Blame view

doc/fvn.tex 28.3 KB
9158e74d6   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
  %\documentclass[a4paper,10pt]{article}
  \documentclass[a4paper,english]{article}
  
  \usepackage[utf8]{inputenc}
  \usepackage{a4wide}
  \usepackage{eurosym}
  \usepackage{url}
  %\usepackage{aeguill}
  
  \usepackage{graphicx}
  \usepackage{babel}
  \makeatother
  
  
  %opening
  \title{FVN Documentation}
  \author{William Daniau}
  
  
  \begin{document}
  
  \maketitle
  
  %\begin{abstract}
  
  %\end{abstract}
  \tableofcontents
  
  \section{Whatis fvn,licence,disclaimer etc}
  \subsection{Whatis fvn}
  fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex trigonometry etc.
  
  Most of the work is done by interfacing Lapack \url{http://www.netlib.org/lapack} which means that Lapack and Blas \url{http://www.netlib.org/blas} must be available on your system for linking fvn. If you use an AMD microprocessor, the good idea is to use ACML ( AMD Core Math Library \url{http://developer.amd.com/acml.jsp} which contains an optimized Blas/Lapack. Fvn also contains a slightly modified version of Quadpack \url{http://www.netlib.org/quadpack} for performing the numerical integration tasks.
  
  This module has been initially written for the use of the ``Acoustic and microsonic'' group leaded by Sylvain Ballandras in institute Femto-ST \url{http://www.femto-st.fr/}.
  
  \subsection{Licence}
  The licence of fvn is free. You can do whatever you want with this code as far as you credit the authors.
  
  \subsubsection*{Authors}
  As of the day this manuel is written there's only one author of fvn :
  ewline
  William Daniau
  ewline
  william.daniau@femto-st.fr
  ewline
  
  \subsection{Disclaimer}
  The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use it at your own risks. The authors should not be taken responsible of anything that may result by the use of this software.
  
  \section{Naming scheme and convention}
  The naming scheme of the routines is as follow :
  \begin{verbatim}
      fvn_x_name()
  \end{verbatim} 
  where x can be s,d,c or z. 
  \begin{itemize}
   \item s is for single precision real (real,real*4,real(4),real(kind=4))
   \item d for double precision real (double precision,real*8,real(8),real(kind=8))
   \item c for single precision complex (complex,complex*8,complex(4),complex(kind=4))
   \item z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))
  \end{itemize}
  In the following description of subroutines parameters, input parameters are followed by (in), output parameters by (out) and parameters which are used as input and modified by the subroutine are followed by (inout).
  
  \section{Linear algebra}
  The linear algebra routines of fvn are an interface to lapack, which make it easier to use.
  \subsection{Matrix inversion}
  \begin{verbatim}
  call fvn_x_matinv(d,a,inva,status)
  \end{verbatim}
  \begin{itemize}
   \item d (in) is an integer equal to the matrix rank
   \item a (in) is a matrix of type x. It will remain untouched.
   \item inva (out) is a matrix of type x which contain the inverse of a at the end of the routine
   \item status (out) is an integer equal to zero if something went wrong
  \end{itemize}
  
  \subsubsection*{Example}
  \begin{verbatim}
  program inv
   use fvn 
   implicit none
  
   real(8),dimension(3,3) :: a,inva
   integer :: status
  
   call random_number(a)
   a=a*100
  
   call fvn_d_matinv(3,a,inva,status)
   write (*,*) a
   write (*,*)
   write (*,*) inva
   write (*,*)
   write (*,*) matmul(a,inva)
  end program
  \end{verbatim}
  
  
  
  \subsection{Matrix determinants}
  \begin{verbatim}
  det=fvn_x_det(d,a,status)
  \end{verbatim}
  \begin{itemize}
   \item d (in) is an integer equal to the matrix rank
   \item a (in) is a matrix of type x. It will remain untouched.
   \item status (out) is an integer equal to zero if something went wrong
  \end{itemize}
  
  \subsubsection*{Example}
  \begin{verbatim}
  program det
   use fvn 
   implicit none
  
   real(8),dimension(3,3) :: a
   real(8) :: deta
   integer :: status
  
   call random_number(a)
   a=a*100
  
   deta=fvn_d_det(3,a,status)
   write (*,*) a
   write (*,*)
   write (*,*) "Det = ",deta
  end program
  
