ifcs2018_poster.tex
3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
\documentclass[a4paper]{article}
\usepackage[usenames,dvipsnames]{color}
\usepackage[english]{babel}
\usepackage{url,graphicx,enumitem,enumitem}
\definecolor{title_color}{rgb}{0.050980, 0.325490, 0.580392}
\newcommand{\newsection}[1] {
{\color{title_color}\section*{#1}}
}
\newcommand{\addblock}[2] {
\begin{minipage}[t]{#1}
#2
\end{minipage}
}
\newcommand{\addalignedblock}[3] {
\begin{minipage}[c]{#1}
\begin{#2}
#3
\end{#2}
\end{minipage}
}
\textheight=29.7cm
\topmargin=-3.6cm
\oddsidemargin=-2cm
\textwidth=19.5cm
\pagestyle{empty}
\begin{document}
% Title
\begin{center}
\textbf{{\scshape
\Large\color{OliveGreen}
Filter optimization for real time digital processing of radiofrequency signals: application
to oscillator metrology
\\}}
\end{center}
% Authors
\begin{center}
\addalignedblock{0.18\textwidth}{flushleft}{%
\includegraphics[height=1.6cm]{images/logo_ubfc}
}
\addalignedblock{0.28\textwidth}{center}{%
G. \textsc{Goavec-M\'erou},\\
P.-Y. \textsc{Bourgeois}, J.-M \textsc{Friedt}\\
$^{*}$FEMTO-ST, Time \& Frequency dept., Besan\c con, France
}
\addalignedblock{0.28\textwidth}{center}{%
A. \textsc{Hugeat}$^{*}$, J. \textsc{Bernard}\\
~\\
FEMTO-ST, DISC dept., Besan\c con, France
}
\addalignedblock{0.18\textwidth}{flushright}{%
\includegraphics[height=1.4cm]{images/logo_femto}
}
\end{center}
% First part
\newsection{Digital signal processing of ultrastable clock signals}
Je ne sais pas trop quoi dire ici
% Second part
\newsection{Filter design}
\begin{itemize}
\item How to implementing filter:\\
\addblock{0.48\textwidth}{
\begin{enumerate}[noitemsep,nolistsep]
\item \textbf{Classical way:}\\
Compute the transfer function of a monolithic filter
\begin{itemize}[label=$\Rightarrow$, noitemsep, nolistsep]
{\color{Green}\item Simplest way to design filter}
{\color{Green}\item Great rejection}
{\color{Red}\item Consume lot of resources on FPGA}
\end{itemize}
\end{enumerate}
}
\addblock{0.48\textwidth}{
\begin{enumerate}
\setcounter{enumi}{1}
\item \textbf{Alternative way (our focus):}\\
Chain of little filters
\begin{itemize}[label=$\Rightarrow$, noitemsep, nolistsep]
{\color{Green}\item Great rejection}
{\color{Green}\item Consume less resources on FPGA}
{\color{Red}\item Harder way to design filter}
\end{itemize}
\end{enumerate}
}
\item The 2\textsuperscript{nd} way could be consider as an optimization problem:
\begin{itemize}[noitemsep,nolistsep]
\item One or many performance criteria (rejection, noise, throughput...)
\item Limited resources (on FPGA)
\end{itemize}
\item Translation into a Mixed-Integer Linear Programming (MILP) with GLPK solver
\item 3 degrees of freedom:
\begin{enumerate}[noitemsep,nolistsep]
\item The size of chain filters
\item The number of coefficients for each filter $i$: $N_i$
\item The number of bits for each coefficients and for each filter $i$: $c_i$
\end{enumerate}
\end{itemize}
\vspace{-0.5cm}
\newsection{Filter selection}
\end{document}