Commit e3580faaed9916c30a80a4611d49775015d4a080
1 parent
3ca9d7dfc3
Exists in
master
relecture/corrections du matin
Showing 1 changed file with 83 additions and 123 deletions Inline Diff
ifcs2018_proceeding.tex
\documentclass[a4paper,conference]{IEEEtran/IEEEtran} | 1 | 1 | \documentclass[a4paper,conference]{IEEEtran/IEEEtran} | |
\usepackage{graphicx,color,hyperref} | 2 | 2 | \usepackage{graphicx,color,hyperref} | |
\usepackage{amsfonts} | 3 | 3 | \usepackage{amsfonts} | |
\usepackage{amsthm} | 4 | 4 | \usepackage{amsthm} | |
\usepackage{amssymb} | 5 | 5 | \usepackage{amssymb} | |
\usepackage{amsmath} | 6 | 6 | \usepackage{amsmath} | |
\usepackage{algorithm2e} | 7 | 7 | \usepackage{algorithm2e} | |
\usepackage{url} | 8 | 8 | \usepackage{url} | |
\usepackage[normalem]{ulem} | 9 | 9 | \usepackage[normalem]{ulem} | |
\graphicspath{{/home/jmfriedt/gpr/170324_avalanche/}{/home/jmfriedt/gpr/1705_homemade/}} | 10 | |||
% correct bad hyphenation here | 11 | 10 | % correct bad hyphenation here | |
\hyphenation{op-tical net-works semi-conduc-tor} | 12 | 11 | \hyphenation{op-tical net-works semi-conduc-tor} | |
\textheight=26cm | 13 | 12 | \textheight=26cm | |
\setlength{\footskip}{30pt} | 14 | 13 | \setlength{\footskip}{30pt} | |
\pagenumbering{gobble} | 15 | 14 | \pagenumbering{gobble} | |
\begin{document} | 16 | 15 | \begin{document} | |
\title{Filter optimization for real time digital processing of radiofrequency signals: application | 17 | 16 | \title{Filter optimization for real time digital processing of radiofrequency signals: application | |
to oscillator metrology} | 18 | 17 | to oscillator metrology} | |
19 | 18 | |||
\author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, | 20 | 19 | \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2}, | |
G. Goavec-M\'erou\IEEEauthorrefmark{1}, | 21 | 20 | G. Goavec-M\'erou\IEEEauthorrefmark{1}, | |
P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} | 22 | 21 | P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}} | |
\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } | 23 | 22 | \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France } | |
\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ | 24 | 23 | \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\ | |
Email: \{pyb2,jmfriedt\}@femto-st.fr} | 25 | 24 | Email: \{pyb2,jmfriedt\}@femto-st.fr} | |
} | 26 | 25 | } | |
\maketitle | 27 | 26 | \maketitle | |
\thispagestyle{plain} | 28 | 27 | \thispagestyle{plain} | |
\pagestyle{plain} | 29 | 28 | \pagestyle{plain} | |
\newtheorem{definition}{Definition} | 30 | 29 | \newtheorem{definition}{Definition} | |
31 | 30 | |||
\begin{abstract} | 32 | 31 | \begin{abstract} | |
Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to | 33 | 32 | Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to | |
radiofrequency signal processing. Applied to oscillator characterization in the context | 34 | 33 | radiofrequency signal processing. Applied to oscillator characterization in the context | |
of ultrastable clocks, stringent filtering requirements are defined by spurious signal or | 35 | 34 | of ultrastable clocks, stringent filtering requirements are defined by spurious signal or | |
noise rejection needs. Since real time radiofrequency processing must be performed in a | 36 | 35 | noise rejection needs. Since real time radiofrequency processing must be performed in a | |
Field Programmable Array to meet timing constraints, we investigate optimization strategies | 37 | 36 | Field Programmable Array to meet timing constraints, we investigate optimization strategies | |
to design filters meeting rejection characteristics while limiting the hardware resources | 38 | 37 | to design filters meeting rejection characteristics while limiting the hardware resources | |
required and keeping timing constraints within the targeted measurement bandwidths. | 39 | 38 | required and keeping timing constraints within the targeted measurement bandwidths. | |
\end{abstract} | 40 | 39 | \end{abstract} | |
41 | 40 | |||
\begin{IEEEkeywords} | 42 | 41 | \begin{IEEEkeywords} | |
Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter | 43 | 42 | Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter | |
\end{IEEEkeywords} | 44 | 43 | \end{IEEEkeywords} | |
45 | 44 | |||
\section{Digital signal processing of ultrastable clock signals} | 46 | 45 | \section{Digital signal processing of ultrastable clock signals} | |
47 | 46 | |||
Analog oscillator phase noise characteristics are classically performed by downconverting | 48 | 47 | Analog oscillator phase noise characteristics are classically performed by downconverting | |
the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, | 49 | 48 | the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband, | |
followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In | 50 | 49 | followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In | |
a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by | 51 | 50 | a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by | |
multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. | 52 | 51 | multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}. | |
53 | 52 | |||
\begin{figure}[h!tb] | 54 | 53 | \begin{figure}[h!tb] | |
\begin{center} | 55 | 54 | \begin{center} | |
\includegraphics[width=.8\linewidth]{images/schema} | 56 | 55 | \includegraphics[width=.8\linewidth]{images/schema} | |
\end{center} | 57 | 56 | \end{center} | |
\caption{Fully digital oscillator phase noise characterization: the Device Under Test | 58 | 57 | \caption{Fully digital oscillator phase noise characterization: the Device Under Test | |
(DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and | 59 | 58 | (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and | |
downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals | 60 | 59 | downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals | |
and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite | 61 | 60 | and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite | |
Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays | 62 | 61 | Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays | |
the spectral characteristics of the phase fluctuations.} | 63 | 62 | the spectral characteristics of the phase fluctuations.} | |
\label{schema} | 64 | 63 | \label{schema} | |
\end{figure} | 65 | 64 | \end{figure} | |
66 | 65 | |||
As with the analog mixer, | 67 | 66 | As with the analog mixer, | |
the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as | 68 | 67 | the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as | |
well as the generation of the frequency sum signal in addition to the frequency difference. | 69 | 68 | well as the generation of the frequency sum signal in addition to the frequency difference. | |
These unwanted spectral characteristics must be rejected before decimating the data stream | 70 | 69 | These unwanted spectral characteristics must be rejected before decimating the data stream | |
for the phase noise spectral characterization. The characteristics introduced between the | 71 | 70 | for the phase noise spectral characterization. The characteristics introduced between the | |
downconverter | 72 | 71 | downconverter | |
and the decimation processing blocks are core characteristics of an oscillator characterization | 73 | 72 | and the decimation processing blocks are core characteristics of an oscillator characterization | |
system, and must reject out-of-band signals below the targeted phase noise -- typically in the | 74 | 73 | system, and must reject out-of-band signals below the targeted phase noise -- typically in the | |
sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will | 75 | 74 | sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will | |
use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency | 76 | 75 | use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency | |
datastream: optimizing the performance of the filter while reducing the needed resources is | 77 | 76 | datastream: optimizing the performance of the filter while reducing the needed resources is | |
hence tackled in a systematic approach using optimization techniques. Most significantly, we | 78 | 77 | hence tackled in a systematic approach using optimization techniques. Most significantly, we | |
tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with | 79 | 78 | tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with | |
tunable number of coefficients and tunable number of bits representing the coefficients and the | 80 | 79 | tunable number of coefficients and tunable number of bits representing the coefficients and the | |
data being processed. | 81 | 80 | data being processed. | |