  \end{verbatim}
  
  
  
  \subsection{Matrix condition}
  \begin{verbatim}
  call fvn_x_matcon(d,a,rcond,status)
  \end{verbatim}
  \begin{itemize}
   \item d (in) is an integer equal to the matrix rank
   \item a (in) is a matrix of type x. It will remain untouched.
   \item rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number of the matrix
   \item status (out) is an integer equal to zero if something went wrong
  \end{itemize}
  
  The reciprocal condition number is evaluated using the 1-norm and is define as in equation \ref{rconddef}
  \begin{equation}
   R = \frac{1}{norm(A)*norm(invA)}
   \label{rconddef}
  \end{equation}
  
  The 1-norm itself is defined as the maximum value of the columns absolute values (modulus for complex) sum as in equation \ref{l1norm}
  \begin{equation}
   L1 = max_j ( \sum_i{\mid A(i,j)\mid}  )
   \label{l1norm}
  \end{equation}
  
  \subsubsection*{Example}
  \begin{verbatim}
  program cond
   use fvn 
   implicit none
  
   real(8),dimension(3,3) :: a
   real(8) :: rcond
   integer :: status
  
   call random_number(a)
   a=a*100
  
   call fvn_d_matcon(3,a,rcond,status)
   write (*,*) a
   write (*,*)
   write (*,*) "Cond = ",rcond
  end program
  
  \end{verbatim}
  
  
  \subsection{Eigenvalues/Eigenvectors}
  \begin{verbatim}
  call fvn_x_matev(d,a,evala,eveca,status)
  \end{verbatim}
  \begin{itemize}
   \item d (in) is an integer equal to the matrix rank
   \item a (in) is a matrix of type x. It will remain untouched.
   \item evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a
   \item eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).
   \item status (out) is an integer equal to zero if something went wrong
  \end{itemize}
  
  \subsubsection*{Example}
  \begin{verbatim}
  program eigen
   use fvn 
   implicit none
  
   real(8),dimension(3,3) :: a
   complex(8),dimension(3) :: evala
   complex(8),dimension(3,3) :: eveca
   integer :: status,i,j
  
   call random_number(a)
   a=a*100
  
   call fvn_d_matev(3,a,evala,eveca,status)
   write (*,*) a
   write (*,*)
   do i=1,3
      write(*,*) "Eigenvalue ",i,evala(i)
      write(*,*) "Associated Eigenvector :"
      do j=1,3
          write(*,*) eveca(j,i)
      end do
      write(*,*)
   end do
  
  end program
  
  \end{verbatim}
  
  
  \subsection{Sparse solving}
  By interfacing Tim Davis's SuiteSparse from university of Florida \url{http://www.cise.ufl.edu/research/sparse/SuiteSparse/} which is a reference for this kind of problems, fvn provides simple subroutines for solving linear sparse systems.
  
  The provided routines solves the equation $Ax=B$ where A is sparse and given in its triplet form.
  
  \begin{verbatim}
  call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status)  where * is either zl, zi, dl or di
  \end{verbatim}
  \begin{itemize}
   \item For this family of subroutine the two letters (zl,zi,dl,di) decribe the arguments's type. z is for complex(8), d for real(8), l for integer(8) and i for integer(4)
   \item n (in) is an integer equal to the matrix rank
   \item nz (in) is an integer equal to the number of non-zero elements
   \item T(nz) (in) is a complex/real array containing the non-zero elements
   \item Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix.
   \item B(n) (in) is a complex/real array containing the second member of the equation.
   \item x(n) (out) is a complex/real array containing the solution
   \item status (out) is an integer which contain non-zero is something went wrong
  \end{itemize}
  
  \subsubsection*{Example}
  \begin{verbatim}
  program test_sparse
  
   use fvn
   implicit none
  
   integer(8), parameter :: nz=12
   integer(8), parameter :: n=5
   complex(8),dimension(nz) :: A
   integer(8),dimension(nz) :: Ti,Tj
   complex(8),dimension(n) :: B,x
   integer(8) :: status
  
