ; col < n_col ; col++)
{
Up [col] = unz2 ;
unz2 += Wi [col] ;
}
Up [n_col] = unz2 ;
DEBUG1 (("Numeric->unz "ID" npiv "ID" nnzpiv "ID" unz2 "ID"\n",
Numeric->unz, npiv, Numeric->nnzpiv, unz2)) ;
ASSERT (Numeric->unz + Numeric->nnzpiv == unz2) ;
for (col = 0 ; col < n_col ; col++)
{
Wi [col] = Up [col+1] ;
}
/* add all of the diagonal entries */
for (col = 0 ; col < npiv ; col++)
{
if (IS_NONZERO (D [col]))
{
p = --(Wi [col]) ;
Ui [p] = col ;
#ifdef COMPLEX
if (split)
{
Ux [p] = REAL_COMPONENT (D [col]) ;
Uz [p] = IMAG_COMPONENT (D [col]) ;
}
else
{
Ux [2*p ] = REAL_COMPONENT (D [col]) ;
Ux [2*p+1] = IMAG_COMPONENT (D [col]) ;
}
#else
Ux [p] = D [col] ;
#endif
}
}
/* add all the entries from the rows of U */
deg = Numeric->ulen ;
if (deg > 0)
{
/* make last pivot row of U (singular matrices only) */
for (j = 0 ; j < deg ; j++)
{
Pattern [j] = Numeric->Upattern [j] ;
}
}
/* non-singletons */
for (k = npiv-1 ; k >= n1 ; k--)
{
/* ------------------------------------------------------------------ */
/* use row k of U */
/* ------------------------------------------------------------------ */
up = Uip [k] ;
ulen = Uilen [k] ;
newUchain = (up < 0) ;
if (newUchain)
{
up = -up ;
xp = (Entry *) (Numeric->Memory + up + UNITS (Int, ulen)) ;
}
else
{
xp = (Entry *) (Numeric->Memory + up) ;
}
xp += deg ;
for (j = deg-1 ; j >= 0 ; j--)
{
DEBUG4 ((" k "ID" col "ID" value", k, Pattern [j])) ;
col = Pattern [j] ;
ASSERT (col >= 0 && col < n_col) ;
value = *(--xp) ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
p = --(Wi [col]) ;
Ui [p] = k ;
#ifdef COMPLEX
if (split)
{
Ux [p] = REAL_COMPONENT (value) ;
Uz [p] = IMAG_COMPONENT (value) ;
}
else
{
Ux [2*p ] = REAL_COMPONENT (value) ;
Ux [2*p+1] = IMAG_COMPONENT (value) ;
}
#else
Ux [p] = value ;
#endif
}
}
/* ------------------------------------------------------------------ */
/* make row k-1 of U in Pattern [0..deg-1] */
/* ------------------------------------------------------------------ */
if (newUchain)
{
/* next row is a new Uchain */
deg = ulen ;
DEBUG4 (("end of chain for row of U "ID" deg "ID"\n", k-1, deg)) ;
ip = (Int *) (Numeric->Memory + up) ;
for (j = 0 ; j < deg ; j++)
{
col = *ip++ ;
DEBUG4 ((" k "ID" col "ID"\n", k-1, col)) ;
ASSERT (k <= col) ;
Pattern [j] = col ;
}
}
else
{
deg -= ulen ;
DEBUG4 (("middle of chain for row of U "ID" deg "ID"\n", k-1, deg));
ASSERT (deg >= 0) ;
pos = Upos [k] ;
if (pos != EMPTY)
{
/* add the pivot column */
DEBUG4 (("k "ID" add pivot entry at position "ID"\n", k, pos)) ;
ASSERT (pos >= 0 && pos <= deg) ;
Pattern [deg++] = Pattern [pos] ;
Pattern [pos] = k ;
}
}
}
/* singletons */
for (k = n1 - 1 ; k >= 0 ; k--)
{
deg = Uilen [k] ;
DEBUG4 (("Singleton k "ID"\n", k)) ;
if (deg > 0)
{
up = Uip [k] ;
Usi = (Int *) (Numeric->Memory + up) ;
up += UNITS (Int, deg) ;
Uval = (Entry *) (Numeric->Memory + up) ;
for (j = 0 ; j < deg ; j++)
{
col = Usi [j] ;
value = Uval [j] ;
DEBUG4 ((" k "ID" col "ID" value", k, col)) ;
EDEBUG4 (value) ;
DEBUG4 (("\n")) ;
if (IS_NONZERO (value))
{
p = --(Wi [col]) ;
Ui [p] = k ;
#ifdef COMPLEX
if (split)
{
Ux [p] = REAL_COMPONENT (value) ;
Uz [p] = IMAG_COMPONENT (value) ;
}
else
{
Ux [2*p ] = REAL_COMPONENT (value) ;
Ux [2*p+1] = IMAG_COMPONENT (value) ;
}
#else
Ux [p] = value ;
#endif
}
}
}
}
#ifndef NDEBUG
DEBUG6 (("U matrix:")) ;
UMF_dump_col_matrix (Ux,
#ifdef COMPLEX
Uz,
#endif
Ui, Up, Numeric->n_row, n_col, Numeric->unz + Numeric->nnzpiv) ;
#endif
}