82 | 81 | |||
\section{Finite impulse response filter} | 83 | 82 | \section{Finite impulse response filter} | |
84 | 83 | |||
We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined | 85 | 84 | We select FIR filter for their unconditional stability and ease of design. A FIR filter is defined | |
by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the | 86 | 85 | by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the | |
outputs $y_k$ | 87 | 86 | outputs $y_k$ | |
$$y_n=\sum_{k=0}^N b_k x_{n-k}$$ | 88 | 87 | $$y_n=\sum_{k=0}^N b_k x_{n-k}$$ | |
89 | 88 | |||
As opposed to an implementation on a general purpose processor in which word size is defined by the | 90 | 89 | As opposed to an implementation on a general purpose processor in which word size is defined by the | |
processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since | 91 | 90 | processor architecture, implementing such a filter on an FPGA offer more degrees of freedom since | |
not only the coefficient values and number of taps must be defined, but also the number of bits | 92 | 91 | not only the coefficient values and number of taps must be defined, but also the number of bits | |
defining the coefficients and the sample size. For this reason, and because we consider pipeline | 93 | 92 | defining the coefficients and the sample size. For this reason, and because we consider pipeline | |
processing (as opposed to First-In, First-Out memory batch processing) of radiofrequency | 94 | 93 | processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency | |
signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but | 95 | 94 | signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but | |
the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL). | 96 | 95 | the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language (VHDL). | |
Since latency is not an issue in a openloop phase noise characterization instrument, the large | 97 | 96 | Since latency is not an issue in a openloop phase noise characterization instrument, the large | |
numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, | 98 | 97 | numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter, | |
is not considered as an issue as would be in a closed loop system. | 99 | 98 | is not considered as an issue as would be in a closed loop system. | |
100 | 99 | |||
The coefficients are classically expressed as floating point values. However, this binary | 101 | 100 | The coefficients are classically expressed as floating point values. However, this binary | |
number representation is not efficient for fast arithmetic computation by an FPGA. Instead, | 102 | 101 | number representation is not efficient for fast arithmetic computation by an FPGA. Instead, | |
we select to quantify these floating point values into integer values. This quantization | 103 | 102 | we select to quantify these floating point values into integer values. This quantization | |
will result in some precision loss. | 104 | 103 | will result in some precision loss. | |
105 | 104 | |||
%As illustrated in Fig. \ref{float_vs_int}, we see that we aren't | 106 | 105 | %As illustrated in Fig. \ref{float_vs_int}, we see that we aren't | |
%need too coefficients or too sample size. If we have lot of coefficients but a small sample size, | 107 | 106 | %need too coefficients or too sample size. If we have lot of coefficients but a small sample size, | |
%the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. | 108 | 107 | %the first and last are equal to zero. But if we have too sample size for few coefficients that not improve the quality. | |
109 | 108 | |||
% JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous | 110 | 109 | % JMF je ne comprends pas la derniere phrase ci-dessus ni la figure ci dessous | |
% AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) | 111 | 110 | % AH en gros je voulais dire que prendre trop peu de bit avec trop de coeff, ça induit ta figure (bien mieux faite que moi) | |
% et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler | 112 | 111 | % et que l'inverse trop de bit sur pas assez de coeff on ne gagne rien, je vais essayer de la reformuler | |
113 | 112 | |||
%\begin{figure}[h!tb] | 114 | 113 | %\begin{figure}[h!tb] | |
%\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} | 115 | 114 | %\includegraphics[width=\linewidth]{images/float-vs-integer.pdf} | |
%\caption{Impact of the quantization resolution of the coefficients} | 116 | 115 | %\caption{Impact of the quantization resolution of the coefficients} | |
%\label{float_vs_int} | 117 | 116 | %\label{float_vs_int} | |
%\end{figure} | 118 | 117 | %\end{figure} | |
119 | 118 | |||
119 | \begin{figure}[h!tb] | |||
120 | \includegraphics[width=\linewidth]{images/demo_filtre} | |||
121 | \caption{Impact of the quantization resolution of the coefficients: the quantization is | |||
122 | set to 6~bits, setting the 30~first and 30~last coefficients out of the initial 128~band-pass | |||
123 | filter coefficients to 0.} | |||
124 | \label{float_vs_int} | |||
125 | \end{figure} | |||
126 | ||||
The tradeoff between quantization resolution and number of coefficients when considering | 120 | 127 | The tradeoff between quantization resolution and number of coefficients when considering | |
integer operations is not trivial. As an illustration of the issue related to the | 121 | 128 | integer operations is not trivial. As an illustration of the issue related to the | |
relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits | 122 | 129 | relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits | |
a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon | 123 | 130 | a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon | |
quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the | 124 | 131 | quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the | |
taps become null, making the large number of coefficients irrelevant and allowing to save | 125 | 132 | taps become null, making the large number of coefficients irrelevant and allowing to save | |
processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources | 126 | 133 | processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources | |
to reach a given rejection level, or maximizing out of band rejection for a given computational | 127 | 134 | to reach a given rejection level, or maximizing out of band rejection for a given computational | |
resource, will drive the investigation on cascading filters designed with varying tap resolution | 128 | 135 | resource, will drive the investigation on cascading filters designed with varying tap resolution | |
and tap length, as will be shown in the next section. | 129 | 136 | and tap length, as will be shown in the next section. Indeed, our development strategy closely | |
137 | follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards} | |||
138 | in which basic blocks are defined and characterized before being assembled \cite{hide} | |||
139 | in a complete processing chain. In our case, assembling the filter blocks is a simpler block | |||
140 | combination process since we assume a single value to be processed and a single value to be | |||
141 | generated at each clock cycle. The FIR filters will not be considered to decimate in the | |||
142 | current implementation: the decimation is assumed to be located after the FIR cascade at the | |||
143 | moment. | |||
130 | 144 | |||
\begin{figure}[h!tb] | 131 | |||
\includegraphics[width=\linewidth]{images/demo_filtre} | 132 | |||
\caption{Impact of the quantization resolution of the coefficients: the quantization is | 133 | |||
set to 6~bits, setting the 30~first and 30~last coefficients out of the initial 128~band-pass | 134 | |||
filter coefficients to 0.} | 135 | |||
\label{float_vs_int} | 136 | |||
\end{figure} | 137 | |||
138 | ||||
\section{Filter optimization} | 139 | 145 | \section{Filter optimization} | |
140 | 146 | |||
A basic approach for implementing the FIR filter is to compute the transfer function of | 141 | 147 | A basic approach for implementing the FIR filter is to compute the transfer function of | |
a monolithic filter: this single filter defines all coefficients with the same resolution | 142 | 148 | a monolithic filter: this single filter defines all coefficients with the same resolution | |
(number of bits) and processes data represented with their own resolution. Meeting the | 143 | 149 | (number of bits) and processes data represented with their own resolution. Meeting the | |
filter shape requires a large number of coefficients, limited by resources of the FPGA since | 144 | 150 | filter shape requires a large number of coefficients, limited by resources of the FPGA since | |