   A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
            (1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)
   B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
   Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
   Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
  
   call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
   write(*,*) x
  
  end program
  
  
  program test_sparse
  
  use fvn
  implicit none
  
  integer(4), parameter :: nz=12
  integer(4), parameter :: n=5
  real(8),dimension(nz) :: A
  integer(4),dimension(nz) :: Ti,Tj
  real(8),dimension(n) :: B,x
  integer(4) :: status
  
  A = (/ 2.,3.,3.,-1.,4.,4.,-3.,1.,2.,2.,6.,1. /)
  B = (/ 8., 45., -3., 3., 19./)
  Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
  Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)
  
  call fvn_di_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
  write(*,*) x
  
  end program
  
  
  
  \end{verbatim}
  
  
  
  \section{Interpolation}
  
  \subsection{Quadratic Interpolation}
  fvn provide function for interpolating values of a tabulated function of 1, 2 or 3 variables, for both single and double precision.
  \subsubsection{One variable function}
  \begin{verbatim}
   value=fvn_x_quad_interpol(x,n,xdata,ydata)
  \end{verbatim}
  \begin{itemize}
   \item x is the real where we want to evaluate the function
   \item n is the number of tabulated values
   \item xdata(n) contains the tabulated coordinates
   \item ydata(n) contains the tabulated function values ydata(i)=y(xdata(i))
  \end{itemize}
  xdata must be strictly increasingly ordered.
  x must be within the range of xdata to actually perform an interpolation, otherwise the resulting value is an extrapolation
  \paragraph*{Example}
  \begin{verbatim}
  program inter1d
  
  use fvn
  implicit none
  
  integer(kind=4),parameter :: ndata=33
  integer(kind=4) :: i,nout
  real(kind=8) :: f,fdata(ndata),h,pi,q,sin,x,xdata(ndata)
  real(kind=8) ::tv
  
  intrinsic sin
  
  f(x)=sin(x)
  
  xdata(1)=0.
  fdata(1)=f(xdata(1))
  h=1./32.
  do i=2,ndata
        xdata(i)=xdata(i-1)+h
        fdata(i)=f(xdata(i))
  end do
  call random_seed()
  call random_number(x)
  
  q=fvn_d_quad_interpol(x,ndata,xdata,fdata)
  
  tv=f(x)
  write(*,*) "x ",x
  write(*,*) "Calculated (real) value :",tv
  write(*,*) "fvn interpolation :",q
  write(*,*) "Relative fvn error :",abs((q-tv)/tv)
  
  end program
  
  \end{verbatim}
  
  
  \subsubsection{Two variables function}
  \begin{verbatim}
  value=fvn_x_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata)
  \end{verbatim}
  \begin{itemize}
   \item x,y are the real coordinates where we want to evaluate the function
   \item nx is the number of tabulated values along x axis
   \item xdata(nx) contains the tabulated x
   \item ny is the number of tabulated values along y axis
   \item ydata(ny) contains the tabulated y
   \item zdata(nx,ny) contains the tabulated function values zdata(i,j)=z(xdata(i),ydata(j))
  \end{itemize}
  xdata and ydata must be strictly increasingly ordered.
  (x,y) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
  
  \paragraph*{Example}
  
  \begin{verbatim}
  program inter2d
  use fvn
  implicit none
  
  integer(kind=4),parameter  :: nx=21,ny=42
  integer(kind=4) :: i,j
  real(kind=8) :: f,fdata(nx,ny),dble,pi,q,sin,x,xdata(nx),y,ydata(ny)
  real(kind=8) :: tv
  
  intrinsic dble,sin
  
  f(x,y)=sin(x+2.*y)
  do i=1,nx
        xdata(i)=dble(i-1)/dble(nx-1)
  end do
  do i=1,ny
        ydata(i)=dble(i-1)/dble(ny-1)
  end do
  do i=1,nx
        do j=1,ny
              fdata(i,j)=f(xdata(i),ydata(j))
        end do
  end do
  call random_seed()
  call random_number(x)
  call random_number(y)
  
  q=fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,fdata)
  tv=f(x,y)
  
  write(*,*) "x y",x,y
  write(*,*) "Calculated (real) value :",tv
  write(*,*) "fvn interpolation :",q
  write(*,*) "Relative fvn error :",abs((q-tv)/tv)
  
  end program
  
  \end{verbatim}
  
  
  
