Blame view

ifcs2018_journal.tex 56.4 KB
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
1
2
  % fusionner max rejection a surface donnee v.s minimiser surface a rejection donnee
  % demontrer comment la quantification rejette du bruit vers les hautes frequences => 6 dB de
c9c460c6b   jfriedt   menage article IFCS
3
4
  %    rejection par bit et perte si moins de bits que rejection/6
  % developper programme lineaire en incluant le decalage de bits
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
5
6
  % insister que avant on etait synthetisable mais pas implementable, alors que maintenant on
  % implemente et on demontre que ca tourne
c9c460c6b   jfriedt   menage article IFCS
7
8
9
  %   gwen : pourquoi le FIR est desormais implementable et ne l'etait pas meme sur zedboard->new FIR ?
  % Gwen : peut-on faire un vrai banc de bruit de phase avec ce FIR, ie ajouter ADC, NCO et mixer
  %        (zedboard ou redpit)
c9c460c6b   jfriedt   menage article IFCS
10
  % label schema : verifier que "argumenter de la cascade de FIR" est fait
32b45e8e1   Arthur HUGEAT   change type de pa...
11
  \documentclass[a4paper,journal]{IEEEtran/IEEEtran}
27f5f4108   Arthur HUGEAT   Article étendu.
12
13
14
15
16
17
18
19
  \usepackage{graphicx,color,hyperref}
  \usepackage{amsfonts}
  \usepackage{amsthm}
  \usepackage{amssymb}
  \usepackage{amsmath}
  \usepackage{algorithm2e}
  \usepackage{url,balance}
  \usepackage[normalem]{ulem}
842e804be   Arthur HUGEAT   Permier pas vers ...
20
21
22
23
  \usepackage{tikz}
  \usetikzlibrary{positioning,fit}
  \usepackage{multirow}
  \usepackage{scalefnt}
b43d41ac2   Arthur HUGEAT   Première partie d...
24
25
  \usepackage{caption}
  \usepackage{subcaption}
842e804be   Arthur HUGEAT   Permier pas vers ...
26

27f5f4108   Arthur HUGEAT   Article étendu.
27
28
29
30
31
32
33
34
35
36
37
  % correct bad hyphenation here
  \hyphenation{op-tical net-works semi-conduc-tor}
  \textheight=26cm
  \setlength{\footskip}{30pt}
  \pagenumbering{gobble}
  \begin{document}
  \title{Filter optimization for real time digital processing of radiofrequency signals: application
  to oscillator metrology}
  
  \author{\IEEEauthorblockN{A. Hugeat\IEEEauthorrefmark{1}\IEEEauthorrefmark{2}, J. Bernard\IEEEauthorrefmark{2},
  G. Goavec-M\'erou\IEEEauthorrefmark{1},
b43d41ac2   Arthur HUGEAT   Première partie d...
38
39
  P.-Y. Bourgeois\IEEEauthorrefmark{1}, J.-M. Friedt\IEEEauthorrefmark{1}}\\
  \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, Time \& Frequency department, Besan\c con, France }\\
27f5f4108   Arthur HUGEAT   Article étendu.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
  \IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Computer Science department DISC, Besan\c con, France \\
  Email: \{pyb2,jmfriedt\}@femto-st.fr}
  }
  \maketitle
  \thispagestyle{plain}
  \pagestyle{plain}
  
  ewtheorem{definition}{Definition}
  
  \begin{abstract}
  Software Defined Radio (SDR) provides stability, flexibility and reconfigurability to
  radiofrequency signal processing. Applied to oscillator characterization in the context
  of ultrastable clocks, stringent filtering requirements are defined by spurious signal or
  noise rejection needs. Since real time radiofrequency processing must be performed in a
  Field Programmable Array to meet timing constraints, we investigate optimization strategies
  to design filters meeting rejection characteristics while limiting the hardware resources
0642fff00   jfriedt   relecture journal
56
57
58
59
60
  required and keeping timing constraints within the targeted measurement bandwidths. The
  presented technique is applicable to scheduling any sequence of processing blocks characterized
  by a throughput, resource occupation and performance tabulated as a function of configuration
  characateristics, as is the case for filters with their coefficients and resolution yielding
  rejection and number of multipliers.
27f5f4108   Arthur HUGEAT   Article étendu.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
  \end{abstract}
  
  \begin{IEEEkeywords}
  Software Defined Radio, Mixed-Integer Linear Programming, Finite Impulse Response filter
  \end{IEEEkeywords}
  