this filter must process data stream at the radiofrequency sampling rate after the mixer. | 145 | 151 | this filter must process data stream at the radiofrequency sampling rate after the mixer. | |
146 | 152 | |||
An optimization problem \cite{leung2004handbook} aims at improving one or many | 147 | 153 | An optimization problem \cite{leung2004handbook} aims at improving one or many | |
performance criteria within a constrained resource environment. Amongst the tools | 148 | 154 | performance criteria within a constrained resource environment. Amongst the tools | |
developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to | 149 | 155 | developed to meet this aim, Mixed-Integer Linear Programming (MILP) provides the framework to | |
provide a formal definition of the stated problem and search for an optimal use of available | 150 | 156 | provide a formal definition of the stated problem and search for an optimal use of available | |
resources \cite{yu2007design, kodek1980design}. | 151 | 157 | resources \cite{yu2007design, kodek1980design}. | |
152 | 158 | |||
First we need to ensure that our problem is a real optimization problem. When | 153 | 159 | First we need to ensure that our problem is a real optimization problem. When | |
we design a process inside the FPGA we want reach some requirements by example the | 154 | 160 | we design a process inside the FPGA we want reach some requirements by example the | |
throughput, the computation time or the rejection noise... But we some limited | 155 | 161 | throughput, the computation time or the rejection noise... But we some limited | |
resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) | 156 | 162 | resources to design the process like BRAM (high performance RAM), DSP (Digital Signal Processor) | |
or LUT (Look Up Table). Since we want optimize some criteria and we have some | 157 | 163 | or LUT (Look Up Table). Since we want optimize some criteria and we have some | |
limited resources our problem is a classical optimization problem. | 158 | 164 | limited resources our problem is a classical optimization problem. | |
159 | 165 | |||
Specifically the degrees of freedom when addressing the problem of replacing the single monolithic | 160 | 166 | Specifically the degrees of freedom when addressing the problem of replacing the single monolithic | |
FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$, | 161 | 167 | FIR with a cascade of optimized filters are the number of coefficients $N_i$ of each filter $i$, | |
the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ representing | 162 | 168 | the number of bits $C_i$ representing the coefficients and the number of bits $D_i$ representing | |
the data fed to the filter. Because each FIR in the chain is fed the output of the previous stage, | 163 | 169 | the data fed to the filter. Because each FIR in the chain is fed the output of the previous stage, | |
the optimization of the complete processing chain within a constrained resource environment is not | 164 | 170 | the optimization of the complete processing chain within a constrained resource environment is not | |
trivial. The resource occupation of a FIR filter is considered as $D_i+C_i \times N_i)$ which is | 165 | 171 | trivial. The resource occupation of a FIR filter is considered as $D_i+C_i \times N_i)$ which is | |
the number of bits needed in a worst case condition to represent the output of the FIR. | 166 | 172 | the number of bits needed in a worst case condition to represent the output of the FIR. Such an | |
Unfortunately this representation is not sufficient to represent the real occupation inside FPGA. | 167 | 173 | occupied area estimate assumes that the number of gates scales as the number of bits and the number | |
In fact the FPGA have some BRAM block on which the coefficients are stored and each BRAM are not | 168 | 174 | of coefficients, but does not account for the detailed implementation of the hardware. Indeed, | |
share between different filters. Moreover the multiplication need DSP to be | 169 | 175 | various FPGA implementations will provide different hardware functionalities, and we shall consider | |
perform. Those DSP are in limited quantity so in the future we shall to consider this. | 170 | 176 | at the end of the design a synthesis step using vendor software to assess the validity of the solution | |
177 | found. As an example of the limitation linked to the lack of detailed hardware consideration, Block Random | |||
178 | Access Memory (BRAM) used to store filter coefficients are not shared amongst filters, and multiplications | |||
179 | are most efficiently implemented by using Digital Signal Processing (DSP) blocks whose input word | |||
180 | size is finite. DSPs are a scarce resource to be saved in a practical implementation. Keeping a high | |||
181 | abstraction on the resource occupation is nevertheless selected in the following discussion in order | |||
182 | to leave enough degrees of freedom in the problem to try and find original solutions: too many | |||
183 | constraints in the initial statement of the problem leave little room for finding an optimal solution. | |||
171 | 184 | |||
At the moment our model can be express like this : | 172 | 185 | \begin{figure}[h!tb] | |
186 | \begin{center} | |||
187 | \includegraphics[width=.5\linewidth]{schema2} | |||
188 | \caption{Shape of the filter: the bandpass BP is considered to occupy the initial | |||
189 | 40\% of the Nyquist frequency range, the bandstop the last 40\%, allowing 20\% transition | |||
190 | width.} | |||
191 | \label{rejection-shape} | |||
192 | \end{center} | |||
193 | \end{figure} | |||
194 | ||||
195 | Following these considerations, the model is expressed as: | |||
\begin{align} | 173 | 196 | \begin{align} | |
\begin{cases} | 174 | 197 | \begin{cases} | |
\mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ | 175 | 198 | \mathcal{R}_i &= \mathcal{F}(N_i, C_i)\\ | |
\mathcal{A}_i &= N_i * C_i + D_i\\ | 176 | 199 | \mathcal{A}_i &= N_i * C_i + D_i\\ | |
\Delta_i &= \Delta _{i-1} + \mathcal{P}_i | 177 | 200 | \Delta_i &= \Delta _{i-1} + \mathcal{P}_i | |
\end{cases} | 178 | 201 | \end{cases} | |
\label{model-FIR} | 179 | 202 | \label{model-FIR} | |
\end{align} | 180 | 203 | \end{align} | |
To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represent the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$ | 181 | 204 | To explain the system \ref{model-FIR}, $\mathcal{R}_i$ represents the rejection of depending on $N_i$ and $C_i$, $\mathcal{A}$ | |
is just theoretical occupation and $\Delta_i$ is the total rejection for the current stage $i$. At this moment | 182 | 205 | is a theoretical area occupation of the processing block on the FPGA, and $\Delta_i$ is the total rejection for the current stage $i$. | |
we are not able to express the function $\mathcal{F}$ so we are run some simulations to determine the rejection noise depending | 183 | 206 | Since the function $\mathcal{F}$ cannot be explictly expressed, we run simulations to determine the rejection depending | |
on $N_i$ and $C_i$. But to choose the right filter we must define clearly the rejection criterion. If we take incorrect criterion | 184 | 207 | on $N_i$ and $C_i$. However, selecting the right filter requires a clear definition of the rejection criterion. Selecting an | |
the linear program will produce a wrong solution. So we define a criterion to avoid ripple on passband and just keep | 185 | 208 | incorrect criterion will lead the linear program solver to produce a solution which might not meet the user requirements. | |
the maximum of rejection on the stopband (see the figure \ref{rejection-shape}). Thank to this system, we can able to design our linear program. | 186 | 209 | Hence, amongst various criteria including the mean or median value of the FIR response in the stopband, we have designed | |
210 | a criterion aimed at avoiding ripples on passband and considering the maximum of the FIR spectral response in the stopband | |||
211 | (Fig. \ref{rejection-shape}). The bandpass criterion is defined as the sum of the absolute values of the spectral response | |||
212 | in the bandpass, reminiscent of a standard deviation of the spectral response: this criterion must be minimized to avoid | |||
213 | ripples in the passband. The stopband transfer function maximum must also be minimized in order to improve the filter | |||
214 | rejection capability. Weighing these two criteria allows designing the linear program to be solved. | |||
187 | 215 | |||
\begin{figure}[h!tb] | 188 | 216 | \begin{figure}[h!tb] | |
\begin{center} | 189 | |||
\includegraphics[width=.5\linewidth]{schema2} | 190 | |||
