Commit b312dca6a3f46172eb14de72c1895522a1858755

Authored by Arthur HUGEAT
1 parent 5e2bf244bf
Exists in master

Ajout de MIN/100.

Showing 2 changed files with 71 additions and 35 deletions Side-by-side Diff

ifcs2018_journal.tex
... ... @@ -710,15 +710,16 @@
710 710 This section presents the results of the complementary quadratic program aimed at
711 711 minimizing the area occupation for a targeted rejection level.
712 712  
713   -The experimental setup is also composed of three cases. The raw input is the same
  713 +The experimental setup is composed of four cases. The raw input is the same
714 714 as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$.
715   -Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60 or 80~dB.
716   -Hence, the three cases have been named: MIN/40, MIN/60, MIN/80.
  715 +Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB.
  716 +Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100.
717 717 The number of configurations $p$ is the same as previous section.
718 718  
719 719 Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40.
720 720 Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60.
721 721 Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80.
  722 +Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100.
722 723  
723 724 \renewcommand{\arraystretch}{1.4}
724 725  
725 726  
726 727  
... ... @@ -777,13 +778,32 @@
777 778 \end{tabular}
778 779 }
779 780 \end{table}
  781 +
  782 +\begin{table}[h!tb]
  783 + \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100}
  784 + \label{tbl:gurobi_min_100}
  785 + \centering
  786 + {\scalefont{0.77}
  787 + \begin{tabular}{|c|ccccc|c|c|}
  788 + \hline
  789 + $n$ & $i = 1$ & $i = 2$ & $i = 3$ & $i = 4$ & $i = 5$ & Rejection & Area \\
  790 + \hline
  791 + 1 & - & - & - & - & - & - & - \\
  792 + 2 & (15, 7, 17) & (51, 14, 0) & - & - & - & 100~dB & 1365 \\
  793 + 3 & (3, 3, 15) & (27, 9, 0) & (27, 9, 0) & - & - & 100~dB & 1002 \\
  794 + 4 & (3, 3, 15) & (31, 9, 0) & (19, 7, 0) & (3, 3, 0) & - & 101~dB & 909 \\
  795 + 5 & (3, 3, 15) & (23, 8, 1) & (19, 7, 0) & (3, 3, 0) & (3, 3, 0) & 101~dB & 810 \\
  796 + \hline
  797 + \end{tabular}
  798 + }
  799 +\end{table}
780 800 \renewcommand{\arraystretch}{1}
781 801  
782   -% JMF : je croyais que dans un cas le monolithique n'y arrivait juste pas : tu as retire' ce cas ?
783   -From these tables, we can first state that all configurations reach the targeted rejection
  802 +From these tables, we can first state that almost configurations reach the targeted rejection
784 803 level or even better thanks to our underestimate of the cascade rejection as the sum of the
785   -individual filter rejection
786   -% we have stages lesser is the area occupied in arbitrary unit. JMF : je ne comprends pas cette phrase
  804 +individual filter rejection. The only exception is for the monolithic case ($n = 1$) in
  805 +MIN/100. With our filter configurations there is no solution able to reach 100~dB of rejection.
  806 +% we have stages lesser is the area occupied in arbitrary unit. JMF : je ne comprends pas cette phrase, AH: C'est déjà dit à la dernière phrase de ce paragraphe
787 807 Futhermore, the area of the monolithic filter is twice as big as the two cascaded filters
788 808 (1131 and 1760 arbitrary units v.s 547 and 903 arbitrary units for 60 and 80~dB rejection
789 809 respectively). More generally, the more filters are cascaded, the lower the occupied area.
... ... @@ -806,6 +826,7 @@
806 826 Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40.
807 827 Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60.
808 828 Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
  829 +Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
809 830  
810 831 \begin{figure}
811 832 \centering
812 833  
813 834  
814 835  
815 836  
816 837  
817 838  
818 839  
... ... @@ -828,40 +849,51 @@
828 849 \label{fig:min_80}
829 850 \end{figure}
830 851  
  852 +\begin{figure}
  853 +\centering
  854 +\includegraphics[width=\linewidth]{images/min_100}
  855 +\caption{Signal spectrum for MIN/100}
  856 +\label{fig:min_100}
  857 +\end{figure}
  858 +
831 859 We observe that all rejections given by the quadratic solver are close to the experimentally
832 860 measured rejection. All curves prove that the constraint to reach the target rejection is
833   -respected with both monolithic or cascaded filters.