  \section{Digital signal processing of ultrastable clock signals}
  
  Analog oscillator phase noise characteristics are classically performed by downconverting
  the radiofrequency signal using a saturated mixer to bring the radiofrequency signal to baseband,
  followed by a Fourier analysis of the beat signal to analyze phase fluctuations close to carrier. In
  a fully digital approach, the radiofrequency signal is digitized and numerically downconverted by
  multiplying the samples with a local numerically controlled oscillator (Fig. \ref{schema}) \cite{rsi}.
  
  \begin{figure}[h!tb]
  \begin{center}
  \includegraphics[width=.8\linewidth]{images/schema}
  \end{center}
  \caption{Fully digital oscillator phase noise characterization: the Device Under Test
  (DUT) signal is sampled by the radiofrequency grade Analog to Digital Converter (ADC) and
  downconverted by mixing with a Numerically Controlled Oscillator (NCO). Unwanted signals
  and noise aliases are rejected by a Low Pass Filter (LPF) implemented as a cascade of Finite
  Impulse Response (FIR) filters. The signal is then decimated before a Fourier analysis displays
  the spectral characteristics of the phase fluctuations.}
  \label{schema}
  \end{figure}
  
  As with the analog mixer,
  the non-linear behavior of the downconverter introduces noise or spurious signal aliasing as
  well as the generation of the frequency sum signal in addition to the frequency difference.
  These unwanted spectral characteristics must be rejected before decimating the data stream
  for the phase noise spectral characterization \cite{andrich2018high}. The characteristics introduced between the
  downconverter
  and the decimation processing blocks are core characteristics of an oscillator characterization
  system, and must reject out-of-band signals below the targeted phase noise -- typically in the
  sub -170~dBc/Hz for ultrastable oscillator we aim at characterizing. The filter blocks will
  use most resources of the Field Programmable Gate Array (FPGA) used to process the radiofrequency
  datastream: optimizing the performance of the filter while reducing the needed resources is
  hence tackled in a systematic approach using optimization techniques. Most significantly, we
  tackle the issue by attempting to cascade multiple Finite Impulse Response (FIR) filters with
  tunable number of coefficients and tunable number of bits representing the coefficients and the
  data being processed.
  
  \section{Finite impulse response filter}
0642fff00   jfriedt   relecture journal
105
  We select FIR filters for their unconditional stability and ease of design. A FIR filter is defined
27f5f4108   Arthur HUGEAT   Article étendu.
106
107
  by a set of weights $b_k$ applied to the inputs $x_k$ through a convolution to generate the
  outputs $y_k$
842e804be   Arthur HUGEAT   Permier pas vers ...
108
109
110
111
  \begin{align}
      y_n=\sum_{k=0}^N b_k x_{n-k}
      \label{eq:fir_equation}
  \end{align}
27f5f4108   Arthur HUGEAT   Article étendu.
112
113
  
  As opposed to an implementation on a general purpose processor in which word size is defined by the
0642fff00   jfriedt   relecture journal
114
  processor architecture, implementing such a filter on an FPGA offers more degrees of freedom since
27f5f4108   Arthur HUGEAT   Article étendu.
115
116
117
118
  not only the coefficient values and number of taps must be defined, but also the number of bits
  defining the coefficients and the sample size. For this reason, and because we consider pipeline
  processing (as opposed to First-In, First-Out FIFO memory batch processing) of radiofrequency
  signals, High Level Synthesis (HLS) languages \cite{kasbah2008multigrid} are not considered but
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
119
  the problem is tackled at the Very-high-speed-integrated-circuit Hardware Description Language
0642fff00   jfriedt   relecture journal
120
  (VHDL) level.
90c55845a   jfriedt   relecture JMF
121
122
  {\color{red}Since latency is not an issue in a openloop phase noise characterization instrument, 
  the large
27f5f4108   Arthur HUGEAT   Article étendu.
123
  numbre of taps in the FIR, as opposed to the shorter Infinite Impulse Response (IIR) filter,
90c55845a   jfriedt   relecture JMF
124
  is not considered as an issue as would be in a closed loop system.}  % r2.4
27f5f4108   Arthur HUGEAT   Article étendu.
125
126
127
128
129
  