\caption{Shape of rejection} | 191 | |||
\label{rejection-shape} | 192 | |||
\end{center} | 193 | |||
\end{figure} | 194 | |||
195 | ||||
\begin{figure}[h!tb] | 196 | |||
\includegraphics[width=\linewidth]{images/noise-rejection.pdf} | 197 | 217 | \includegraphics[width=\linewidth]{images/noise-rejection.pdf} | |
\caption{Rejection as a function of number of coefficients and number of bits} | 198 | 218 | \caption{Rejection as a function of number of coefficients and number of bits} | |
\label{noise-rejection} | 199 | 219 | \label{noise-rejection} | |
\end{figure} | 200 | 220 | \end{figure} | |
201 | 221 | |||
The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below | 202 | 222 | The objective function maximizes the noise rejection ($\max(\Delta_{i_{\max}})$) while keeping resource occupation below | |
a user-defined threshold. The MILP solver is allowed to choose the number of successive | 203 | 223 | a user-defined threshold. The MILP solver is allowed to choose the number of successive | |
filters, within an upper bound. The last problem is to model the noise rejection. Since filter | 204 | 224 | filters, within an upper bound. The last problem is to model the noise rejection. Since filter | |
noise rejection capability is not modeled with linear equation, a look-up-table is generated | 205 | 225 | noise rejection capability is not modeled with linear equations, a look-up-table is generated | |
for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each | 206 | 226 | for multiple filter configurations in which the $C_i$, $D_i$ and $N_i$ parameters are varied: for each | |
one of these conditions, the low-pass filter rejection defined as the mean power between | 207 | 227 | one of these conditions, the low-pass filter rejection defined as the mean power between | |
half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response | 208 | 228 | half the Nyquist frequency and the Nyquist frequency is stored as computed by the frequency response | |
of the digital filter (Fig. \ref{noise-rejection}). | 209 | 229 | of the digital filter (Fig. \ref{noise-rejection}). | |
210 | 230 | |||
Linear program formalism for solving the problem is well documented: an objective function is | 211 | 231 | Linear program formalism for solving the problem is well documented: an objective function is | |
defined which is linearly dependent on the parameters to be optimized. Constraints are expressed | 212 | 232 | defined which is linearly dependent on the parameters to be optimized. Constraints are expressed | |
as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. | 213 | 233 | as linear equation and solved using one of the available solvers, in our case GLPK\cite{glpk}. | |
With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: | 214 | 234 | With the notation explain in system \ref{model-FIR}, we have defined our linear problem like this: | |
\paragraph{Variables} | 215 | 235 | \paragraph{Variables} | |
\begin{align*} | 216 | 236 | \begin{align*} | |
x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a specific filter} \\ | 217 | 237 | x_{i,j} \in \lbrace 0,1 \rbrace & \text{ $i$ is a given filter} \\ | |
& \text{ $j$ is the stage} \\ | 218 | 238 | & \text{ $j$ is the stage} \\ | |
& \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ | 219 | 239 | & \text{ If $x_{i,j}$ is equal to 1, the filter is selected} \\ | |
\end{align*} | 220 | 240 | \end{align*} | |
\paragraph{Constants} | 221 | 241 | \paragraph{Constants} | |
\begin{align*} | 222 | 242 | \begin{align*} | |
\mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ | 223 | 243 | \mathcal{F} = \lbrace F_1 ... F_p \rbrace & \text{ All possible filters}\\ | |
& \text{ $p$ is the number of different filters} \\ | 224 | 244 | & \text{ $p$ is the number of different filters} \\ | |
C(i) & \text{ Constant to let the number of coefficients}\\ | 225 | 245 | C(i) & \text{ % Constant to let the | |
& \text{ for the filter $i$}\\ | 226 | 246 | number of coefficients %} \\ & \text{ | |
\pi_C(i) & \text{ Constant to let the number of bits of}\\ | 227 | 247 | for filter $i$}\\ | |
& \text{ each coefficient for the filter $i$}\\ | 228 | 248 | \pi_C(i) & \text{ % Constant to let the | |
\mathcal{A}_{\max} & \text{ Max space available inside the FPGA} | 229 | 249 | number of bits of %}\\ & \text{ | |
250 | each coefficient for filter $i$}\\ | |||
251 | \mathcal{A}_{\max} & \text{ Total space available inside the FPGA} | |||
\end{align*} | 230 | 252 | \end{align*} | |
\paragraph{Constraints} | 231 | 253 | \paragraph{Constraints} | |
\begin{align*} | 232 | 254 | \begin{align} | |
1 \leq i \leq p & \\ | 233 | 255 | 1 \leq i \leq p & \nonumber\\ | |
1 \leq j \leq q & \text{ $q$ is the max of filter stage} \\ | 234 | 256 | 1 \leq j \leq q & \text{ $q$ is the max of filter stage} \nonumber \\ | |
\forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \\ | 235 | 257 | \forall j, \mathlarger{\sum_{i}} x_{i,j} = 1 & \text{ At most one filter by stage} \nonumber\\ | |
\mathcal{S}_0 = 0 & \text{ initial occupation}\\ | 236 | 258 | \mathcal{S}_0 = 0 & \text{ initial occupation} \nonumber\\ | |
\forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \forall i, x_{i,j} \times \mathcal{A}_i \\%\label{cstr_size} | 237 | 259 | \forall j, \mathcal{S}_j = \mathcal{S}_{j-1} + \forall i, x_{i,j} \times \mathcal{A}_i \label{cstr_size} \\ | |
\mathcal{S} \leq \mathcal{S}_{\max} \\ | 238 | 260 | \mathcal{S} \leq \mathcal{S}_{\max}\nonumber \\ | |
\mathcal{N}_0 = 0 & \text{ initial rejection}\\ | 239 | 261 | \mathcal{N}_0 = 0 & \text{ initial rejection}\nonumber\\ | |
\forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \forall i, x_{i,j} \times \mathcal{R}_i \\%\label{cstr_rejection} | 240 | 262 | \forall j, \mathcal{N}_j = \mathcal{N}_{j-1} + \forall i, x_{i,j} \times \mathcal{R}_i \label{cstr_rejection} \\ | |
\mathcal{N}_q \geqslant 160 & \text{ an user's bound}\\ | 241 | 263 | \mathcal{N}_q \geqslant 160 & \text{ an user defined bound}\nonumber\\ | |
\end{align*} | 242 | 264 | & \text{ (e.g. 160~dB here)}\nonumber\\\nonumber | |
265 | \end{align} | |||
\paragraph{Goal} | 243 | 266 | \paragraph{Goal} | |
\begin{align*} | 244 | 267 | \begin{align*} | |
\min \mathcal{S}_q | 245 | 268 | \min \mathcal{S}_q | |
\end{align*} | 246 | 269 | \end{align*} | |
247 | 270 | |||
% AH j'aimerai mettre deux equations avec un label mais je ne sais pas comment faire | 248 | 271 | % AH j'aimerai mettre deux equations avec un label mais je ne sais pas comment faire | |
The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on | 249 | 272 | The constraint \ref{cstr_size} means the occupation for the current stage $j$ depends on | |
the previous occupation and the occupation of current selected filter (it is possible | 250 | 273 | the previous occupation and the occupation of current selected filter (it is possible | |
that no filter is selected for this stage). And the second one \ref{cstr_rejection} | 251 | 274 | that no filter is selected for this stage). And the second one \ref{cstr_rejection} | |
means the same thing but for the rejection, the rejection depends the previous rejection | 252 | 275 | means the same thing but for the rejection, the rejection depends the previous rejection | |
plus the rejection of selected filter. | 253 | 276 | plus the rejection of selected filter. | |
254 | 277 | |||
The MILP solver provides a solution to the problem by selecting a series of small FIR with | 255 | 278 | The MILP solver provides a solution to the problem by selecting a series of small FIR with | |
increasing number of bits representing data and coefficients as well as an increasing number | 256 | 279 | increasing number of bits representing data and coefficients as well as an increasing number | |
of coefficients, instead of a single monolithic filter. Fig. \ref{compare-fir} exhibits the | 257 | 280 | of coefficients, instead of a single monolithic filter. Fig. \ref{compare-fir} exhibits the | |
performance comparison between one solution and a monolithic FIR when selecting a cutoff | 258 | 281 | performance comparison between one solution and a monolithic FIR when selecting a cutoff | |
frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the | 259 | 282 | frequency of half the Nyquist frequency: a series of 5 FIR and a series of 10 FIR with the | |
same space usage are provided as selected by the MILP solver. The FIR cascade provides improved | 260 | 283 | same space usage are provided as selected by the MILP solver. The FIR cascade provides improved | |
rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to | 261 | 284 | rejection than the monolithic FIR at the expense of a lower cutoff frequency which remains to | |
