Blame view

ifcs2018_journal.tex 53.5 KB
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
1
2
  % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
  % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
c9c460c6b   jfriedt   menage article IFCS
3
4
  %    rejection par bit et perte si moins de bits que rejection/6
  % developper programme lineaire en incluant le decalage de bits
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
5
6
  % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
  % implemente et on demontre que ca tourne
c9c460c6b   jfriedt   menage article IFCS
7
8
9
  %   gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
  % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
  %        (zedboard ou redpit)
c9c460c6b   jfriedt   menage article IFCS
10
  % label schema : verifier que "argumenter de la cascade de FIR" est fait
27f5f4108   Arthur HUGEAT   Article étendu.
11
12
13
14
15
16
17
18
19
  \documentclass[a4paper,conference]{IEEEtran/IEEEtran}
  \usepackage{graphicx,color,hyperref}
  \usepackage{amsfonts}
  \usepackage{amsthm}
  \usepackage{amssymb}
  \usepackage{amsmath}
  \usepackage{algorithm2e}
  \usepackage{url,balance}
  \usepackage[normalem]{ulem}
842e804be   Arthur HUGEAT   Permier pas vers ...
20
21
22
23
  \usepackage{tikz}
  \usetikzlibrary{positioning,fit}
  \usepackage{multirow}
  \usepackage{scalefnt}
27f5f4108   Arthur HUGEAT   Article étendu.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  % correct bad hyphenation here
  \hyphenation{op-tical net-works semi-conduc-tor}
  \textheight=26cm
  \setlength{\footskip}{30pt}
  \pagenumbering{gobble}
  \begin{document}
  \title{Filter optimization for real time digital processing of radiofrequency signals: application
  to oscillator metrology}
  
  \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
  G. Goavec-M\'erou\IEEEauthorrefmark{1},
  P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}
  \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }
  \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
  Email: \{pyb2,jmfriedt\}@femto-st.fr}
  }
  \maketitle
  \thispagestyle{plain}
  \pagestyle{plain}
  
  ewtheorem{definition}{Definition}
  
  \begin{abstract}
  Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
  radiofrequency signal processing. Applied to oscillator characterization in the context
  of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
  noise rejection needs. Since real time radiofrequency processing must be performed in a
  Field Programmable Array to meet timing constraints, we investigate optimization strategies
  to design filters meeting rejection characteristics while limiting the hardware resources
0642fff00   jfriedt   relecture journal
53
54
55
56
57
  required and keeping timing constraints within the targeted measurement bandwidths. The
  presented technique is applicable to scheduling any sequence of processing blocks characterized
  by a throughput, resource occupation and performance tabulated as a function of configuration
  characateristics, as is the case for filters with their coefficients and resolution yielding
  rejection and number of multipliers.
27f5f4108   Arthur HUGEAT   Article étendu.
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
  \end{abstract}
  
  \begin{IEEEkeywords}
  Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
  \end{IEEEkeywords}
  
  \section{Digital signal processing of ultrastable clock signals}
  
  Analog oscillator phase noise characteristics are classically performed by downconverting
  the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
  followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
  a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
  multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
  
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.8\linewidth]{images/schema}
  \end{center}
  \caption{Fully digital oscillator phase noise characterization: the Device Under Test
  (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
  downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
  and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
  Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
  the spectral characteristics of the phase fluctuations.}
  \label{schema}
  \end{figure}
  
  As with the analog mixer,
  the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
  well as the generation of the frequency sum signal in addition to the frequency difference.
  These unwanted spectral characteristics must be rejected before decimating the data stream
  for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
  downconverter
  and the decimation processing blocks are core characteristics of an oscillator characterization
  system, and must reject out-of-band signals below the targeted phase noise -- typically in the
  sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
  use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
  datastream: optimizing the performance of the filter while reducing the needed resources is
  hence tackled in a systematic approach using optimization techniques. Most significantly, we
  tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
  tunable number of coefficients and tunable number of bits representing the coefficients and the
  data being processed.
  
  \section{Finite impulse response filter}
0642fff00   jfriedt   relecture journal
102
  We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined
27f5f4108   Arthur HUGEAT   Article étendu.
103
104
  by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
  outputs $y_k$
842e804be   Arthur HUGEAT   Permier pas vers ...
105
106
107
108
  \begin{align}
      y_n=\sum_{k=0}^N b_k x_{n-k}
      \label{eq:fir_equation}
  \end{align}
27f5f4108   Arthur HUGEAT   Article étendu.
109
110
  
  As opposed to an implementation on a general purpose processor in which word size is defined by the
0642fff00   jfriedt   relecture journal
111
  processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since
27f5f4108   Arthur HUGEAT   Article étendu.
112
113
114
115
  not only the coefficient values and number of taps must be defined, but also the number of bits
  defining the coefficients and the sample size. For this reason, and because we consider pipeline
  processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
  signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
116
  the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language
0642fff00   jfriedt   relecture journal
117
  (VHDL) level.
27f5f4108   Arthur HUGEAT   Article étendu.
118
119
120
121
122
123
124
125
  Since latency is not an issue in a openloop phase noise characterization instrument, the large
  numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
  is not considered as an issue as would be in a closed loop system.
  