  \subsubsection{Three variables function}
  \begin{verbatim}
  value=fvn_x_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata)
  \end{verbatim}
  \begin{itemize}
   \item x,y,z are the real coordinates where we want to evaluate the function
   \item nx is the number of tabulated values along x axis
   \item xdata(nx) contains the tabulated x
   \item ny is the number of tabulated values along y axis
   \item ydata(ny) contains the tabulated y
   \item nz is the number of tabulated values along z axis
   \item zdata(ny) contains the tabulated z
   \item tdata(nx,ny,nz) contains the tabulated function values tdata(i,j,k)=t(xdata(i),ydata(j),zdata(k))
  \end{itemize}
  xdata, ydata and zdata must be strictly increasingly ordered.
  (x,y,z) must be within the range of xdata and ydata to actually perform an interpolation, otherwise the resulting value is an extrapolation
  
  \paragraph*{Example}
  \begin{verbatim}
  program inter3d
  use fvn
  
  implicit none
  
  integer(kind=4),parameter  :: nx=21,ny=42,nz=18
  integer(kind=4) :: i,j,k
  real(kind=8) :: f,fdata(nx,ny,nz),dble,pi,q,sin,x,xdata(nx),y,ydata(ny),z,zdata(nz)
  real(kind=8) :: tv
  
  intrinsic dble,sin
  
  f(x,y,z)=sin(x+2.*y+3.*z)
  do i=1,nx
        xdata(i)=2.*(dble(i-1)/dble(nx-1))
  end do
  do i=1,ny
        ydata(i)=2.*(dble(i-1)/dble(ny-1))
  end do
  do i=1,nz
        zdata(i)=2.*(dble(i-1)/dble(nz-1))
  end do
  do i=1,nx
        do j=1,ny
              do k=1,nz
                    fdata(i,j,k)=f(xdata(i),ydata(j),zdata(k))
              end do
        end do
  end do
  call random_seed()
  call random_number(x)
  call random_number(y)
  call random_number(z)
  
  q=fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,fdata)
  tv=f(x,y,z)
  
  write(*,*) "x y z",x,y,z
  write(*,*) "Calculated (real) value :",tv
  write(*,*) "fvn interpolation :",q
  write(*,*) "Relative fvn error :",abs((q-tv)/tv)
  
  end program
  
  \end{verbatim}
  
  \subsubsection{Utility procedure}
  fvn provides a simple utility procedure to locate the interval in which a value is located in an increasingly ordered array.
  \begin{verbatim}
  call fvn_x_find_interval(x,i,xdata,n)
  \end{verbatim}
  \begin{itemize}
   \item x (in) the real value to locate
   \item i (out) the resulting indice
   \item xdata(n) (in) increasingly ordered array
   \item n (in) size of the array
  \end{itemize}
  The resulting integer i is as : $xdata(i) <= x < xdata(i+1)$. If $x < xdata(1)$ then $i=0$ is returned. If $x > xdata(n)$ then $i=n$ is returned. Finally if $x=xdata(n)$ then $i=n-1$ is returned.
  
  
  
  \subsection{Akima spline}
  fvn provides Akima spline interpolation and evaluation for both single and double precision real.
  \subsubsection{Interpolation}
  \begin{verbatim}
  call fvn_x_akima(n,x,y,br,co)
  \end{verbatim}
  \begin{itemize}
   \item n (in) is an integer equal to the number of points
   \item x(n) (in) ,y(n) (in) are the known couples of coordinates
   \item br (out) on output contains a copy of x
   \item co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline for a given interval.
  \end{itemize}
  
  \subsubsection{Evaluation}
  \begin{verbatim}
  y=fvn_x_spline_eval(x,n,br,co)
  \end{verbatim}
  \begin{itemize}
   \item x (in) is the point where we want to evaluate
   \item n (in) is the number of known points and br(n) (in), co(4,n) (in) \\
  are the outputs of fvn\_x\_akima(n,x,y,br,co) 
  \end{itemize}
  
  \subsubsection{Example}
  In the following example we will use Akima splines to interpolate a sinus function with 30 points between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation evaluation of sin(x).
  