be tuned or compensated for. | 262 | 285 | be tuned or compensated for. | |
263 | 286 | |||
\begin{figure}[h!tb] | 264 | 287 | \begin{figure}[h!tb] | |
% \includegraphics[width=\linewidth]{images/compare-fir.pdf} | 265 | 288 | % \includegraphics[width=\linewidth]{images/compare-fir.pdf} | |
\includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} | 266 | 289 | \includegraphics[width=\linewidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf-light.pdf} | |
\caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR | 267 | 290 | \caption{Comparison of the rejection capability between a series of FIR and a monolithic FIR | |
with a cutoff frequency set at half the Nyquist frequency.} | 268 | 291 | with a cutoff frequency set at half the Nyquist frequency.} | |
\label{compare-fir} | 269 | 292 | \label{compare-fir} | |
\end{figure} | 270 | 293 | \end{figure} | |
271 | 294 | |||
The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. | 272 | 295 | The resource occupation when synthesizing such FIR on a Xilinx FPGA is summarized as Tab. \ref{t1}. | |
273 | 296 | |||
\begin{table}[h!tb] | 274 | 297 | \begin{table}[h!tb] | |
\caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade | 275 | 298 | \caption{Resource occupation on a Xilinx Zynq-7000 series FPGA when synthesizing the FIR cascade | |
identified as optimal by the MILP solver within a finite resource criterion. The last line refers | 276 | 299 | identified as optimal by the MILP solver within a finite resource criterion. The last line refers | |
to available resources on a Zynq-7020 as found on the Zedboard.} | 277 | 300 | to available resources on a Zynq-7020 as found on the Zedboard.} | |
\begin{center} | 278 | 301 | \begin{center} | |
\begin{tabular}{|c|cccc|}\hline | 279 | 302 | \begin{tabular}{|c|cccc|}\hline | |
FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline | 280 | 303 | FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline | |
1 (monolithic) & 1 & 76183 & 220 & -162 \\ | 281 | 304 | 1 (monolithic) & 1 & 76183 & 220 & -162 \\ | |
5 & 5 & 18597 & 220 & -160 \\ | 282 | 305 | 5 & 5 & 18597 & 220 & -160 \\ | |
10 & 8 & 24729 & 220 & -161 \\\hline\hline | 283 | 306 | 10 & 8 & 24729 & 220 & -161 \\\hline\hline | |
\textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline | 284 | 307 | \textbf{Zynq 7020} & \textbf{420} & \textbf{53200} & \textbf{220} & \\\hline | |
\end{tabular} | 285 | 308 | \end{tabular} | |
\end{center} | 286 | 309 | \end{center} | |
%\vspace{-0.7cm} | 287 | 310 | %\vspace{-0.7cm} | |
\label{t1} | 288 | 311 | \label{t1} | |
\end{table} | 289 | 312 | \end{table} | |
290 | 313 | |||
\section{Filter coefficient selection} | 291 | 314 | \section{Filter coefficient selection} | |
292 | 315 | |||
The coefficients of a single monolithic filter are computed as the impulse response | 293 | 316 | The coefficients of a single monolithic filter are computed as the impulse response | |
of the filter transfer function, and practically approximated by a multitude of methods | 294 | 317 | of the filter transfer function, and practically approximated by a multitude of methods | |
including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing | 295 | 318 | including least square optimization (Matlab's {\tt firls} function), Hamming or Kaiser windowing | |
(Matlab's {\tt fir1} function). Cascading filters opens a new optimization opportunity by | 296 | 319 | (Matlab's {\tt fir1} function). | |
selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} | 297 | |||
illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better | 298 | |||
rejection than {\tt firls}: since the linear solver increases the number of coefficients along | 299 | |||
the processing chain, the type of selected filter also changes depending on the number of coefficients | 300 | |||
and evolves along the processing chain. | 301 | |||
302 | 320 | |||
\begin{figure}[h!tb] | 303 | 321 | \begin{figure}[h!tb] | |
\includegraphics[width=\linewidth]{images/fir1-vs-firls} | 304 | 322 | \includegraphics[width=\linewidth]{images/fir1-vs-firls} | |
\caption{Evolution of the rejection capability of least-square optimized filters and Hamming | 305 | 323 | \caption{Evolution of the rejection capability of least-square optimized filters and Hamming | |
FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit | 306 | 324 | FIR filters as a function of the number of coefficients, for floating point numbers and 8-bit | |
encoded integers.} | 307 | 325 | encoded integers.} | |
\label{2} | 308 | 326 | \label{2} | |
\end{figure} | 309 | 327 | \end{figure} | |
310 | 328 | |||
329 | Cascading filters opens a new optimization opportunity by | |||
330 | selecting various coefficient sets depending on the number of coefficients. Fig. \ref{2} | |||
331 | illustrates that for a number of coefficients ranging from 8 to 47, {\tt fir1} provides a better | |||
332 | rejection than {\tt firls}: since the linear solver increases the number of coefficients along | |||
333 | the processing chain, the type of selected filter also changes depending on the number of coefficients | |||
334 | and evolves along the processing chain. | |||
335 | ||||
\section{Conclusion} | 311 | 336 | \section{Conclusion} | |
312 | 337 | |||
We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate | 313 | 338 | We address the optimization problem of designing a low-pass filter chain in a Field Programmable Gate | |
Array for improved noise rejection within constrained resource occupation, as needed for | 314 | 339 | Array for improved noise rejection within constrained resource occupation, as needed for | |
real time processing of radiofrequency signal when characterizing spectral phase noise | 315 | 340 | real time processing of radiofrequency signal when characterizing spectral phase noise | |
characteristics of stable oscillators. The flexibility of the digital approach makes the result | 316 | 341 | characteristics of stable oscillators. The flexibility of the digital approach makes the result | |
best suited for closing the loop and using the measurement output in a feedback loop for | 317 | 342 | best suited for closing the loop and using the measurement output in a feedback loop for | |
controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior | 318 | 343 | controlling clocks, e.g. in a quartz-stabilized high performance clock whose long term behavior | |
is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical | 319 | 344 | is controlled by non-piezoelectric resonator (sapphire resonator, microwave or optical | |
atomic transition). | 320 | 345 | atomic transition). | |
321 | 346 | |||
\section*{Acknowledgement} | 322 | 347 | \section*{Acknowledgement} | |
323 | 348 | |||
This work is supported by the ANR Programme d'Investissement d'Avenir in | 324 | 349 | This work is supported by the ANR Programme d'Investissement d'Avenir in | |
progress at the Time and Frequency Departments of the FEMTO-ST Institute | 325 | 350 | progress at the Time and Frequency Departments of the FEMTO-ST Institute | |
(Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. | 326 | 351 | (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e. | |
The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and | 327 | 352 | The authors would like to thank E. Rubiola, F. Vernotte, G. Cabodevila for support and | |
fruitful discussions. | 328 | 353 | fruitful discussions. | |
329 | 354 | |||
355 | \bibliographystyle{IEEEtran} | |||
356 | \bibliography{references,biblio} | |||
357 | \end{document} | |||
330 | 358 | |||
XXX | 331 | |||
332 | ||||
\subsubsection{Contraintes} | 333 | |||
334 | ||||
Dans les r\'ef\'erences \cite{zhuo2007scalable, olariu1993computing, pan1999improved}, les auteurs | 335 | |||
proposent tous des optimisations hardware uniquement. Cependant ces articles sont focalis\'es sur des optimisations mat\'erielles | 336 | |||
or notre objectif est de trouver une formalisation math\'ematique d'un FPGA. | 337 | |||
338 | ||||
Une dernière approche que nous avons \'etudi\'ee est l'utilisation de \emph{skeletons}. D. Crookes et A. Benkrid | 339 | |||
ont beaucoup parl\'e de cette m\'ethode dans leur articles \cite{crookes1998environment, crookes2000design, benkrid2002towards}. | 340 | |||
L'id\'ee essentielle est qu'ils r\'ealisent des composants très optimis\'es et param\'etrables. Ainsi lorsqu'ils | 341 | |||
veulent faire un d\'eveloppement, ils utilisent les blocs d\'ejà faits. | 342 | |||
343 | ||||
Ces blocs repr\'esentent une \'etape de calcul (une d\'ecimation, un filtrage, une modulation, une | 344 | |||
d\'emodulation etc...). En prenant le cas du FIR, on rend param\'etrables les valeurs des coefficients | 345 | |||
utilis\'es pour le produit de convolutions ainsi que leur nombre. Le facteur de d\'ecimation est | 346 | |||