  The coefficients are classically expressed as floating point values. However, this binary
  number representation is not efficient for fast arithmetic computation by an FPGA. Instead,
  we select to quantify these floating point values into integer values. This quantization
  will result in some precision loss.
27f5f4108   Arthur HUGEAT   Article étendu.
130
  \begin{figure}[h!tb]
46ae3f9cf   Arthur HUGEAT   Final draft.
131
  \includegraphics[width=\linewidth]{images/zero_values}
27f5f4108   Arthur HUGEAT   Article étendu.
132
133
134
135
136
137
138
139
140
141
142
143
  \caption{Impact of the quantization resolution of the coefficients: the quantization is
  set to 6~bits -- with the horizontal black lines indicating $\pm$1 least significant bit -- setting
  the 30~first and 30~last coefficients out of the initial 128~band-pass
  filter coefficients to 0 (red dots).}
  \label{float_vs_int}
  \end{figure}
  
  The tradeoff between quantization resolution and number of coefficients when considering
  integer operations is not trivial. As an illustration of the issue related to the
  relation between number of fiter taps and quantization, Fig. \ref{float_vs_int} exhibits
  a 128-coefficient FIR bandpass filter designed using floating point numbers (blue). Upon
  quantization on 6~bit integers, 60 of the 128~coefficients in the beginning and end of the
90c55845a   jfriedt   relecture JMF
144
145
146
  taps become null, {\color{red}making the large number of coefficients irrelevant: processing 
  resources % r1.1
  are hence saved by shrinking the filter length.} This tradeoff aimed at minimizing resources
27f5f4108   Arthur HUGEAT   Article étendu.
147
148
149
150
151
152
153
154
155
156
  to reach a given rejection level, or maximizing out of band rejection for a given computational
  resource, will drive the investigation on cascading filters designed with varying tap resolution
  and tap length, as will be shown in the next section. Indeed, our development strategy closely
  follows the skeleton approach \cite{crookes1998environment, crookes2000design, benkrid2002towards}
  in which basic blocks are defined and characterized before being assembled \cite{hide}
  in a complete processing chain. In our case, assembling the filter blocks is a simpler block
  combination process since we assume a single value to be processed and a single value to be
  generated at each clock cycle. The FIR filters will not be considered to decimate in the
  current implementation: the decimation is assumed to be located after the FIR cascade at the
  moment.
842e804be   Arthur HUGEAT   Permier pas vers ...
157
  \section{Methodology description}
0642fff00   jfriedt   relecture journal
158

5e2bf244b   Arthur HUGEAT   Suppression d'un ...
159
160
  Our objective is to develop a new methodology applicable to any Digital Signal Processing (DSP)
  chain obtained by assembling basic processing blocks, with hardware and manufacturer independence.
0642fff00   jfriedt   relecture journal
161
162
163
164
165
166
167
168
169
170
171
172
173
174
  Achieving such a target requires defining an abstract model to represent some basic properties
  of DSP blocks such as perfomance (i.e. rejection or ripples in the bandpass for filters) and
  resource occupation. These abstract properties, not necessarily related to the detailed hardware
  implementation of a given platform, will feed a scheduler solver aimed at assembling the optimum
  target, whether in terms of maximizing performance for a given arbitrary resource occupation, or
  minimizing resource occupation for a given perfomance. In our approach, the solution of the
  solver is then synthesized using the dedicated tool provided by each platform manufacturer
  to assess the validity of our abstract resource occupation indicator, and the result of running
  the DSP chain on the FPGA allows for assessing the performance of the scheduler. We emphasize
  that all solutions found by the solver are synthesized and executed on hardware at the end
  of the analysis.
  
  In this demonstration , we focus on only two operations: filtering and shifting the number of
  bits needed to represent the data along the processing chain.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
175
  We have chosen these basic operations because shifting and the filtering have already been studied
0642fff00   jfriedt   relecture journal
176
  in the literature \cite{lim_1996, lim_1988, young_1992, smith_1998} providing a framework for
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
177
178
  assessing our results. Furthermore, filtering is a core step in any radiofrequency frontend
  requiring pipelined processing at full bandwidth for the earliest steps, including for
0642fff00   jfriedt   relecture journal
179
180
181
182
  time and frequency transfer or characterization \cite{carolina1,carolina2,rsi}.
  
