Commit bad78fb7c777e4f94c7f209404857097c824a97f
1 parent
08e32d5a93
Exists in
master
corrections
Showing 2 changed files with 62 additions and 22 deletions Side-by-side Diff
ifcs2018.tex
| ... | ... | @@ -143,9 +143,9 @@ |
| 143 | 143 | \begin{center} |
| 144 | 144 | \begin{tabular}{|c|cccc|}\hline |
| 145 | 145 | FIR & BlockRAM & LookUpTables & DSP & rejection (dB)\\\hline\hline |
| 146 | -1 (monolithic) & 1 & 4064 & 40 & -71.78 \\ | |
| 147 | -5 & 5 & 12332 & 0 & -216.58 \\ | |
| 148 | -10 & 10 & 12717 & 0 & -251.01 \\\hline\hline | |
| 146 | +1 (monolithic) & 1 & 4064 & 40 & -72 \\ | |
| 147 | +5 & 5 & 12332 & 0 & -217 \\ | |
| 148 | +10 & 10 & 12717 & 0 & -251 \\\hline\hline | |
| 149 | 149 | Zynq 7010 & 60 & 17600 & 80 & \\\hline |
| 150 | 150 | \end{tabular} |
| 151 | 151 | \end{center} |
ifcs2018_poster.tex
| ... | ... | @@ -34,12 +34,13 @@ |
| 34 | 34 | % Title |
| 35 | 35 | \begin{center} |
| 36 | 36 | \textbf{{\scshape |
| 37 | - \Large\color{OliveGreen} | |
| 37 | + \LARGE\color{OliveGreen} | |
| 38 | 38 | Filter optimization for real time digital processing of radiofrequency signals: application |
| 39 | 39 | to oscillator metrology |
| 40 | 40 | \\}} |
| 41 | 41 | \end{center} |
| 42 | 42 | |
| 43 | +\vspace{-0.7cm} | |
| 43 | 44 | % Authors |
| 44 | 45 | \begin{center} |
| 45 | 46 | \addalignedblock{0.18\textwidth}{flushleft}{% |
| 46 | 47 | |
| 47 | 48 | |
| 48 | 49 | |
| ... | ... | @@ -61,14 +62,33 @@ |
| 61 | 62 | \end{center} |
| 62 | 63 | |
| 63 | 64 | % First part |
| 65 | +\vspace{-.71cm} | |
| 64 | 66 | \newsection{Digital signal processing of ultrastable clock signals} |
| 65 | 67 | |
| 66 | -Je ne sais pas trop quoi dire ici | |
| 68 | +\vspace{-.21cm} | |
| 69 | +\begin{itemize}[leftmargin=*] | |
| 70 | +\setlength{\itemsep}{0pt}% | |
| 71 | +\setlength{\parskip}{0pt}% | |
| 72 | +\item | |
| 73 | +{\bf Digital phase noise characterization}: flexibility (software defined local | |
| 74 | +oscillator), stability (no long term drift), reconfigurabilty | |
| 75 | +$\Rightarrow$ {\bf software defined radio} oscillator phase noise | |
| 76 | +characterization | |
| 77 | +\item analog to digital conversion of radiofrequency signal, software | |
| 78 | +defined local oscillator, mixer and {\bf low pass filter} | |
| 79 | +\item low pass filter uses most resources and introduces latency (phase delay | |
| 80 | +in feedback loop): needs to be optimized | |
| 81 | +\end{itemize} | |
| 67 | 82 | |
| 83 | +\vspace{-.21cm} | |
| 84 | +\hrule{\hfill} | |
| 68 | 85 | % Second part |
| 69 | -\newsection{Filter design} | |
| 70 | -\begin{itemize} | |
| 71 | - \item How to implementing filter:\\ | |
| 86 | +\vspace{-.71cm} | |
| 87 | +\newsection{Filter design and implementation strategy:} | |
| 88 | +%\begin{itemize}[leftmargin=*] | |
| 89 | +%\setlength{\itemsep}{0pt}% | |
| 90 | +%\setlength{\parskip}{0pt}% | |
| 91 | +\vspace{-.41cm} | |
| 72 | 92 | \addblock{0.48\textwidth}{ |
| 73 | 93 | \begin{enumerate}[noitemsep,nolistsep] |
| 74 | 94 | \item \textbf{Classical way:}\\ |
| 75 | 95 | |
| 76 | 96 | |
| 77 | 97 | |
| 78 | 98 | |
| ... | ... | @@ -92,21 +112,28 @@ |
| 92 | 112 | \end{itemize} |
| 93 | 113 | \end{enumerate} |
| 94 | 114 | } |
| 95 | - \item The 2\textsuperscript{nd} way could be considered as an optimization problem: | |
| 115 | + The 2\textsuperscript{nd} way could be considered as an optimization problem: | |
| 96 | 116 | \begin{itemize}[noitemsep,nolistsep] |
| 97 | - \item One or many performance criteria (rejection, noise, throughput...) | |
| 98 | - \item Limited resources (on FPGA) | |
| 117 | + \item One or many {\bf performance criteria} (rejection, noise, | |
| 118 | +throughput...) | |