  861 +respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters.
834 862  
835   -Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60 and
836   -MIN/80 \emph{i.e.} when the target rejection is fixed to 40, 60 and 80~dB. We
  863 +Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60;
  864 +MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We
837 865 have taken care to extract solely the resources used by
838 866 the FIR filters and remove additional processing blocks including FIFO and PL to
839 867 PS communication.
840 868  
  869 +\renewcommand{\arraystretch}{1.2}
841 870 \begin{table}
842 871 \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
843 872 \label{tbl:resources_usage_comp}
844 873 \centering
845   - \begin{tabular}{|c|c|ccc|c|}
  874 + {\scalefont{0.90}
  875 + \begin{tabular}{|c|c|cccc|c|}
846 876 \hline
847   - $n$ & & MIN/40 & MIN/60 & MIN/80 & \emph{Zynq 7010} \\ \hline\hline
848   - & LUT & 343 & 334 & 772 & \emph{17600} \\
849   - 1 & BRAM & 1 & 1 & 1 & \emph{120} \\
850   - & DSP & 27 & 39 & 55 & \emph{80} \\ \hline
851   - & LUT & 1252 & 2862 & 5099 & \emph{17600} \\
852   - 2 & BRAM & 2 & 2 & 2 & \emph{120} \\
853   - & DSP & 0 & 0 & 0 & \emph{80} \\ \hline
854   - & LUT & 891 & 2148 & 2023 & \emph{17600} \\
855   - 3 & BRAM & 3 & 3 & 3 & \emph{120} \\
856   - & DSP & 0 & 0 & 19 & \emph{80} \\ \hline
857   - & LUT & 662 & 1729 & 2451 & \emph{17600} \\
858   - 4 & BRAM & 4 & 4 & 4 & \emph{120} \\
859   - & DPS & 0 & 0 & 7 & \emph{80} \\ \hline
860   - & LUT & - & 1259 & 2602 & \emph{17600} \\
861   - 5 & BRAM & - & 5 & 5 & \emph{120} \\
862   - & DPS & - & 0 & 0 & \emph{80} \\ \hline
  877 + $n$ & & MIN/40 & MIN/60 & MIN/80 & MIN/100 & \emph{Zynq 7010} \\ \hline\hline
  878 + & LUT & 343 & 334 & 772 & - & \emph{17600} \\
  879 + 1 & BRAM & 1 & 1 & 1 & - & \emph{120} \\
  880 + & DSP & 27 & 39 & 55 & - & \emph{80} \\ \hline
  881 + & LUT & 1252 & 2862 & 5099 & 640 & \emph{17600} \\
  882 + 2 & BRAM & 2 & 2 & 2 & 2 & \emph{120} \\
  883 + & DSP & 0 & 0 & 0 & 66 & \emph{80} \\ \hline
  884 + & LUT & 891 & 2148 & 2023 & 2448 & \emph{17600} \\
  885 + 3 & BRAM & 3 & 3 & 3 & 3 & \emph{120} \\
  886 + & DSP & 0 & 0 & 19 & 27 & \emph{80} \\ \hline
  887 + & LUT & 662 & 1729 & 2451 & 2893 & \emph{17600} \\
  888 + 4 & BRAM & 4 & 4 & 4 & 4 & \emph{120} \\
  889 + & DPS & 0 & 0 & 7 & 19 & \emph{80} \\ \hline
  890 + & LUT & - & 1259 & 2602 & 2505 & \emph{17600} \\
  891 + 5 & BRAM & - & 5 & 5 & 5 & \emph{120} \\
  892 + & DPS & - & 0 & 0 & 19 & \emph{80} \\ \hline
863 893 \end{tabular}
  894 + }
864 895 \end{table}
  896 +\renewcommand{\arraystretch}{1}
865 897  
866 898 If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT)
867 899 the real resource consumption decreases as a function of the number of stages in the cascaded
868 900  
869 901  
870 902  
871 903  
... ... @@ -873,22 +905,26 @@
873 905 Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve
874 906 the quadratic program.
875 907  
  908 +\renewcommand{\arraystretch}{1.2}
876 909 \begin{table}[h!tb]
877 910 \caption{Time to solve the quadratic program with Gurobi}
878 911 \label{tbl:area_time_comp}
879 912 \centering
880   -\begin{tabular}{|c|c|c|c|}\hline
881   -$n$ & Time (MIN/40) & Time (MIN/60) & Time (MIN/80) \\\hline\hline
882   -1 & 0.07~s & 0.02~s & 0.01~s \\
883   -2 & 7.8~s & 16~s & 14~s \\
884   -3 & 4.7~s & 14~s & 28~s \\
885   -4 & 39~s & 20~s & 193~s \\
886   -5 & 126~s & 12~s & 170~s \\\hline
  913 +{\scalefont{0.90}
  914 +\begin{tabular}{|c|c|c|c|c|}\hline
  915 +$n$ & Time (MIN/40) & Time (MIN/60) & Time (MIN/80) & Time (MIN/100) \\\hline\hline
  916 +1 & 0.07~s & 0.02~s & 0.01~s & - \\
  917 +2 & 7.8~s & 16~s & 14~s & 1.8~s \\
  918 +3 & 4.7~s & 14~s & 28~s & 39~s \\
  919 +4 & 39~s & 20~s & 193~s & 522~s ($\approx$ 9~min) \\
  920 +5 & - & 12~s & 170~s & 1048~s ($\approx$ 17~min) \\\hline
887 921 \end{tabular}
  922 +}
888 923 \end{table}
  924 +\renewcommand{\arraystretch}{1}
889 925  
890 926 The time needed to solve this configuration is significantly shorter than the time
891   -needed in the previous section. Indeed the worst time in this case is only 3~minutes,
  927 +needed in the previous section. Indeed the worst time in this case is only 17~minutes,
892 928 compared to 3~days in the previous section: this problem is more easily solved than the
893 929 previous one.
894 930  
No preview for this file type