  Addressing only two operations allows for demonstrating the methodology but should not be
  considered as a limitation of the framework which can be extended to assembling any number
90c55845a   jfriedt   relecture JMF
183
184
185
186
187
  of skeleton blocks as long as perfomance and resource occupation can be determined. {\color{red}
  Hence,
  in this paper we will apply our methodology on simple DSP chains: a white noise input signal % r1.2
  is generated using a Pseudo-Random Number (PRN) generator or by sampling a wideband (125~MS/s)
  14-bit Analog to Digital Converter (ADC) loaded by a 50~$\Omega$ resistor.} Once samples have been
0642fff00   jfriedt   relecture journal
188
189
190
  digitized at a rate of 125~MS/s, filtering is applied to qualify the processing block performance --
  practically meeting the radiofrequency frontend requirement of noise and bandwidth reduction
  by filtering and decimating. Finally, bursts of filtered samples are stored for post-processing,
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
191
  allowing to assess either filter rejection for a given resource usage, or validating the rejection
0642fff00   jfriedt   relecture journal
192
  when implementing a solution minimizing resource occupation.
842e804be   Arthur HUGEAT   Permier pas vers ...
193

90c55845a   jfriedt   relecture JMF
194
195
196
197
198
199
200
  {\color{red}
  The first step of our approach is to model the DSP chain. Since we aim at only optimizing % r1.3
  the filtering part of the signal processing chain, we have not included the PRN generator or the 
  ADC in the model: the input data size and rate are considered fixed and defined by the hardware. 
  The filtering can be done in two ways, either by considering a single monolithic FIR filter
  requiring many coefficients to reach the targeted noise rejection ratio, or by 
  cascading multiple FIR filters, each with fewer coefficients than found in the monolithic filter.}
842e804be   Arthur HUGEAT   Permier pas vers ...
201
202
203
204
205
206
  
  After each filter we leave the possibility of shifting the filtered data to consume
  less resources. Hence in the case of cascaded filter, we define a stage as a filter
  and a shifter (the shift could be omitted if we do not need to divide the filtered data).
  
  \subsection{Model of a FIR filter}
0642fff00   jfriedt   relecture journal
207
208
209
210
  
  A cascade of filters is composed of $n$ FIR stages. In stage $i$ ($1 \leq i \leq n$)
  the FIR has $C_i$ coefficients and each coefficient is an integer value with $\pi^C_i$
  bits while the filtered data are shifted by $\pi^S_i$ bits. We define also $\pi^-_i$ as
842e804be   Arthur HUGEAT   Permier pas vers ...
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
  the size of input data and $\pi^+_i$ as the size of output data. The figure~\ref{fig:fir_stage}
  shows a filtering stage.
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=2cm]
      
  ode[draw,minimum size=1.3cm] (FIR) { $C_i, \pi_i^C$ } ;
      
  ode[draw,minimum size=1.3cm] (Shift) [right of=FIR, ] { $\pi_i^S$ } ;
      
  ode (Start) [left of=FIR] { } ;
      
  ode (End) [right of=Shift] { } ;
  
      
  ode[draw,fit=(FIR) (Shift)] (Filter) { } ;
  
      \draw[->] (Start) edge node [above] { $\pi_i^-$ } (FIR) ;
      \draw[->] (FIR) -- (Shift) ;
      \draw[->] (Shift) edge node [above] { $\pi_i^+$ } (End) ;
    \end{tikzpicture}
    \caption{A single filter is composed of a FIR (on the left) and a Shifter (on the right)}
    \label{fig:fir_stage}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
236

0642fff00   jfriedt   relecture journal
237
238
239
  FIR $i$ has been characterized through numerical simulation as able to reject $F(C_i, \pi_i^C)$ dB.
  This rejection has been computed using GNU Octave software FIR coefficient design functions
  (\texttt{firls} and \texttt{fir1}).
842e804be   Arthur HUGEAT   Permier pas vers ...
240
241
242
  For each configuration $(C_i, \pi_i^C)$, we first create a FIR with floating point coefficients and a given $C_i$ number of coefficients.
  Then, the floating point coefficients are discretized into integers. In order to ensure that the coefficients are coded on $\pi_i^C$~bits effectively,
  the coefficients are normalized by their absolute maximum before being scaled to integer coefficients.
0642fff00   jfriedt   relecture journal
243
  At least one coefficient is coded on $\pi_i^C$~bits, and in practice only $b_{C_i/2}$ is coded on $\pi_i^C$~bits while the others are coded on much fewer bits.
842e804be   Arthur HUGEAT   Permier pas vers ...
244