| 119 | + \item Limited {\bf resources} (on FPGA) | |
| 99 | 120 | \end{itemize} |
| 100 | - \item Translation into a Mixed-Integer Linear Programming (MILP) with GLPK solver | |
| 101 | - \item 3 degrees of freedom: | |
| 121 | + Translation into a Mixed-Integer Linear Programming (MILP) with GLPK solver | |
| 122 | + 3 degrees of freedom: | |
| 123 | + | |
| 124 | +\vspace{.1cm} | |
| 125 | +\hfill | |
| 126 | +\parbox{.60\linewidth}{ | |
| 102 | 127 | \begin{enumerate}[noitemsep,nolistsep] |
| 103 | 128 | \item The size of chain filters |
| 104 | 129 | \item The number of coefficients for each filter $i$: $N_i$ |
| 105 | 130 | \item The number of bits for each coefficients and for each filter $i$: $c_i$ |
| 106 | 131 | \end{enumerate} |
| 107 | -\end{itemize} | |
| 108 | -\vspace{-0.5cm} | |
| 132 | +} | |
| 133 | +%\end{itemize} | |
| 134 | +\vspace{-1.0cm} | |
| 109 | 135 | \newsection{Filter selection} |
| 136 | +\vspace{-0.3cm} | |
| 110 | 137 | \begin{itemize}[noitemsep,nolistsep] |
| 111 | 138 | \item For select the filter design we need to evaluate the rejection like: |
| 112 | 139 | \begin{enumerate}[noitemsep,nolistsep] |
| 113 | 140 | |
| 114 | 141 | |
| 115 | 142 | |
| 116 | 143 | |
| 117 | 144 | |
| ... | ... | @@ -140,20 +167,33 @@ |
| 140 | 167 | \includegraphics[width=0.95\textwidth]{images/fir-mono-vs-fir-series-noise-fixe-jmf.pdf} |
| 141 | 168 | \captionof{figure}{Custom criterion} |
| 142 | 169 | \end{minipage} |
| 143 | - \item For the rejection: the last configuration is better than the first but it's worst than monolithic filter | |
| 144 | - \item For the resources consumption: the last better than the single filter | |
| 170 | + \item {\bf Rejection}: the last configuration is better than the first but worse | |
| 171 | +than the monolithic filter | |
| 172 | + \item Resources {\bf consumption}: last filter is better than the single monolithic filter | |
| 173 | +(monolithic does not fit in available resources) | |
| 174 | +\vspace{-.33cm} | |
| 145 | 175 | \begin{center} |
| 146 | 176 | \begin{tabular}{|c|ccccc|}\hline |
| 147 | 177 | FIR & BlockRAM36 & BlockRAM18 & LookUpTables & DSP & rejection (dB)\\\hline\hline |
| 148 | - 1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162.19 \\ | |
| 149 | - 5 & 0 & 5 & {\color{Green}18597} & 220 & -160.06 \\ | |
| 150 | - 10 & 0 & 8 & {\color{Green}24729} & 220 & -161.30 \\\hline\hline | |
| 178 | + 1 (monolithic) & 1 & 0 & {\color{Red}76183} & 220 & -162 \\ | |
| 179 | + 5 & 0 & 5 & {\color{Green}18597} & 220 & -160 \\ | |
| 180 | + 10 & 0 & 8 & {\color{Green}24729} & 220 & -161 \\\hline\hline | |
| 151 | 181 | \textbf{Zynq 7020} & \textbf{140} & \textbf{280} & \textbf{53200} & \textbf{220} & \\\hline |
| 152 | 182 | \end{tabular} |
| 153 | - \captionof{table}{Resources consumption when we use the configuration with the custom criterion} | |
| 183 | +% \captionof{table}{Resources consumption when we use the configuration with the custom criterion} | |
| 154 | 184 | \end{center} |
| 155 | - \item With a serie of filters we able to reach the rejection level because we consume less resources than the traditional filter | |
| 185 | + \item Series of filters: targetd rejection level (-160~dB) reached since less | |
| 186 | +resources are needed than with a monolithic filter | |
| 156 | 187 | \end{itemize} |
| 188 | +\hrule{\hfill} | |
| 157 | 189 | |
| 190 | +\vspace{-.71cm} | |
| 191 | +\newsection{Conclusion} | |
| 192 | + | |
| 193 | +\vspace{-.21cm} | |
| 194 | +\noindent | |
| 195 | +FIR filter implementation in an FPGA as an optimization problem: best | |
| 196 | +results with cascaded filters with increasing number of coefficients | |
| 197 | +and resolution | |
| 158 | 198 | \end{document} |