  The coefficients are classically expressed as floating point values. However, this binary
  number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
  we select to quantify these floating point values into integer values. This quantization
  will result in some precision loss.
27f5f4108   Arthur HUGEAT   Article étendu.
126
  \begin{figure}[h!tb]
46ae3f9cf   Arthur HUGEAT   Final draft.
127
  \includegraphics[width=\linewidth]{images/zero_values}
27f5f4108   Arthur HUGEAT   Article étendu.
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
  \caption{Impact of the quantization resolution of the coefficients: the quantization is
  set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
  the 30~first and 30~last coefficients out of the initial 128~band-pass
  filter coefficients to 0 (red dots).}
  \label{float_vs_int}
  \end{figure}
  
  The tradeoff between quantization resolution and number of coefficients when considering
  integer operations is not trivial. As an illustration of the issue related to the
  relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
  a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
  quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
  taps become null, making the large number of coefficients irrelevant and allowing to save
  processing resource by shrinking the filter length. This tradeoff aimed at minimizing resources
  to reach a given rejection level, or maximizing out of band rejection for a given computational
  resource, will drive the investigation on cascading filters designed with varying tap resolution
  and tap length, as will be shown in the next section. Indeed, our development strategy closely
  follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
  in which basic blocks are defined and characterized before being assembled \cite{hide}
  in a complete processing chain. In our case, assembling the filter blocks is a simpler block
  combination process since we assume a single value to be processed and a single value to be
  generated at each clock cycle. The FIR filters will not be considered to decimate in the
  current implementation: the decimation is assumed to be located after the FIR cascade at the
  moment.
842e804be   Arthur HUGEAT   Permier pas vers ...
152
  \section{Methodology description}
0642fff00   jfriedt   relecture journal
153

5e2bf244b   Arthur HUGEAT   Suppression d'un ...
154
155
  Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP)
  chain obtained by assembling basic processing blocks, with hardware and manufacturer independence.
0642fff00   jfriedt   relecture journal
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  Achieving such a target requires defining an abstract model to represent some basic properties
  of DSP blocks such as perfomance (i.e. rejection or ripples in the bandpass for filters) and
  resource occupation. These abstract properties, not necessarily related to the detailed hardware
  implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum
  target, whether in terms of maximizing performance for a given arbitrary resource occupation, or
  minimizing resource occupation for a given perfomance. In our approach, the solution of the
  solver is then synthesized using the dedicated tool provided by each platform manufacturer
  to assess the validity of our abstract resource occupation indicator, and the result of running
  the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize
  that all solutions found by the solver are synthesized and executed on hardware at the end
  of the analysis.
  
  In this demonstration , we focus on only two operations: filtering and shifting the number of
  bits needed to represent the data along the processing chain.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
170
  We have chosen these basic operations because shifting and the filtering have already been studied
0642fff00   jfriedt   relecture journal
171
  in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
172
173
  assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend
  requiring pipelined processing at full bandwidth for the earliest steps, including for
0642fff00   jfriedt   relecture journal
174
175
176
177
178
179
  time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}.
  
  Addressing only two operations allows for demonstrating the methodology but should not be
  considered as a limitation of the framework which can be extended to assembling any number
  of skeleton blocks as long as perfomance and resource occupation can be determined. Hence,
  in this paper we will apply our methodology on simple DSP chains: a white noise input signal
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
180
  is generated using a Pseudo-Random Number (PRN) generator or thanks at a radiofrequency-grade
0642fff00   jfriedt   relecture journal
181
182
183
184
  Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor. Once samples have been
  digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance --
  practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction
  by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing,
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
185
  allowing to assess either filter rejection for a given resource usage, or validating the rejection
0642fff00   jfriedt   relecture journal
186
  when implementing a solution minimizing resource occupation.
842e804be   Arthur HUGEAT   Permier pas vers ...
187
188
189
190
191
192
193
194
195
196
197
198
199
  
  The first step of our approach is to model the DSP chain and since we just optimize
  the filtering, we have not modeling the PRN generator or the ADC. The filtering can be
  done by two ways. The first one we use only one FIR filter with lot of coefficients
  to rejection the noise, we called this approach a monolithic approach. And the second one
  we select different FIR filters with less coefficients the monolithic filter and we cascaded
  it to filtering the signal.
  
  After each filter we leave the possibility of shifting the filtered data to consume
  less resources. Hence in the case of cascaded filter, we define a stage as a filter
  and a shifter (the shift could be omitted if we do not need to divide the filtered data).
  
  \subsection{Model of a FIR filter}
0642fff00   jfriedt   relecture journal
200
201
202
203
  
  A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$)
  the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$
  bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as
842e804be   Arthur HUGEAT   Permier pas vers ...
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
  the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage}
  shows a filtering stage.
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=2cm]
      
  ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ;
      
  ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ;
      
  ode (Start) [left of=FIR] { } ;
      
  ode (End) [right of=Shift] { } ;
  
      
  ode[draw,fit=(FIR) (Shift)] (Filter) { } ;
  
      \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ;
      \draw[->] (FIR) -- (Shift) ;
      \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ;
    \end{tikzpicture}
    \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)}
    \label{fig:fir_stage}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
229

0642fff00   jfriedt   relecture journal
230
231
232
  FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB.
  This rejection has been computed using GNU Octave software FIR coefficient design functions
  (\texttt{firls} and \texttt{fir1}).
842e804be   Arthur HUGEAT   Permier pas vers ...
233
234
235
  For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients.
  Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively,
  the coefficients are normalized by their absolute maximum before being scaled to integer coefficients.
0642fff00   jfriedt   relecture journal
236
  At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits.
842e804be   Arthur HUGEAT   Permier pas vers ...
237

0642fff00   jfriedt   relecture journal
238
239
240
  With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter
  transfer function.
  Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag},
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
241
  the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the
0642fff00   jfriedt   relecture journal
242
  bandpass ripples as emphasized in \cite{lim_1988,lim_1996}.
842e804be   Arthur HUGEAT   Permier pas vers ...
243
244
  
  \begin{figure}
0642fff00   jfriedt   relecture journal
245
246
  \begin{center}
  \scalebox{0.8}{
842e804be   Arthur HUGEAT   Permier pas vers ...
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    \centering
    \begin{tikzpicture}[scale=0.3]
      \draw[<->] (0,15) -- (0,0) -- (21,0) ;
      \draw[thick] (0,12) -- (8,12) -- (20,0) ;
  