0642fff00   jfriedt   relecture journal
245
246
247
  With these coefficients, the \texttt{freqz} function is used to estimate the magnitude of the filter
  transfer function.
  Comparing the performance between FIRs requires however defining a unique criterion. As shown in figure~\ref{fig:fir_mag},
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
248
  the FIR magnitude exhibits two parts: we focus here on the transitions width and the rejection rather than on the
90c55845a   jfriedt   relecture JMF
249
250
251
252
  bandpass ripples as emphasized in \cite{lim_1988,lim_1996}. {\color{red}Throughout this demonstration,
  we arbitrarily set a bandpass of 40\% of the Nyquist frequency and a bandstop from 60\%
  of the Nyquist frequency to the end of the band, as would be typically selected to prevent
  aliasing before decimating the dataflow by 2. The method is however generalized to any filter
959bbc540   jfriedt   re-relecture JMF
253
254
  shape as long as it is defined from the initial modelling steps: Fig. \ref{fig:rejection_pyramid}
  as described below is indeed unique for each filter shape.}
842e804be   Arthur HUGEAT   Permier pas vers ...
255
256
  
  \begin{figure}
0642fff00   jfriedt   relecture journal
257
258
  \begin{center}
  \scalebox{0.8}{
842e804be   Arthur HUGEAT   Permier pas vers ...
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    \centering
    \begin{tikzpicture}[scale=0.3]
      \draw[<->] (0,15) -- (0,0) -- (21,0) ;
      \draw[thick] (0,12) -- (8,12) -- (20,0) ;
  
      \draw (0,14) node [left] { $P$ } ;
      \draw (20,0) node [below] { $f$ } ;
  
      \draw[>=latex,<->] (0,14) -- (8,14) ;
      \draw (4,14) node [above] { passband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (8,14) -- (12,14) ;
      \draw (10,14) node [above] { transition } node [below] { $20\%$ } ;
  
      \draw[>=latex,<->] (12,14) -- (20,14) ;
      \draw (16,14) node [above] { stopband } node [below] { $40\%$ } ;
  
      \draw[>=latex,<->] (16,12) -- (16,8) ;
      \draw (16,10) node [right] { rejection } ;
  
      \draw[dashed] (8,-1) -- (8,14) ;
      \draw[dashed] (12,-1) -- (12,14) ;
  
      \draw[dashed] (8,12) -- (16,12) ;
      \draw[dashed] (12,8) -- (16,8) ;
  
    \end{tikzpicture}
0642fff00   jfriedt   relecture journal
286
287
  }
  \end{center}
842e804be   Arthur HUGEAT   Permier pas vers ...
288
289
290
291
  \caption{Shape of the filter transmitted power $P$ as a function of frequency $f$:
  the passband is considered to occupy the initial 40\% of the Nyquist frequency range,
  the stopband the last 40\%, allowing 20\% transition width.}
  \label{fig:fir_mag}
27f5f4108   Arthur HUGEAT   Article étendu.
292
  \end{figure}
959bbc540   jfriedt   re-relecture JMF
293
  In the transition band, the behavior of the filter is left free, we only {\color{red}define} the passband and the stopband characteristics.
b43d41ac2   Arthur HUGEAT   Première partie d...
294
295
296
297
  % r2.7
  % Our initial criterion considered the mean value of the stopband rejection, as shown in figure~\ref{fig:mean_criterion}. This criterion
  % yields unacceptable results since notches overestimate the rejection capability of the filter. Furthermore, the losses within
  % the passband are not considered and might be excessive for excessively wide transitions widths introduced for filters with few coefficients.
959bbc540   jfriedt   re-relecture JMF
298
  Our criterion to compute the filter rejection considers
b43d41ac2   Arthur HUGEAT   Première partie d...
299
  % r2.8 et r2.2 r2.3
959bbc540   jfriedt   re-relecture JMF
300
301
302
  the maximum magnitude within the stopband, to which the {\color{red}sum of the absolute values
  within the passband rejection is subtracted to avoid filters with excessive ripples}. With this 
  criterion, we meet the expected rejection capability of low pass filters as shown in figure~\ref{fig:custom_criterion}.
b43d41ac2   Arthur HUGEAT   Première partie d...
303
304
305
306
307
308
309
  