  One can see that the interpolation is very efficient even with only 30 points. Of course as soon as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate values.
  
  \begin{verbatim}
  program akima
   use fvn
   implicit none
  
   integer :: nbpoints,nppoints,i
   real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
   real(8),dimension(:,:),allocatable :: coeff_fvn_d
   real(8) :: xstep_d,xp_d,ty_d,fvn_y_d
  
   open(2,file='fvn_akima_double.dat')
   open(3,file='fvn_akima_breakpoints_double.dat')
   nbpoints=30
   allocate(x_d(nbpoints))
   allocate(y_d(nbpoints))
   allocate(breakpoints_d(nbpoints))
   allocate(coeff_fvn_d(4,nbpoints))
  
   xstep_d=20./dfloat(nbpoints)
   do i=1,nbpoints
      x_d(i)=-10.+dfloat(i)*xstep_d
      y_d(i)=dsin(x_d(i))
      write(3,44) (x_d(i),y_d(i))
   end do
   close(3)
  
   call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)
  
   nppoints=1000 
   xstep_d=22./dfloat(nppoints)
   do i=1,nppoints
      xp_d=-11.+dfloat(i)*xstep_d
      ty_d=dsin(xp_d)
      fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
      write(2,44) (xp_d,ty_d,fvn_y_d)
   end do
  
   close(2)
  
  44      FORMAT(4(1X,1PE22.14))
  
  end program
  
  \end{verbatim}
  Results are plotted on figure \ref{akima}
  
  \begin{figure}
   \begin{center}
   \includegraphics[width=0.9\textwidth]{akima.pdf}
   % akima.pdf: 504x720 pixel, 72dpi, 17.78x25.40 cm, bb=0 0 504 720
   \caption{Akima Spline Interpolation}
   \label{akima}
  \end{center}
  
  \end{figure}
  
  
  
  \section{Least square polynomial}
  fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition.
  
  \begin{verbatim}
  call fvn_x_lspoly(np,x,y,deg,coeff,status)
  \end{verbatim}
  \begin{itemize}
   \item np (in) is an integer equal to the number of points
   \item x(np) (in),y(np) (in) are the known coordinates
   \item deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than np.
   \item coeff(deg+1) (out) on output contains the polynomial coefficients
   \item status (out) is an integer containing 0 if a problem occured.
  \end{itemize}
  
  \subsection*{Example}
  Here's a simple example : we've got 13 measurement points and we want to find the least square degree 3 polynomial for these points :
  \begin{verbatim}
   program lsp
   use fvn
   implicit none
  
   integer,parameter :: npoints=13,deg=3
   integer :: status,i
   real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
   real(kind=8) :: coeff(deg+1)
  
   xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
   ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5  /)
  
   open(2,file='fvn_lsp_double_mesure.dat')
   open(3,file='fvn_lsp_double_poly.dat')
  
   do i=1,npoints
      write(2,44) xm(i),ym(i)
   end do
   close(2)
  
  
   call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)
  
   xstep=(xm(npoints)-xm(1))/1000.
   do i=1,1000
      xc=xm(1)+(i-1)*xstep
      yc=poly(xc,coeff)
      write(3,44) xc,yc
   end do
   close(3)
  
  44      FORMAT(4(1X,1PE22.14))
  
  contains
  function poly(x,coeff)
      implicit none
      real(8) :: x
      real(8) :: coeff(deg+1)
      real(8) :: poly
      integer :: i
  
      poly=0.
  
      do i=1,deg+1
          poly=poly+coeff(i)*x**(i-1)
      end do
  
  end function
  end program
  \end{verbatim}
  The results are plotted on figure \ref{lsp} .
  
  \begin{figure}
   \begin{center}
   \includegraphics[width=0.9\textwidth]{lsp.pdf}
   \caption{Least Square Polynomial}
   \label{lsp}
   \end{center}
  \end{figure}
  
  
  
  \section{Zero finding}
  fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for double complex type). It is based on a version provided on the web by Hans D Mittelmann \url{http://plato.asu.edu/ftp/other\_software/muller.f}.
  