      \draw (0,14) node [left] { $P$ } ;
      \draw (20,0) node [below] { $f$ } ;
  
      \draw[>=latex,<->] (0,14) -- (8,14) ;
      \draw (4,14) node [above] { passband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (8,14) -- (12,14) ;
      \draw (10,14) node [above] { transition } node [below] { $20\%$ } ;
  
      \draw[>=latex,<->] (12,14) -- (20,14) ;
      \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (16,12) -- (16,8) ;
      \draw (16,10) node [right] { rejection } ;
  
      \draw[dashed] (8,-1) -- (8,14) ;
      \draw[dashed] (12,-1) -- (12,14) ;
  
      \draw[dashed] (8,12) -- (16,12) ;
      \draw[dashed] (12,8) -- (16,8) ;
  
    \end{tikzpicture}
0642fff00   jfriedt   relecture journal
274
275
  }
  \end{center}
842e804be   Arthur HUGEAT   Permier pas vers ...
276
277
278
279
  \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
  the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
  the stopband the last 40\%, allowing 20\% transition width.}
  \label{fig:fir_mag}
27f5f4108   Arthur HUGEAT   Article étendu.
280
  \end{figure}
0642fff00   jfriedt   relecture journal
281
  In the transition band, the behavior of the filter is left free, we only care about the passband and the stopband characteristics.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
282
  Our initial criterion considered the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion
0642fff00   jfriedt   relecture journal
283
284
285
  yields unacceptable results since notches overestimate the rejection capability of the filter. Furthermore, the losses within
  the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
  Such biases are compensated for by the second considered criterion which is based on computing the maximum rejection within the stopband minus the mean of the absolute value of passband rejection. With this criterion, the results are significantly improved as shown in figure~\ref{fig:custom_criterion} and meet the expected rejection capability of low pass filters.
27f5f4108   Arthur HUGEAT   Article étendu.
286

842e804be   Arthur HUGEAT   Permier pas vers ...
287
288
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
289
  \includegraphics[width=\linewidth]{images/colored_mean_criterion}
0642fff00   jfriedt   relecture journal
290
  \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
842e804be   Arthur HUGEAT   Permier pas vers ...
291
  \label{fig:mean_criterion}
27f5f4108   Arthur HUGEAT   Article étendu.
292
  \end{figure}
842e804be   Arthur HUGEAT   Permier pas vers ...
293
294
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
295
  \includegraphics[width=\linewidth]{images/colored_custom_criterion}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
296
  \caption{Custom criterion (maximum rejection in the stopband minus the mean of the absolute value of the passband rejection)
0642fff00   jfriedt   relecture journal
297
  comparison between monolithic filter and cascaded filters}
842e804be   Arthur HUGEAT   Permier pas vers ...
298
299
  \label{fig:custom_criterion}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
300

0642fff00   jfriedt   relecture journal
301
302
303
304
  Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps
  and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the
  rejection as a function of the number of coefficients and the number of bits representing these coefficients.
  The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
305
  Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection.
0642fff00   jfriedt   relecture journal
306
307
  Conversely when setting the a given number of bits, increasing the number of coefficients will not improve
  the rejection. Hence the best coefficient set are on the vertex of the pyramid.
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
308
309
310
311
312
313
314
  
  \begin{figure}
  \centering
  \includegraphics[width=\linewidth]{images/rejection_pyramid}
  \caption{Rejection as a function of number of coefficients and number of bits}
  \label{fig:rejection_pyramid}
  \end{figure}
0642fff00   jfriedt   relecture journal
315
  Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps),
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
316
  we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria.
0642fff00   jfriedt   relecture journal
317
  If the FIR filter coefficients are the same between the stages, we have:
842e804be   Arthur HUGEAT   Permier pas vers ...
318
  $$F_{total} = F_1 + F_2$$
0642fff00   jfriedt   relecture journal
319
320
321
  But selecting two different sets of coefficient will yield a more complex situation in which
  the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves
  are two different filters with maximums and notches not located at the same frequency offsets.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
322
  Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved
0642fff00   jfriedt   relecture journal
323
  with respect to a basic sum of the rejection criteria shown as a the dotted yellow line.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
324
  Thus, estimating the rejection of filter cascades is more complex than takin the sum of all the rejection
0642fff00   jfriedt   relecture journal
325
326
327
  criteria of each filter. However since the this sum underestimates the rejection capability of the cascade,
  this upper bound is considered as a pessimistic and acceptable criterion for deciding on the suitability
  of the filter cascade to meet design criteria.
842e804be   Arthur HUGEAT   Permier pas vers ...
328
329
330
  
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
331
  \includegraphics[width=\linewidth]{images/cascaded_criterion}
842e804be   Arthur HUGEAT   Permier pas vers ...
332
333
334
  \caption{Rejection of two cascaded filters}
  \label{fig:sum_rejection}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
335