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/colored_mean_criterion}
  % \caption{Mean stopband rejection criterion comparison between monolithic filter and cascaded filters}
  % \label{fig:mean_criterion}
  % \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
310

842e804be   Arthur HUGEAT   Permier pas vers ...
311
312
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
313
  \includegraphics[width=\linewidth]{images/colored_custom_criterion}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
314
  \caption{Custom criterion (maximum rejection in the stopband minus the mean of the absolute value of the passband rejection)
0642fff00   jfriedt   relecture journal
315
  comparison between monolithic filter and cascaded filters}
842e804be   Arthur HUGEAT   Permier pas vers ...
316
317
  \label{fig:custom_criterion}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
318

0642fff00   jfriedt   relecture journal
319
320
321
322
  Thanks to the latter criterion which will be used in the remainder of this paper, we are able to automatically generate multiple FIR taps
  and estimate their rejection. Figure~\ref{fig:rejection_pyramid} exhibits the
  rejection as a function of the number of coefficients and the number of bits representing these coefficients.
  The curve shaped as a pyramid exhibits optimum configurations sets at the vertex where both edges meet.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
323
  Indeed for a given number of coefficients, increasing the number of bits over the edge will not improve the rejection.
0642fff00   jfriedt   relecture journal
324
325
  Conversely when setting the a given number of bits, increasing the number of coefficients will not improve
  the rejection. Hence the best coefficient set are on the vertex of the pyramid.
a5c9e7b94   Arthur HUGEAT   Rajout de la pyra...
326
327
328
329
330
331
332
  
  \begin{figure}
  \centering
  \includegraphics[width=\linewidth]{images/rejection_pyramid}
  \caption{Rejection as a function of number of coefficients and number of bits}
  \label{fig:rejection_pyramid}
  \end{figure}
0642fff00   jfriedt   relecture journal
333
  Although we have an efficient criterion to estimate the rejection of one set of coefficients (taps),
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
334
  we have a problem when we cascade filters and estimate the criterion as a sum two or more individual criteria.
0642fff00   jfriedt   relecture journal
335
  If the FIR filter coefficients are the same between the stages, we have:
842e804be   Arthur HUGEAT   Permier pas vers ...
336
  $$F_{total} = F_1 + F_2$$
0642fff00   jfriedt   relecture journal
337
338
339
  But selecting two different sets of coefficient will yield a more complex situation in which
  the previous relation is no longer valid as illustrated on figure~\ref{fig:sum_rejection}. The red and blue curves
  are two different filters with maximums and notches not located at the same frequency offsets.
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
340
  Hence when summing the transfer functions, the resulting rejection shown as the dashed yellow line is improved
0642fff00   jfriedt   relecture journal
341
  with respect to a basic sum of the rejection criteria shown as a the dotted yellow line.
b43d41ac2   Arthur HUGEAT   Première partie d...
342
343
  % r2.9
  Thus, estimating the rejection of filter cascades is more complex than taking the sum of all the rejection
0642fff00   jfriedt   relecture journal
344
  criteria of each filter. However since the this sum underestimates the rejection capability of the cascade,
b43d41ac2   Arthur HUGEAT   Première partie d...
345
346
  % r2.10
  this upper bound is considered as a conservative and acceptable criterion for deciding on the suitability
0642fff00   jfriedt   relecture journal
347
  of the filter cascade to meet design criteria.
842e804be   Arthur HUGEAT   Permier pas vers ...
348
349
350
  
  \begin{figure}
  \centering
46ae3f9cf   Arthur HUGEAT   Final draft.
351
  \includegraphics[width=\linewidth]{images/cascaded_criterion}
842e804be   Arthur HUGEAT   Permier pas vers ...
352
353
354
  \caption{Rejection of two cascaded filters}
  \label{fig:sum_rejection}
  \end{figure}
27f5f4108   Arthur HUGEAT   Article étendu.
355