  \begin{verbatim}
   call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
  \end{verbatim}
  \begin{itemize}
   \item f (in) is the complex function (kind=8) for which we search zeros
   \item eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots.  if ((cdabs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.
   \item eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if two successive approximations to a given root agree within eps1. Note that if either or both of the stopping criteria are fulfilled, the root is accepted.
   \item kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn), prior to entry in the subroutine.
   \item nguess (in) is the number of initial guesses provided. These guesses must be stored in x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.
   \item n (in) is an integer equal to the number of new roots to be found.
   \item x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any known roots.  x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for the n new roots which are to be computed. If the user does not provide an initial guess, zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the subroutine.
   \item itmax (in) is an integer equal to the maximum allowable number of iterations per root.
   \item infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of iterations used in finding the j-th root when convergence was achieved.  If convergence was not obtained in itmax iterations, infer(j) will be greater than itmax
   \item ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge within itmax iterations for at least one of the (n) new roots.
  \end{itemize}
  This subroutine always returns the last approximation for root j in x(j). if the convergence criterion is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified, then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1 indicates that muller did not obtain convergence in the allowed number of iterations. in this case, the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence criterion.
  
  \subsection*{Example}
  Example to find the ten roots of $x^{10}-1$
  \begin{verbatim}
   program muller
   use fvn
   implicit none
  
   integer :: i,info
   complex(8),dimension(10) :: roots
   integer,dimension(10) :: infer
   complex(8), external :: f
  
   call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)
  
   write(*,*) "Error code :",info
   do i=1,10
      write(*,*) roots(i),infer(i)
   enddo
   end program
  
   function f(x)
      complex(8) :: x,f
      f=x**10-1
   end function
  
  \end{verbatim}
  
  
  \section{Trigonometry}
  \subsection{Complex Sine Arc}
  ( only complex(kind=8) version )
  \begin{verbatim}
   y=fvn_z_asin(z)
  \end{verbatim}
  This function return the complex arc sine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
  
  
  \subsection{Complex Cosine Arc}
  ( only complex(kind=8) version )
  \begin{verbatim}
   y=fvn_z_acos(z)
  \end{verbatim}
  This function return the complex arc cosine of z. It is adapted from he c gsl library \url{http://www.gnu.org/software/gsl/}.
  
  \subsection{Real Sine Hyperbolic Arc}
  ( only real(kind=8) version )
  \begin{verbatim}
   y=fvn_d_asinh(x)
  \end{verbatim}
  This function return the arc hyperbolic sine of x.
  
  \subsection{Real Cosine Hyperbolic Arc}
  ( only real(kind=8) version )
  \begin{verbatim}
   y=fvn_d_acosh(x)
  \end{verbatim}
  This function return the arc hyperbolic cosine of x. In the current implementation error handling is ugly... it will stop program execution if argument is lesser than one.
  
  \section{Numerical integration}
  Using an integrated slightly modified version of quadpack \url{http://www.netlib.org/quadpack}, fvn provide adaptative numerical integration (Gauss Kronrod) of real functions of 1 and 2 variables. fvn also provide a function to calculate Gauss-Legendre abscissas and weight, and a simple non adaptative integration subroutine. All routines exists only in fvn for double precision real.
  
  \subsection{Gauss Legendre Abscissas and Weigth}
  This subroutine was inspired by Numerical Recipes routine gauleg.
  \begin{verbatim}
  call fvn_d_gauss_legendre(n,qx,qw)
  \end{verbatim}
  \begin{itemize}
   \item n (in) is an integer equal to the number of Gauss Legendre points
   \item qx (out) is a real(8) vector of length n containing the abscissas.
   \item qw (out) is a real(8) vector of length n containing the weigths.
  \end{itemize}
  This subroutine computes n Gauss-Legendre abscissas and weigths
  
  \subsection{Gauss Legendre Numerical Integration}
  \begin{verbatim}
  call fvn_d_gl_integ(f,a,b,n,res)
  \end{verbatim}
  \begin{itemize}
   \item f (in) is a real(8) function to integrate
   \item a (in) and b (in) are real(8) respectively lower and higher bound of integration
   \item n (in) is an integer equal to the number of Gauss Legendre points to use
   \item res (out) is a real(8) containing the result
  \end{itemize}
  This function is a simple Gauss Legendre integration subroutine, which evaluate the integral of function f as in equation \ref{intsple} using n Gauss-Legendre pairs.
  