lui aussi param\'etrable. | 347 | |||
348 | ||||
On gagne ainsi beaucoup de temps de d\'eveloppement car on r\'eutilise des composants d\'ejà \'eprouv\'es et optimis\'es. | 349 | |||
De plus, au fil des projets, on constitue une bibliothèque de composants nous | 350 | |||
permettant de faire une chaine complète très simplement. | 351 | |||
352 | ||||
K. Benkrid, S. Belkacemi et A. Benkrid dans leur article\cite{hide} caract\'erisent | 353 | |||
ces blocs en Prolog pour faire un langage descriptif permettant d'assembler les blocs de manière | 354 | |||
optimale. En partant de cette description, ils arrivent à g\'en\'erer directement le code VHDL. | 355 | |||
356 | ||||
\begin{itemize} | 357 | |||
\item la latence du bloc repr\'esente, en coups d'horloge, le temps entre l'entr\'ee de la donn\'ee | 358 | |||
et le temps où la même donn\'ee ressort du bloc. | 359 | |||
\item l'acceptance repr\'esente le nombre de donn\'ees par coup d'horloge que le bloc est capable | 360 | |||
de traiter. | 361 | |||
\item la sortance repr\'esente le nombre de donn\'ees qui sortent par coup d'horloge. | 362 | |||
\end{itemize} | 363 | |||
364 | ||||
Gr\^ace à cela, le logiciel est capable de donner une impl\'ementation optimale d'un problème qu'on lui | 365 | |||
soumet. Le problème ne se d\'efinit pas uniquement par un r\'esultat attendu mais aussi par des | 366 | |||
contraintes de d\'ebit et/ou de pr\'ecision. | 367 | |||
368 | ||||
Dans une second temps, nous nous sommes aussi int\'eress\'es à des articles d'ordonnancement. | 369 | |||
Nous avons notamment lu des documents parlant des cas des micro-usines. | 370 | |||
371 | ||||
Les micro-usines ressemblent un peu à des FPGA dans le sens où on connait à l'avance les | 372 | |||
t\^aches à effectuer et leurs caract\'eristiques. Nous allons donc nous inspirer | 373 | |||
de leur modèle pour essayer de construire le notre. | 374 | |||
375 | ||||
Dans sa thèse A. Dobrila \cite{these-alex} traite d'un problème de tol\'erance aux pannes | 376 | |||
dans le contextes des mirco-usines. Mais les FPGA ne sont pas concern\'es dans la mesure | 377 | |||
où si le composant tombe en panne, tout le traitement est paralys\'e. Cette thèse nous a n\'eanmoins | 378 | |||
permis d'avoir un exemple de formalisation de problème. | 379 | |||
380 | ||||
Pour finir nous avons lu la thèse de M. Coqblin \cite{these-mathias} qui elle aussi traite du sujet | 381 | |||
des micro-usines. Le travail de M. Coqblin porte surtout sur une chaine de traitement | 382 | |||
reconfigurable, il tient compte dans ses travaux du surcoût engendr\'e par la reconfiguration d'une machine. | 383 | |||
Cela n'est pas tout à fait exploitable dans notre contexte puisqu'une | 384 | |||
puce FPGA d\'es qu'elle est programm\'ee n'a pas la possibilit\'e de reconfigurer une partie de sa chaine de | 385 | |||
traitement. Là encore, nous avions un exemple de formalisation d'un problème. | 386 | |||
387 | ||||
Pour conclure, nous avons vu deux approches li\'ees à deux domaines diff\'erents. La première est le | 388 | |||
point de vue \'electronique qui se focalise principalement sur des optimisations mat\'erielles ou algorithmiques. | 389 | |||
La seconde est le point de vue informatique : les modèles sont très g\'en\'eriques et ne sont pas | 390 | |||
adapt\'es au cas des FPGA. La suite de ce rapport se concentrera donc sur la recherche d'un compromis | 391 | |||
entre ces deux points de vue. | 392 | |||
393 | ||||
\section{Contexte d'ordonnancement} | 394 | 359 | \section{Contexte d'ordonnancement} | |
Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement | 395 | 360 | Dans cette partie, nous donnerons des d\'efinitions de termes rattach\'es au domaine de l'ordonnancement | |
et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait | 396 | 361 | et nous verrons que le sujet trait\'e se rapproche beaucoup d'un problème d'ordonnancement. De ce fait | |
nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement | 397 | 362 | nous pourrons aller plus loin que les travaux vus pr\'ec\'edemment et nous tenterons des approches d'ordonnancement | |
et d'optimisation. | 398 | 363 | et d'optimisation. | |
399 | 364 | |||
\subsection{D\'efinition du vocabulaire} | 400 | 365 | \subsection{D\'efinition du vocabulaire} | |
Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions | 401 | 366 | Avant tout, il faut d\'efinir ce qu'est un problème d'optimisation. Il y a deux d\'efinitions | |
importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : | 402 | 367 | importantes à donner. La première est propos\'ee par Legrand et Robert dans leur livre \cite{def1-ordo} : | |
\begin{definition} | 403 | 368 | \begin{definition} | |
\label{def-ordo1} | 404 | 369 | \label{def-ordo1} | |
Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : | 405 | 370 | Un ordonnancement d'un système de t\^aches $G\ =\ (V,\ E,\ w)$ est une fonction $\sigma$ : | |
$V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. | 406 | 371 | $V \rightarrow \mathbb{N}$ telle que $\sigma(u) + w(u) \leq \sigma(v)$ pour toute arête $(u,\ v) \in E$. | |
\end{definition} | 407 | 372 | \end{definition} | |
408 | 373 | |||
Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances | 409 | 374 | Dit plus simplement, l'ensemble $V$ repr\'esente les t\^aches à ex\'ecuter, l'ensemble $E$ repr\'esente les d\'ependances | |
des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de | 410 | 375 | des t\^aches et $w$ les temps d'ex\'ecution de la t\^ache. La fonction $\sigma$ donne donc l'heure de d\'ebut de | |
chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors | 411 | 376 | chacune des t\^aches. La d\'efinition dit que si une t\^ache $v$ d\'epend d'une t\^ache $u$ alors | |
la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son | 412 | 377 | la date de d\'ebut de $v$ sera plus grande ou \'egale au d\'ebut de l'ex\'ecution de la t\^ache $u$ plus son | |
temps d'ex\'ecution. | 413 | 378 | temps d'ex\'ecution. | |
414 | 379 | |||
Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : | 415 | 380 | Une autre d\'efinition importante qui est propos\'ee par Leung et al. \cite{def2-ordo} est : | |
\begin{definition} | 416 | 381 | \begin{definition} | |
\label{def-ordo2} | 417 | 382 | \label{def-ordo2} | |
L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec | 418 | 383 | L'ordonnancement traite de l'allocation de ressources rares à des activit\'es avec | |
l'objectif d'optimiser un ou plusieurs critères de performance. | 419 | 384 | l'objectif d'optimiser un ou plusieurs critères de performance. | |
\end{definition} | 420 | 385 | \end{definition} | |
421 | 386 | |||
Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. | 422 | 387 | Cette d\'efinition est plus g\'en\'erique mais elle nous int\'eresse d'avantage que la d\'efinition \ref{def-ordo1}. | |
En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. | 423 | 388 | En effet, la partie qui nous int\'eresse dans cette première d\'efinition est le respect de la pr\'ec\'edance des t\^aches. | |
Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. | 424 | 389 | Dans les faits les dates de d\'ebut ne nous int\'eressent pas r\'eellement. | |
425 | 390 | |||
En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, | 426 | 391 | En revanche la d\'efinition \ref{def-ordo2} sera au c\oe{}ur du projet. Pour se convaincre de cela, | |
il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles | 427 | 392 | il nous faut d'abord d\'efinir quel est le type de problème d'ordonnancement qu'on traite et quelles | |
sont les m\'ethodes qu'on peut appliquer. | 428 | 393 | sont les m\'ethodes qu'on peut appliquer. | |
429 | 394 | |||
Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : | 430 | 395 | Les problèmes d'ordonnancement peuvent être class\'es en diff\'erentes cat\'egories : | |
\begin{itemize} | 431 | 396 | \begin{itemize} | |
\item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes | 432 | 397 | \item T\^aches ind\'ependantes : dans cette cat\'egorie de problèmes, les t\^aches sont complètement ind\'ependantes | |
les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. | 433 | 398 | les unes des autres. Dans notre cas, ce n'est pas le plus adapt\'e. | |
\item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, | 434 | 399 | \item Graphe de t\^aches : la d\'efinition \ref{def-ordo1} d\'ecrit cette cat\'egorie. La plupart du temps, | |
les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter | 435 | 400 | les t\^aches sont repr\'esent\'ees par une DAG. Cette cat\'egorie est très proche de notre cas puisque nous devons \'egalement ex\'ecuter | |