0642fff00   jfriedt   relecture journal
336
337
338
339
340
341
342
343
  Based on this analysis, we address the estimate of resource consumption (called
  silicon area -- in the case of FPGAs meaning processing cells) as a function of
  filter characteristics. As a reminder, we do not aim at matching actual hardware
  configuration but consider an arbitrary silicon area occupied by each processing function,
  and will assess after synthesis the adequation of this arbitrary unit with actual
  hardware resources provided by FPGA manufacturers. The sum of individual processing
  unit areas is constrained by a total silicon area representative of FPGA global resources.
  Formally, variable $a_i$ is the area taken by filter~$i$
46ae3f9cf   Arthur HUGEAT   Final draft.
344
345
  (in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB).
  Constant $\mathcal{A}$ is the total available area. We model our problem as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
346
347
348
349
350
351
352
353
354
355
356
  \begin{align}
  \text{Maximize } & \sum_{i=1}^n r_i  
  otag \\
  \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\
  a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\
  r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\
  \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\
  \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\
  \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\
  \pi_1^- &= \Pi^I \label{eq:init}
  \end{align}
8d9489b3b   Arthur HUGEAT   Add first draft f...
357
358
  Equation~\ref{eq:area} states that the total area taken by the filters must be
  less than the available area. Equation~\ref{eq:areadef} gives the definition of
0642fff00   jfriedt   relecture journal
359
360
  the area used by a filter, considered as the area of the FIR since the Shifter is
  assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size
8d9489b3b   Arthur HUGEAT   Add first draft f...
361
  $\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the
0642fff00   jfriedt   relecture journal
362
363
364
  input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the
  definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined
  previously. The Shifter does not introduce negative rejection as we will explain later,
8d9489b3b   Arthur HUGEAT   Add first draft f...
365
366
367
368
369
370
371
372
  so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the
  relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add
  $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes
  $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of
  a filter is the same as the input number of bits of the next filter.
  Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative
  rejection. Indeed, the results of the FIR can be right shifted without compromising
  the quality of the rejection until a threshold. Each bit of the output data
0642fff00   jfriedt   relecture journal
373
  increases the maximum rejection level by 6~dB. We add one to take the sign bit
8d9489b3b   Arthur HUGEAT   Add first draft f...
374
375
  into account. If equation~\ref{eq:maxshift} was not present, the Shifter could
  shift too much and introduce some noise in the output data. Each supplementary
0642fff00   jfriedt   relecture journal
376
377
378
  shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is:
  $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$.
  Finally, equation~\ref{eq:init} gives the number of bits of the global input.
8d9489b3b   Arthur HUGEAT   Add first draft f...
379
380
381
  
  This model is non-linear and even non-quadratic, as $F$ does not have a known
  linear or quadratic expression. We introduce $p$ FIR configurations
46ae3f9cf   Arthur HUGEAT   Final draft.
382
383
384
  $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants. We define binary
  variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  and 0 otherwise. The new equations are as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
385
386
387
388
389
390
391
392
393
394
395
  
  \begin{align}
  a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  \end{align}
  
  Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
46ae3f9cf   Arthur HUGEAT   Final draft.
396
397
398
399
  This modified model is quadratic, and it can be linearised if necessary. The Gurobi
  (\url{www.gurobi.com}) optimization software is used to solve this quadratic
  model, and since Gurobi is able to linearize, the model is left as is. This model
  has $O(np)$ variables and $O(n)$ constraints.
0642fff00   jfriedt   relecture journal
400
401
402
403
404
  Two problems will be addressed using the workflow described in the next section: on the one
  hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary
  silcon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area
  for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the
  objective function is replaced with:
8d9489b3b   Arthur HUGEAT   Add first draft f...
405
406
407
408
  \begin{align}
  \text{Minimize } & \sum_{i=1}^n a_i  
  otag
  \end{align}
0642fff00   jfriedt   relecture journal
409
410
  We adapt our constraints of quadratic program to replace equation \ref{eq:area}
  with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal
8d9489b3b   Arthur HUGEAT   Add first draft f...
411
412
413
414
415
416
417
418
  rejection required.
  
  \begin{align}
  \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min}
  \end{align}
  
  \section{Design workflow}
  \label{sec:workflow}
0642fff00   jfriedt   relecture journal
419
  In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
420
  and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved
0642fff00   jfriedt   relecture journal
421
  in the computation of the results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=0.75cm and 2cm]
      
  ode[draw,minimum size=1cm] (Solver) { Filter Solver } ;
      
  ode (Start) [left= 3cm of Solver] { } ;
      
  ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ;
      
  ode (Input) [above= of TCL] { } ;
      
  ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ;
      
  ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ;
      
  ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ;
      
  ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ;
      
  ode (Results) [left= of Postproc] { } ;
  
      \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ;
      \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ;
      \draw[->] (Solver) edge node [below] { (1a) } (TCL) ;
      \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ;
      \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ;
      \draw[->,dashed] (Bitstream) -- (Deploy) ;
      \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ;
      \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ;
      \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ;
      \draw[->] (Postproc) -- (Results) ;
    \end{tikzpicture}
    \caption{Design workflow from the input parameters to the results}
    \label{fig:workflow}
  \end{figure}
  
  The filter solver is a C++ program that takes as input the maximum area
  $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$,
  the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates
0642fff00   jfriedt   relecture journal
463
  the quadratic programs and uses the Gurobi solver to estimate the optimal results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
464
465
466
467
  Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow})
  and a deploy script ((1b) on figure~\ref{fig:workflow}).
  
  The TCL script describes the whole digital processing chain from the beginning
0642fff00   jfriedt   relecture journal
468
  (the raw signal data) to the end (the filtered data) in a language compatible
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
469
  with proprietary synthesis software, namely Vivado for Xilinx and Quartus for
0642fff00   jfriedt   relecture journal
470
  Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN)
8d9489b3b   Arthur HUGEAT   Add first draft f...
471
472
473
474
475
  generator inside the FPGA and $\Pi^I$ is fixed at 16~bits.
  Then the script builds each stage of the chain with a generic FIR task that
  comes from a skeleton library. The generic FIR is highly configurable
  with the number of coefficients and the size of the coefficients. The coefficients
  themselves are not stored in the script.
0642fff00   jfriedt   relecture journal
476
477
478
479
  As the signal is processed in real-time, the output signal is stored as
  consecutive bursts of data for post-processing, mainly assessing the consistency of the
  implemented FIR cascade transfer function with the design criteria and the expected
  transfer function.
8d9489b3b   Arthur HUGEAT   Add first draft f...
480
481
482
483
  
  The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}).
  We use the 2018.2 version of Xilinx Vivado and we execute the synthesized
  bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series
0642fff00   jfriedt   relecture journal
484
485
486
487
  FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to
  provide a broadband noise source.
  The board runs the Linux kernel and surrounding environment produced from the
  Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
488
  the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and
0642fff00   jfriedt   relecture journal
489
  fetching the results is automated.
8d9489b3b   Arthur HUGEAT   Add first draft f...
490
491
492
493
494
495
496
497
498
499
  
  The deploy script uploads the bitstream to the board ((3) on
  figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers,
  configures the coefficients of the FIR filters. It then waits for the results
  and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}).
  