  \subsection{Gauss Kronrod Adaptative Integration}
  This kind of numerical integration is an iterative procedure which try to achieve a given precision.
  \subsubsection{Numerical integration of a one variable function}
  \begin{verbatim}
  call fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
  \end{verbatim}
  This routine evaluate the integral of function f as in equation \ref{intsple}
  \begin{itemize}
   \item f (in) is an external real(8) function of one variable
   \item a (in) and b (in) are real(8) respectively lower an higher bound of integration
   \item epsabs (in) and epsrel (in) are real(8) respectively desired absolute and relative error
   \item key (in) is an integer between 1 and 6 correspondind to the Gauss-Kronrod rule to use :
      \begin{itemize}
          \item 1 : 7 - 15 points
          \item 2 : 10 - 21 points
          \item 3 : 15 - 31 points
          \item 4 : 20 - 41 points
          \item 5 : 25 - 51 points
          \item 6 : 30 - 61 points
      \end{itemize}
   \item res (out) is a real(8) containing the estimation of the integration.
   \item abserr (out) is a real(8) equal to the estimated absolute error
   \item ier (out) is an integer used as an error flag
      \begin{itemize}
          \item 0 : no error
          \item 1 : maximum number of subdivisions allowed has been achieved. one can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). however, if this yield no improvement it is advised to analyze the integrand in order to determine the integration difficulaties. If the position of a local difficulty can be determined (i.e.singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. If possible, an appropriate special-purpose integrator should be used which is designed for handling the type of difficulty involved.
          \item 2 : the occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved.
          \item 3 : extremely bad integrand behaviour occurs at some points of the integration interval.
          \item 6 : the input is invalid, because (epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) or limit.lt.1 or lenw.lt.limit*4. result, abserr, neval, last are set to zero. Except when lenw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero, work(1) is set to a and work(limit+1) to b.
      \end{itemize}
   \item limit (in) is an integer equal to maximum number of subintervals in the partition of the given integration interval (a,b). A value of 500 will usually give good results.
  \end{itemize}
  
  \begin{equation}
   \int_a^b f(x)~dx
   \label{intsple}
  \end{equation}
  
  
  
  
  \subsubsection{Numerical integration of a two variable function}
  \begin{verbatim}
  call fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
  \end{verbatim}
  This function evaluate the integral of a function f(x,y) as defined in equation \ref{intdble}. The parameters of same name as in the previous paragraph have exactly the same function and behaviour thus only what differs is decribed here
  \begin{itemize}
   \item a (in) and b (in) are real(8) corresponding respectively to lower and higher bound of integration for the x variable.
   \item g(x) (in) and h(x) (in) are external functions describing the lower and higher bound of integration for the y variable as a function of x.
  \end{itemize}
  
  \begin{equation}
   \int_a^b \int_{g(x)}^{h(x)} f(x,y)~dy~dx
   \label{intdble}
  \end{equation}
  
  \subsubsection*{Example}
  \begin{verbatim}
  program integ
   use fvn
   implicit none
  
   real(8), external :: f1,f2,g,h
   real(8) :: a,b,epsabs,epsrel,abserr,res
   integer :: key,ier
  
   a=0.
   b=1.
   epsabs=1d-8
   epsrel=1d-8
   key=2
   call fvn_d_integ_1_gk(f1,a,b,epsabs,epsrel,key,res,abserr,ier,500)
   write(*,*) "Integration of x*x between 0 and 1 : "
   write(*,*) res
  
   call fvn_d_integ_2_gk(f2,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,500)
   write(*,*) "Integration of x*y between 0 and 1 on both x and y : "
   write(*,*) res
   
  
  end program
  
  function f1(x)
   implicit none
      real(8) :: x,f1
      f1=x*x
  end function
  
  function f2(x,y)
   implicit none
      real(8) :: x,y,f2
      f2=x*y
  end function
  
  function g(x)
   implicit none
      real(8) :: x,g
      g=0.
  end function
  
  function h(x)
   implicit none
      real(8) :: x,h
      h=1.
  end function
  \end{verbatim}
  
  
  
  
  
  \end{document}