des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, | 436 | 401 | des t\^aches qui ont un certain nombre de d\'ependances. On pourra même dire que dans certain cas, | |
on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une | 437 | 402 | on a des anti-arbres, c'est à dire que nous avons une multitude de t\^aches d'entr\'ees qui convergent vers une | |
t\^ache de fin. | 438 | 403 | t\^ache de fin. | |
\item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où | 439 | 404 | \item Workflow : cette cat\'egorie est une sous cat\'egorie des graphes de t\^aches dans le sens où | |
il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème | 440 | 405 | il s'agit d'un graphe de t\^aches r\'ep\'et\'e de nombreuses de fois. C'est exactement ce type de problème | |
que nous traitons ici. | 441 | 406 | que nous traitons ici. | |
\end{itemize} | 442 | 407 | \end{itemize} | |
443 | 408 | |||
Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications | 444 | 409 | Bien entendu, cette liste n'est pas exhaustive et il existe de nombreuses autres classifications et sous-classifications | |
de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. | 445 | 410 | de ces problèmes. Nous n'avons parl\'e ici que des cat\'egories les plus communes. | |
446 | 411 | |||
Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de | 447 | 412 | Un autre point à d\'efinir, est le critère d'optimisation. Il y a là encore un grand nombre de | |
critères possibles. Nous allons donc parler des principaux : | 448 | 413 | critères possibles. Nous allons donc parler des principaux : | |
\begin{itemize} | 449 | 414 | \begin{itemize} | |
\item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation | 450 | 415 | \item Temps de compl\'etion total (ou Makespan en anglais) : ce critère est l'un des critères d'optimisation | |
les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des | 451 | 416 | les plus courant. Il s'agit donc de minimiser la date de fin de la dernière t\^ache de l'ensemble des | |
t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant | 452 | 417 | t\^aches à ex\'ecuter. L'enjeu de cette optimisation est donc de trouver l'ordonnancement optimal permettant | |
la fin d'ex\'ecution au plus tôt. | 453 | 418 | la fin d'ex\'ecution au plus tôt. | |
\item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches | 454 | 419 | \item Somme des temps d'ex\'ecution (Flowtime en anglais) : il s'agit de faire la somme des temps d'ex\'ecution de toutes les t\^aches | |
et d'optimiser ce r\'esultat. | 455 | 420 | et d'optimiser ce r\'esultat. | |
\item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. | 456 | 421 | \item Le d\'ebit : ce critère quant à lui, vise à augmenter au maximum le d\'ebit de traitement des donn\'ees. | |
\end{itemize} | 457 | 422 | \end{itemize} | |
458 | 423 | |||
En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation | 459 | 424 | En plus de cela, on peut avoir besoin de plusieurs critères d'optimisation. Il s'agit dans ce cas d'une optimisation | |
multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un | 460 | 425 | multi-critères. Bien entendu, cela complexifie d'autant plus le problème car la solution la plus optimale pour un | |
des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet | 461 | 426 | des critères peut être très mauvaise pour un autre critère. De ce cas, il s'agira de trouver une solution qui permet | |
de faire le meilleur compromis entre tous les critères. | 462 | 427 | de faire le meilleur compromis entre tous les critères. | |
463 | 428 | |||
464 | ||||
\subsection{Formalisation du problème} | 465 | 429 | \subsection{Formalisation du problème} | |
\label{formalisation} | 466 | 430 | \label{formalisation} | |
Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser | 467 | 431 | Maintenant que nous avons donn\'e le vocabulaire li\'e à l'ordonnancement, nous allons pouvoir essayer caract\'eriser | |
formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} | 468 | 432 | formellement notre problème. En effet, nous allons reprendre les contraintes \'enonc\'ees dans la sections \ref{def-contraintes} | |
et nous essayerons de les formaliser le plus finement possible. | 469 | 433 | et nous essayerons de les formaliser le plus finement possible. | |
470 | 434 | |||
Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres | 471 | 435 | Comme nous l'avons dit, une t\^ache est un bloc de traitement. Chaque t\^ache $i$ dispose d'un ensemble de paramètres | |
que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une | 472 | 436 | que nous nommerons $\mathcal{P}_{i}$. Cet ensemble $\mathcal{P}_i$ est propre à chaque t\^ache et il variera d'une | |
t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. | 473 | 437 | t\^ache à l'autre. Nous reviendrons plus tard sur les paramètres qui peuvent composer cet ensemble. | |
474 | 438 | |||
Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : | 475 | 439 | Outre cet ensemble $\mathcal{P}_i$, chaque t\^ache dispose de paramètres communs : | |
\begin{itemize} | 476 | 440 | \begin{itemize} | |
\item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. | 477 | 441 | \item Dur\'ee de la t\^ache : Comme nous l'avons dit auparavant, dans le cadre d'un FPGA le temps est compt\'e en nombre de coup d'horloge. | |
En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. | 478 | 442 | En outre, les blocs sont toujours sollicit\'es, certains même sont capables de lire et de renvoyer une r\'esultat à chaque coups d'horloge. | |
Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la | 479 | 443 | Donc la dur\'ee d'une t\^ache ne peut être le laps de temps entre l'entr\'ee d'une donn\'ee et la sortie d'une autre. Nous d\'efinirons la | |
dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee | 480 | 444 | dur\'ee comme le temps de traitement d'une donn\'ee, c'est à dire la diff\'erence de temps entre la date de sortie d'une donn\'ee | |
et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 | 481 | 445 | et de sa date d'entr\'ee. Nous nommerons cette dur\'ee $\delta_i$. % Je devrais la nomm\'ee w comme dans la def2 | |
\item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements | 482 | 446 | \item La pr\'ecision : La pr\'ecision d'une donn\'ee est le nombre de bits significatifs qu'elle compte. En effet, au fil des traitements | |
les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. | 483 | 447 | les pr\'ecisions peuvent varier. On nomme donc la pr\'ecision d'entr\'ee d'une t\^ache $i$ comme $\pi_i^-$ et la pr\'ecision en sortie $\pi_i^+$. | |
\item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). | 484 | 448 | \item La fr\'equence du flux en entr\'ee (ou sortie) : Cette fr\'equence repr\'esente la fr\'equence des donn\'ees qui arrivent (resp. sortent). | |
Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du | 485 | 449 | Selon les t\^aches, les fr\'equences varieront. En effet, certains blocs ralentissent le flux c'est pourquoi on distingue la fr\'equence du | |
flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. | 486 | 450 | flux en entr\'ee et la fr\'equence en sortie. Nous nommerons donc la fr\'equence du flux en entr\'ee $f_i^-$ et la fr\'equence en sortie $f_i^+$. | |
\item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. | 487 | 451 | \item La quantit\'e de donn\'ees en entr\'ee (ou en sortie) : Il s'agit de la quantit\'e de donn\'ees que le bloc s'attend à traiter (resp. | |
est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette | 488 | 452 | est capable de produire). Les t\^aches peuvent avoir à traiter des gros volumes de donn\'ees et n'en ressortir qu'une partie. Cette | |
fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ | 489 | 453 | fois encore, il nous faut donc diff\'erencier l'entr\'ee et la sortie. Nous nommerons donc la quantit\'e de donn\'ees entrantes $q_i^-$ | |
et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. | 490 | 454 | et la quantit\'e de donn\'ees sortantes $q_i^+$ pour une t\^ache $i$. | |
\item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle | 491 | 455 | \item Le d\'ebit d'entr\'ee (ou de sortie) : Ce paramètre correspond au d\'ebit de donn\'ees que la t\^ache est capable de traiter ou qu'elle | |
fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la | 492 | 456 | fournit en sortie. Il s'agit simplement de l'expression des deux pr\'ec\'edents paramètres. Nous d\'efinirons donc la d\'ebit entrant de la | |
t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. | 493 | 457 | t\^ache $i$ comme $d_i^-\ =\ q_i^-\ *\ f_i^-$ et le d\'ebit sortant comme $d_i^+\ =\ q_i^+\ *\ f_i^+$. | |
\item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. | 494 | 458 | \item La taille de la t\^ache : La taille dans les FPGA \'etant limit\'ee, ce paramètre exprime donc la place qu'occupe la t\^ache au sein du bloc. | |