  Finally, an Octave post-processing script computes the final results thanks to
  the output data ((5) on figure~\ref{fig:workflow}).
  The results are normalized so that the Power Spectrum Density (PSD) starts at zero
  and the different configurations can be compared.
0642fff00   jfriedt   relecture journal
500
  \section{Maximizing the rejection at fixed silicon area}
8d9489b3b   Arthur HUGEAT   Add first draft f...
501
502
503
  \label{sec:fixed_area}
  This section presents the output of the filter solver {\em i.e.} the computed
  configurations for each stage, the computed rejection and the computed silicon area.
0642fff00   jfriedt   relecture journal
504
  Such results allow for understanding the choices made by the solver to compute its solutions.
8d9489b3b   Arthur HUGEAT   Add first draft f...
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
  
  The experimental setup is composed of three cases. The raw input is generated
  by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$.
  Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500
  arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500.
  The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$
  ranging from 2 to 22. In each case, the quadratic program has been able to give a
  result up to five stages ($n = 5$) in the cascaded filter.
  
  Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500.
  Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000.
  Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500.
  
  \renewcommand{\arraystretch}{1.4}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500}
    \label{tbl:gurobi_max_500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (21, 7, 0)  & -           & -           & -           & -           & 32~dB           & 483   \\
              2 & (3, 3, 15)  & (31, 9, 0)  & -           & -           & -           & 58~dB           & 460   \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (5, 3, 0)   & -           & -           & 66~dB           & 488   \\
              4 & (3, 3, 15)  & (19, 7, 0)  & (11, 5, 0)  & (3, 3, 0)   & -           & 74~dB           & 499   \\
              5 & (3, 3, 15)  & (23, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 78~dB           & 489   \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000}
    \label{tbl:gurobi_max_1000}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (37, 11, 0) & -           & -           & -           & -           & 56~dB           & 999  \\
              2 & (3, 3, 15)  & (51, 14, 0) & -           & -           & -           & 87~dB           & 975  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (19, 7, 0)  & -           & -           & 99~dB           & 1000 \\
              4 & (3, 4, 16)  & (27, 8, 0)  & (19, 7, 1)  & (11, 5, 0)  & -           & 103~dB          & 998  \\
              5 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 1)   & (3, 3, 0)   & 111~dB          & 984  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500}
    \label{tbl:gurobi_max_1500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (47, 15, 0) & -           & -           & -           & -           & 71~dB           & 1457  \\
              2 & (19, 6, 15) & (51, 14, 0) & -           & -           & -           & 103~dB          & 1489  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (35, 11, 0) & -           & -           & 122~dB          & 1492  \\
              4 & (3, 3, 15)  & (27, 8, 0)  & (19, 7, 0)  & (27, 9, 0)  & -           & 129~dB          & 1498  \\
              5 & (3, 3, 15)  & (23, 9, 2)  & (27, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & 136~dB          & 1499  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \renewcommand{\arraystretch}{1}
  
  From these tables, we can first state that the more stages are used to define
  the cascaded FIR filters, the better the rejection. It was an expected result as it has
  been previously observed that many small filters are better than
0642fff00   jfriedt   relecture journal
582
  a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions
8d9489b3b   Arthur HUGEAT   Add first draft f...
583
584
585
586
  being hardly used in practice due to the lack of tools for identifying individual filter
  coefficients in the cascaded approach.
  
  Second, the larger the silicon area, the better the rejection. This was also an
0642fff00   jfriedt   relecture journal
587
588
  expected result as more area means a filter of better quality with more coefficients
  or more bits per coefficient.
8d9489b3b   Arthur HUGEAT   Add first draft f...
589
590
591
592
593
594
595
596
  
  Then, we also observe that the first stage can have a larger shift than the other
  stages. This is explained by the fact that the solver tries to use just enough
  bits for the computed rejection after each stage. In the first stage, a
  balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift}
  gives the relation between both values.
  
  Finally, we note that the solver consumes all the given silicon area.
0642fff00   jfriedt   relecture journal
597
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
598
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
599
  data on the FPGA as measured experimentally and the dashed line are the noise levels
8d9489b3b   Arthur HUGEAT   Add first draft f...
600
601
602
603
604
  given by the quadratic solver. The configurations are those computed in the previous section.
  
  Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500.
  Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000.
  Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500.
27f5f4108   Arthur HUGEAT   Article étendu.
605

842e804be   Arthur HUGEAT   Permier pas vers ...
606
607
  \begin{figure}
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
608
609
610
  \includegraphics[width=\linewidth]{images/max_500}
  \caption{Signal spectrum for MAX/500}
  \label{fig:max_500_result}
842e804be   Arthur HUGEAT   Permier pas vers ...
611
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
612

842e804be   Arthur HUGEAT   Permier pas vers ...
613
614
  \begin{figure}
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
615
616
617
  \includegraphics[width=\linewidth]{images/max_1000}
  \caption{Signal spectrum for MAX/1000}
  \label{fig:max_1000_result}
27f5f4108   Arthur HUGEAT   Article étendu.
618
  \end{figure}
842e804be   Arthur HUGEAT   Permier pas vers ...
619
620
  \begin{figure}
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
621
622
623
  \includegraphics[width=\linewidth]{images/max_1500}
  \caption{Signal spectrum for MAX/1500}
  \label{fig:max_1500_result}
842e804be   Arthur HUGEAT   Permier pas vers ...
624
  \end{figure}
8d9489b3b   Arthur HUGEAT   Add first draft f...
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
  In all cases, we observe that the actual rejection is close to the rejection computed by the solver.
  
  We compare the actual silicon resources given by Vivado to the
  resources in arbitrary units.
  The goal is to check that our arbitrary units of silicon area models well enough
  the real resources on the FPGA. Especially we want to verify that, for a given
  number of arbitrary units, the actual silicon resources do not depend on the
  number of stages $n$. Most significantly, our approach aims
  at remaining far enough from the practical logic gate implementation used by
  various vendors to remain platform independent and be portable from one
  architecture to another.
  
  Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and
  MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000
  and 1500 arbitrary units. We have taken care to extract solely the resources used by
0642fff00   jfriedt   relecture journal
640
641
  the FIR filters and remove additional processing blocks including FIFO and Programmable
  Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication.
27f5f4108   Arthur HUGEAT   Article étendu.
642

0642fff00   jfriedt   relecture journal
643
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage}
    \centering
        \begin{tabular}{|c|c|ccc|c|}
          \hline
          $n$ &          & MAX/500  & MAX/1000 & MAX/1500 & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 249      & 453      & 627      & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & \emph{120}               \\
              & DSP      & 21       & 37       & 47       & \emph{80}                \\ \hline
              & LUT      & 2374     & 5494     & 691      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 70       & \emph{80}                \\ \hline
              & LUT      & 2443     & 3304     & 3521     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 19       & 35       & \emph{80}                \\ \hline
              & LUT      & 2634     & 3753     & 2557     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 19       & 46       & \emph{80}                \\ \hline
              & LUT      & 2423     & 3047     & 2847     & \emph{17600}             \\
          5   & BRAM     & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & 0        & 22       & 46       & \emph{80}                \\ \hline
        \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
666
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
667

8d9489b3b   Arthur HUGEAT   Add first draft f...
668
  In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that,
0642fff00   jfriedt   relecture journal
669
670
  when the filter coefficients are small enough, or when the input size is small
  enough, Vivado optimizes resource consumption by selecting multiplexers to
8d9489b3b   Arthur HUGEAT   Add first draft f...
671
672
  implement the multiplications instead of a DSP. In this case, it is quite difficult
  to compare the whole silicon budget.
0642fff00   jfriedt   relecture journal
673
  However, a rough estimation can be made with a simple equivalence: looking at
8d9489b3b   Arthur HUGEAT   Add first draft f...
674
675
  the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$,
  we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon
0642fff00   jfriedt   relecture journal
676
677
  area use. With this equivalence, our 500 arbitraty units correspond to 2500 LUTs,
  1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond
8d9489b3b   Arthur HUGEAT   Add first draft f...
678
  to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary
0642fff00   jfriedt   relecture journal
679
  unit map well to actual hardware resources. The relatively small differences can probably be explained
8d9489b3b   Arthur HUGEAT   Add first draft f...
680
  by the optimizations done by Vivado based on the detailed map of available processing resources.
0642fff00   jfriedt   relecture journal
681
682
683
684
  We now present the computation time needed to solve the quadratic problem.
  For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606
  clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve
  the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic
8d9489b3b   Arthur HUGEAT   Add first draft f...
685
  problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units.
0642fff00   jfriedt   relecture journal
686
687
  \begin{table}[h!tb]
  \caption{Time needed to solve the quadratic program with Gurobi}
8d9489b3b   Arthur HUGEAT   Add first draft f...
688
  \label{tbl:area_time}
842e804be   Arthur HUGEAT   Permier pas vers ...
689
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
690
691
692
693
694
695
696
  \begin{tabular}{|c|c|c|c|}\hline
  $n$ & Time (MAX/500)          & Time (MAX/1000)             & Time (MAX/1500)              \\\hline\hline
  1   & 0.1~s                   & 0.1~s                       & 0.3~s                        \\
  2   & 1.1~s                   & 2.2~s                       & 12~s                         \\
  3   & 17~s                    & 137~s  ($\approx$ 2~min)    & 275~s ($\approx$ 4~min)      \\
  4   & 52~s                    & 5448~s ($\approx$ 90~min)   & 5505~s ($\approx$ 17~h)      \\
  5   & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min)   & 235479~s ($\approx$ 3~days)  \\\hline
842e804be   Arthur HUGEAT   Permier pas vers ...
697
  \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
698
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
699

8d9489b3b   Arthur HUGEAT   Add first draft f...
700
701
  As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ?
  When the area is limited, the design exploration space is more limited and the solver is able to
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
702
  find an optimal solution faster.
0642fff00   jfriedt   relecture journal
703
704
  
  \subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej}
8d9489b3b   Arthur HUGEAT   Add first draft f...
705

0642fff00   jfriedt   relecture journal
706
707
  This section presents the results of the complementary quadratic program aimed at
  minimizing the area occupation for a targeted rejection level.
8d9489b3b   Arthur HUGEAT   Add first draft f...
708

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
709
  The experimental setup is composed of four cases. The raw input is the same
0642fff00   jfriedt   relecture journal
710
  as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
711
712
  Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB.
  Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
713
714
715
716
717
  The number of configurations $p$ is the same as previous section.
  
  Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40.
  Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60.
  Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
718
  Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
719
720
  
  \renewcommand{\arraystretch}{1.4}
0642fff00   jfriedt   relecture journal
721
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40}
    \label{tbl:gurobi_min_40}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (27, 8, 0)  & -           & -           & -           & -           & 41~dB           & 648   \\
              2 & (3, 2, 14)  & (19, 7, 0)  & -           & -           & -           & 40~dB           & 263   \\
              3 & (3, 3, 15)  & (11, 5, 0)  & (3, 3, 0)   & -           & -           & 41~dB           & 192   \\
              4 & (3, 3, 15)  & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & -           & 42~dB           & 147   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
737
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
738

0642fff00   jfriedt   relecture journal
739
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60}
    \label{tbl:gurobi_min_60}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (39, 13, 0) & -           & -           & -           & -           & 60~dB           & 1131 \\
              2 & (3, 3, 15)  & (35, 10, 0) & -           & -           & -           & 60~dB           & 547  \\
              3 & (3, 3, 15)  & (27, 8, 0)  & (3, 3, 0)   & -           & -           & 62~dB           & 426  \\
              4 & (3, 2, 14)  & (11, 5, 1)  & (11, 5, 0)  & (3, 3, 0)   & -           & 60~dB           & 344  \\
              5 & (3, 2, 14)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & 60~dB           & 279  \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
756
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
757

0642fff00   jfriedt   relecture journal
758
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80}
    \label{tbl:gurobi_min_80}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (55, 16, 0) & -           & -           & -           & -           & 81~dB           & 1760  \\
              2 & (3, 3, 15)  & (47, 14, 0) & -           & -           & -           & 80~dB           & 903   \\
              3 & (3, 3, 15)  & (23, 9, 0)  & (19, 7, 0)  & -           & -           & 80~dB           & 698   \\
              4 & (3, 3, 15)  & (27, 9, 0)  & (7, 7, 4)   & (3, 3, 0)   & -           & 80~dB           & 605   \\
              5 & (3, 2, 14)  & (27, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 81~dB           & 534   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
775
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
  
  \begin{table}[h!tb]
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100}
    \label{tbl:gurobi_min_100}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & -           & -           & -           & -           & -           & -               & -     \\
              2 & (15, 7, 17) & (51, 14, 0) & -           & -           & -           & 100~dB          & 1365  \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (27, 9, 0)  & -           & -           & 100~dB          & 1002  \\
              4 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & -           & 101~dB          & 909   \\
              5 & (3, 3, 15)  & (23, 8, 1)  & (19, 7, 0)  & (3, 3, 0)   & (3, 3, 0)   & 101~dB          & 810   \\
          \hline
        \end{tabular}
      }
  \end{table}
8d9489b3b   Arthur HUGEAT   Add first draft f...
795
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
796

9b83af848   jfriedt   final corrections
797
  From these tables, we can first state that almost all configurations reach the targeted rejection
0642fff00   jfriedt   relecture journal
798
  level or even better thanks to our underestimate of the cascade rejection as the sum of the
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
799
  individual filter rejection. The only exception is for the monolithic case ($n = 1$) in
9b83af848   jfriedt   final corrections
800
  MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection.
0642fff00   jfriedt   relecture journal
801
802
803
804
805
806
807
808
809
810
811
812
  Futhermore, the area of the monolithic filter is twice as big as the two cascaded filters
  (1131 and 1760  arbitrary units v.s 547 and 903 arbitrary units for 60 and 80~dB rejection
  respectively). More generally, the more filters are cascaded, the lower the occupied area.
  
  Like in previous section, the solver chooses always a little filter as first
  filter stage and the second one is often the biggest filter. This choice can be explained
  as in the previous section, with the solver using just enough bits not to degrade the input
  signal and in the second filter selecting a better filter to improve rejection without
  having too many bits in the output data.
  
  For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal
  number of filters is 4 so it did not chose any configuration for the last filter. Hence this
8d9489b3b   Arthur HUGEAT   Add first draft f...
813
  solution is equivalent to the result for $n = 4$.
0642fff00   jfriedt   relecture journal
814
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
815
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
816
  data on the FPGA as measured experimentally and the dashed line is the noise level
8d9489b3b   Arthur HUGEAT   Add first draft f...
817
818
819
820
821
  given by the quadratic solver.
  
  Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40.
  Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60.
  Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
822
  Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
27f5f4108   Arthur HUGEAT   Article étendu.
823

842e804be   Arthur HUGEAT   Permier pas vers ...
824
825
  \begin{figure}
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
826
827
828
  \includegraphics[width=\linewidth]{images/min_40}
  \caption{Signal spectrum for MIN/40}
  \label{fig:min_40}
842e804be   Arthur HUGEAT   Permier pas vers ...
829
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
830

842e804be   Arthur HUGEAT   Permier pas vers ...
831
832
  \begin{figure}
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
833
834
835
  \includegraphics[width=\linewidth]{images/min_60}
  \caption{Signal spectrum for MIN/60}
  \label{fig:min_60}
27f5f4108   Arthur HUGEAT   Article étendu.
836
  \end{figure}
842e804be   Arthur HUGEAT   Permier pas vers ...
837
838
  \begin{figure}
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
839
840
841
  \includegraphics[width=\linewidth]{images/min_80}
  \caption{Signal spectrum for MIN/80}
  \label{fig:min_80}
842e804be   Arthur HUGEAT   Permier pas vers ...
842
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
843

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
844
845
846
847
848
849
  \begin{figure}
  \centering
  \includegraphics[width=\linewidth]{images/min_100}
  \caption{Signal spectrum for MIN/100}
  \label{fig:min_100}
  \end{figure}
0642fff00   jfriedt   relecture journal
850
851
  We observe that all rejections given by the quadratic solver are close to the experimentally
  measured rejection. All curves prove that the constraint to reach the target rejection is
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
852
  respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters.
8d9489b3b   Arthur HUGEAT   Add first draft f...
853