Nous nommerons $\mathcal{A}_i$ cette taille. | 495 | 459 | Nous nommerons $\mathcal{A}_i$ cette taille. | |
\item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter | 496 | 460 | \item Les pr\'ed\'ecesseurs et successeurs d'une t\^ache : cela nous permet de connaître les t\^aches requises pour pouvoir traiter | |
la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ | 497 | 461 | la t\^ache $i$ ainsi que les t\^aches qui en d\'ependent. Ces ensemble sont not\'es $\Gamma _i ^-$ et $ \Gamma _i ^+$ \\ | |
%TODO Est-ce vraiment un paramètre ? | 498 | 462 | %TODO Est-ce vraiment un paramètre ? | |
\end{itemize} | 499 | 463 | \end{itemize} | |
500 | 464 | |||
Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations | 501 | 465 | Ces diff\'erents paramètres communs sont fortement li\'es aux \'el\'ements de $\mathcal{P}_i$. Voici quelques exemples de relations | |
que nous avons identifi\'ees : | 502 | 466 | que nous avons identifi\'ees : | |
\begin{itemize} | 503 | 467 | \begin{itemize} | |
\item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution | 504 | 468 | \item $ \delta _i ^+ \ = \ \mathcal{F}_{\delta}(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+,\ \mathcal{P}_i) $ donne le temps d'ex\'ecution | |
de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. | 505 | 469 | de la t\^ache en fonction de la pr\'ecision voulue, du d\'ebit et des paramètres internes. | |
\item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart | 506 | 470 | \item $ \pi _i ^+ \ = \ \mathcal{F}_{p}(\pi_i^-,\ \mathcal{P}_i) $, la fonction $F_p$ donne la pr\'ecision en sortie selon la pr\'ecision de d\'epart | |
et les paramètres internes de la t\^ache. | 507 | 471 | et les paramètres internes de la t\^ache. | |
\item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit | 508 | 472 | \item $d_i^+\ =\ \mathcal{F}_d(d_i^-, \mathcal{P}_i)$, la fonction $F_d$ donne le d\'ebit sortant de la t\^ache en fonction du d\'ebit | |
sortant et des variables internes de la t\^ache. | 509 | 473 | sortant et des variables internes de la t\^ache. | |
\item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ | 510 | 474 | \item $A_i^+\ =\ \mathcal{F}_A(\pi_i^-,\ \pi_i^+,\ d_i^-,\ d_i^+, \mathcal{P}_i)$ | |
\end{itemize} | 511 | 475 | \end{itemize} | |
Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, | 512 | 476 | Pour le moment, nous ne sommes pas capables de donner une d\'efinition g\'en\'erale de ces fonctions. Mais en revanche, | |
sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. | 513 | 477 | sur quelques exemples simples (cf. \ref{def-contraintes}), nous parvenons à donner une \'evaluation de ces fonctions. | |
514 | 478 | |||
Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit | 515 | 479 | Maintenant que nous avons donn\'e toutes les notations utiles, nous allons \'enoncer des contraintes relatives à notre problème. Soit | |
un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : | 516 | 480 | un DGA $G(V,\ E)$, on a pour toutes arêtes $(i, j)\ \in\ E$ les in\'equations suivantes : | |
517 | 481 | |||
\paragraph{Contrainte de pr\'ecision :} | 518 | 482 | \paragraph{Contrainte de pr\'ecision :} | |
Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : | 519 | 483 | Cette in\'equation traduit la contrainte de pr\'ecision d'une t\^ache à l'autre : | |
\begin{align*} | 520 | 484 | \begin{align*} | |
\pi _i ^+ \geq \pi _j ^- | 521 | 485 | \pi _i ^+ \geq \pi _j ^- | |
\end{align*} | 522 | 486 | \end{align*} | |
523 | 487 | |||
\paragraph{Contrainte de d\'ebit :} | 524 | 488 | \paragraph{Contrainte de d\'ebit :} | |
Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : | 525 | 489 | Cette in\'equation traduit la contrainte de d\'ebit d'une t\^ache à l'autre : | |
\begin{align*} | 526 | 490 | \begin{align*} | |
d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} | 527 | 491 | d _i ^+ = q _j ^- * (f_i + (1 / s_j) ) & \text{ où } s_j \text{ est une valeur positive de temporisation de la t\^ache} | |
\end{align*} | 528 | 492 | \end{align*} | |
529 | 493 | |||
\paragraph{Contrainte de synchronisation :} | 530 | 494 | \paragraph{Contrainte de synchronisation :} | |
Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles | 531 | 495 | Il s'agit de la contrainte qui impose que si à un moment du traitement, le DAG se s\'epare en plusieurs branches parallèles | |
et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. | 532 | 496 | et qu'elles se rejoignent plus tard, la somme des latences sur chacune des branches soit la même. | |
Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : | 533 | 497 | Plus formellement, s'il existe plusieurs chemins disjoints, partant de la t\^ache $s$ et allant à la t\^ache de $f$ alors : | |
\begin{align*} | 534 | 498 | \begin{align*} | |
\forall \text{ chemin } \mathcal{C}1(s, .., f), | 535 | 499 | \forall \text{ chemin } \mathcal{C}1(s, .., f), | |
\forall \text{ chemin } \mathcal{C}2(s, .., f) | 536 | 500 | \forall \text{ chemin } \mathcal{C}2(s, .., f) | |
\text{ tel que } \mathcal{C}1 \neq \mathcal{C}2 | 537 | 501 | \text{ tel que } \mathcal{C}1 \neq \mathcal{C}2 | |
\Rightarrow | 538 | 502 | \Rightarrow | |
\sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i | 539 | 503 | \sum _{i} ^{i \in \mathcal{C}1} \delta_i = \sum _{i} ^{i \in \mathcal{C}2} \delta_i | |
\end{align*} | 540 | 504 | \end{align*} | |
541 | 505 | |||
\paragraph{Contrainte de place :} | 542 | 506 | \paragraph{Contrainte de place :} | |
Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : | 543 | 507 | Cette in\'equation traduit la contrainte de place dans le FPGA. La taille max de la puce FPGA est nomm\'e $\mathcal{A}_{FPGA}$ : | |
\begin{align*} | 544 | 508 | \begin{align*} | |
\sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA} | 545 | 509 | \sum ^{\text{t\^ache } i} \mathcal{A}_i \leq \mathcal{A}_{FPGA} | |
\end{align*} | 546 | 510 | \end{align*} | |
547 | 511 | |||
\subsection{Exemples de mod\'elisation} | 548 | 512 | \subsection{Exemples de mod\'elisation} | |
\label{exemples-modeles} | 549 | 513 | \label{exemples-modeles} | |
Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle. | 550 | 514 | Nous allons maintenant prendre quelques blocs de traitement simples afin d'illustrer au mieux notre modèle. | |
Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit. | 551 | 515 | Pour tous nos exemple, nous prendrons un d\'ebit en entr\'ee de 200 Mo/s avec une pr\'ecision de 16 bit. | |
552 | 516 | |||
Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant | 553 | 517 | Prenons tout d'abord l'exemple d'un bloc de d\'ecimation. Le but de ce bloc est de ralentir le flux en ne gardant | |
que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$. | 554 | 518 | que certaines donn\'ees à intervalle r\'egulier. Cet intervalle est appel\'e le facteur de d\'ecimation, on le notera $N$. | |
555 | 519 | |||
Donc d'après notre mod\'elisation : | 556 | 520 | Donc d'après notre mod\'elisation : | |
\begin{itemize} | 557 | 521 | \begin{itemize} | |
\item $N \in \mathcal{P}_i$ | 558 | 522 | \item $N \in \mathcal{P}_i$ | |
%TODO N ou 1 ? | 559 | 523 | %TODO N ou 1 ? | |
\item $\delta _i = N\ c.h.$ (coup d'horloge) | 560 | 524 | \item $\delta _i = N\ c.h.$ (coup d'horloge) | |
\item $\pi _i ^+ = \pi _i ^- = 16 bits$ | 561 | 525 | \item $\pi _i ^+ = \pi _i ^- = 16 bits$ | |
\item $f _i ^+ = f _i ^-$ | 562 | 526 | \item $f _i ^+ = f _i ^-$ | |
\item $q _i ^+ = q _i ^- / N$ | 563 | 527 | \item $q _i ^+ = q _i ^- / N$ | |
\item $d _i ^+ = q _i ^- / N / f _i ^-$ | 564 | 528 | \item $d _i ^+ = q _i ^- / N / f _i ^-$ | |
\item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\ | 565 | 529 | \item $\Gamma _i ^+ = \Gamma _i ^- = 1$\\ | |
%TODO Je ne sais pas trouver la taille... | 566 | 530 | %TODO Je ne sais pas trouver la taille... | |
\end{itemize} | 567 | 531 | \end{itemize} | |
568 | 532 | |||
Un autre exemple int\'eressant que l'on peut donner, c'est le cas des spliters. Il s'agit la aussi d'un bloc très | 569 | 533 | Un autre exemple int\'eressant que l'on peut donner, c'est le cas des spliters. Il s'agit la aussi d'un bloc très | |
simple qui permet de dupliquer un flux. On peut donc donner un nombre de sorties à cr\'eer, on note ce paramètre | 570 | 534 | simple qui permet de dupliquer un flux. On peut donc donner un nombre de sorties à cr\'eer, on note ce paramètre | |
%TODO pas très inspir\'e... | 571 | 535 | %TODO pas très inspir\'e... | |
$X$. Voici ce que donne notre mod\'elisation : | 572 | 536 | $X$. Voici ce que donne notre mod\'elisation : | |
\begin{itemize} | 573 | 537 | \begin{itemize} | |
\item $X \in \mathcal{P}_i$ | 574 | 538 | \item $X \in \mathcal{P}_i$ | |
\item $\delta _i = 1\ c.h.$ | 575 | 539 | \item $\delta _i = 1\ c.h.$ |