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
854
855
  Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60;
  MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We
8d9489b3b   Arthur HUGEAT   Add first draft f...
856
857
858
  have taken care to extract solely the resources used by
  the FIR filters and remove additional processing blocks including FIFO and PL to
  PS communication.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
859
  \renewcommand{\arraystretch}{1.2}
8d9489b3b   Arthur HUGEAT   Add first draft f...
860
861
862
863
  \begin{table}
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage_comp}
    \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
864
865
    {\scalefont{0.90}
        \begin{tabular}{|c|c|cccc|c|}
8d9489b3b   Arthur HUGEAT   Add first draft f...
866
          \hline
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
          $n$ &          & MIN/40   & MIN/60   & MIN/80   & MIN/100  & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 343      & 334      & 772      & -        & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & -        & \emph{120}               \\
              & DSP      & 27       & 39       & 55       & -        & \emph{80}                \\ \hline
              & LUT      & 1252     & 2862     & 5099     & 640      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 0        & 66       & \emph{80}                \\ \hline
              & LUT      & 891      & 2148     & 2023     & 2448     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 0        & 19       & 27       & \emph{80}                \\ \hline
              & LUT      & 662      & 1729     & 2451     & 2893     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 0        & 7        & 19       & \emph{80}                \\ \hline
              & LUT      & -        & 1259     & 2602     & 2505     & \emph{17600}             \\
          5   & BRAM     & -        & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & -        & 0        & 0        & 19       & \emph{80}                \\ \hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
883
        \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
884
    }
8d9489b3b   Arthur HUGEAT   Add first draft f...
885
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
886
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
887

0642fff00   jfriedt   relecture journal
888
889
890
  If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT)
  the real resource consumption decreases as a function of the number of stages in the cascaded
  filter according
8d9489b3b   Arthur HUGEAT   Add first draft f...
891
892
  to the solution given by the quadratic solver. Indeed, we have always a decreasing
  consumption even if the difference between the monolithic and the two cascaded
0642fff00   jfriedt   relecture journal
893
  filters is less than expected.
8d9489b3b   Arthur HUGEAT   Add first draft f...
894

0642fff00   jfriedt   relecture journal
895
  Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve
8d9489b3b   Arthur HUGEAT   Add first draft f...
896
  the quadratic program.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
897
  \renewcommand{\arraystretch}{1.2}
0642fff00   jfriedt   relecture journal
898
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
899
900
901
  \caption{Time to solve the quadratic program with Gurobi}
  \label{tbl:area_time_comp}
  \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
902
903
904
905
906
907
908
909
  {\scalefont{0.90}
  \begin{tabular}{|c|c|c|c|c|}\hline
  $n$ & Time (MIN/40)           & Time (MIN/60)               & Time (MIN/80) & Time (MIN/100)               \\\hline\hline
  1   & 0.07~s                  & 0.02~s                      & 0.01~s        & -                            \\
  2   & 7.8~s                   & 16~s                        & 14~s          & 1.8~s                        \\
  3   & 4.7~s                   & 14~s                        & 28~s          & 39~s                         \\
  4   & 39~s                    & 20~s                        & 193~s         & 522~s  ($\approx$ 9~min)     \\
  5   & -                       & 12~s                        & 170~s         & 1048~s ($\approx$ 17~min)    \\\hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
910
  \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
911
  }
8d9489b3b   Arthur HUGEAT   Add first draft f...
912
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
913
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
914

0642fff00   jfriedt   relecture journal
915
  The time needed to solve this configuration is significantly shorter than the time
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
916
  needed in the previous section. Indeed the worst time in this case is only 17~minutes,
0642fff00   jfriedt   relecture journal
917
918
  compared to 3~days in the previous section: this problem is more easily solved than the
  previous one.
8d9489b3b   Arthur HUGEAT   Add first draft f...
919

27f5f4108   Arthur HUGEAT   Article étendu.
920
  \section{Conclusion}
0642fff00   jfriedt   relecture journal
921
922
923
924
925
926
927
928
  We have proposed a new approach to schedule a set of signal processing blocks whose performances
  and resource consumption has been tabulated, and applied this methodology to the practical
  case of implementing cascaded FIR filters inside a FPGA.
  This method aims to be hardware independent and focuses an a high-level of abstraction.
  We have modeled the FIR filter operation and the impact of data shift. Thanks to this model,
  we have created a quadratic program to select the optimal FIR taps to reach a targeted
  rejection. Individual filter taps have been identified using commonly available tools and the
  emphasis is on FIR assembly rather than individual FIR coefficient identification.
8d9489b3b   Arthur HUGEAT   Add first draft f...
929
930
931
  
  Our experimental results are very promising in providing a rational approach to selecting
  the coefficients of each FIR filter in the context of a performance target for a chain of
0642fff00   jfriedt   relecture journal
932
933
934
  such filters. The FPGA design that is produced automatically by the proposed
  workflow is able to filter an input signal as expected, validating experimentally our model and our approach.
  The quadratic program can be adapted it to an other problem based on assembling skeleton blocks.
8d9489b3b   Arthur HUGEAT   Add first draft f...
935
936
  
  A perspective is to model and add the decimators to the processing chain to have a classical
0642fff00   jfriedt   relecture journal
937
938
  FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon
  area usage for subsequent stages since some hardware optimization can be applied in
8d9489b3b   Arthur HUGEAT   Add first draft f...
939
940
941
942
  this case.
  
  The software used to demonstrate the concepts developed in this paper is based on the
  CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}.
27f5f4108   Arthur HUGEAT   Article étendu.
943
944
945
946
947
  \section*{Acknowledgement}
  
  This work is supported by the ANR Programme d'Investissement d'Avenir in
  progress at the Time and Frequency Departments of the FEMTO-ST Institute
  (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
842e804be   Arthur HUGEAT   Permier pas vers ...
948
  The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
27f5f4108   Arthur HUGEAT   Article étendu.
949
950
951
952
953
954
  for support and fruitful discussions.
  
  \bibliographystyle{IEEEtran}
  \balance
  \bibliography{references,biblio}
  \end{document}