b43d41ac2   Arthur HUGEAT   Première partie d...
356
357
358
359
  % r2.6
  Finally in our case, we consider that the input signal are fully known. So the
  resolution of the data stream are fixed and still the same for all experiments
  in this paper.
0642fff00   jfriedt   relecture journal
360
  Based on this analysis, we address the estimate of resource consumption (called
b43d41ac2   Arthur HUGEAT   Première partie d...
361
362
  % r2.11
  silicon area -- in the case of FPGAs this means processing cells) as a function of
0642fff00   jfriedt   relecture journal
363
364
365
366
367
368
  filter characteristics. As a reminder, we do not aim at matching actual hardware
  configuration but consider an arbitrary silicon area occupied by each processing function,
  and will assess after synthesis the adequation of this arbitrary unit with actual
  hardware resources provided by FPGA manufacturers. The sum of individual processing
  unit areas is constrained by a total silicon area representative of FPGA global resources.
  Formally, variable $a_i$ is the area taken by filter~$i$
46ae3f9cf   Arthur HUGEAT   Final draft.
369
370
  (in arbitrary unit). Variable $r_i$ is the rejection of filter~$i$ (in dB).
  Constant $\mathcal{A}$ is the total available area. We model our problem as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
371
372
373
374
375
376
377
378
379
380
381
  \begin{align}
  \text{Maximize } & \sum_{i=1}^n r_i  
  otag \\
  \sum_{i=1}^n a_i & \leq \mathcal{A} & \label{eq:area} \\
  a_i & = C_i \times (\pi_i^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef} \\
  r_i & = F(C_i, \pi_i^C), & \forall i \in [1, n] \label{eq:rejectiondef} \\
  \pi_i^+ & = \pi_i^- + \pi_i^C - \pi_i^S, & \forall i \in [1, n] \label{eq:bits} \\
  \pi_{i - 1}^+ & = \pi_i^-, & \forall i \in [2, n] \label{eq:inout} \\
  \pi_i^+ & \geq 1 + \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right), & \forall i \in [1, n] \label{eq:maxshift} \\
  \pi_1^- &= \Pi^I \label{eq:init}
  \end{align}
8d9489b3b   Arthur HUGEAT   Add first draft f...
382
383
  Equation~\ref{eq:area} states that the total area taken by the filters must be
  less than the available area. Equation~\ref{eq:areadef} gives the definition of
0642fff00   jfriedt   relecture journal
384
385
  the area used by a filter, considered as the area of the FIR since the Shifter is
  assumed not to require significant resources. We consider that the FIR needs $C_i$ registers of size
8d9489b3b   Arthur HUGEAT   Add first draft f...
386
  $\pi_i^C + \pi_i^-$~bits to store the results of the multiplications of the
0642fff00   jfriedt   relecture journal
387
388
389
  input data with the coefficients. Equation~\ref{eq:rejectiondef} gives the
  definition of the rejection of the filter thanks to the tabulated function~$F$ that we defined
  previously. The Shifter does not introduce negative rejection as we will explain later,
8d9489b3b   Arthur HUGEAT   Add first draft f...
390
391
392
393
394
395
396
397
  so the rejection only comes from the FIR. Equation~\ref{eq:bits} states the
  relation between $\pi_i^+$ and $\pi_i^-$. The multiplications in the FIR add
  $\pi_i^C$ bits as most coefficients are close to zero, and the Shifter removes
  $\pi_i^S$ bits. Equation~\ref{eq:inout} states that the output number of bits of
  a filter is the same as the input number of bits of the next filter.
  Equation~\ref{eq:maxshift} ensures that the Shifter does not introduce negative
  rejection. Indeed, the results of the FIR can be right shifted without compromising
  the quality of the rejection until a threshold. Each bit of the output data
0642fff00   jfriedt   relecture journal
398
  increases the maximum rejection level by 6~dB. We add one to take the sign bit
8d9489b3b   Arthur HUGEAT   Add first draft f...
399
400
  into account. If equation~\ref{eq:maxshift} was not present, the Shifter could
  shift too much and introduce some noise in the output data. Each supplementary
0642fff00   jfriedt   relecture journal
401
402
403
  shift bit would cause an additional 6~dB rejection rise. A totally equivalent equation is:
  $\pi_i^S \leq \pi_i^- + \pi_i^C - 1 - \sum_{k=1}^{i} \left(1 + \frac{r_j}{6}\right)$.
  Finally, equation~\ref{eq:init} gives the number of bits of the global input.
8d9489b3b   Arthur HUGEAT   Add first draft f...
404
405
406
  
  This model is non-linear and even non-quadratic, as $F$ does not have a known
  linear or quadratic expression. We introduce $p$ FIR configurations
b43d41ac2   Arthur HUGEAT   Première partie d...
407
408
409
410
411
412
  $(C_{ij}, \pi_{ij}^C), 1 \leq j \leq p$ that are constants.
  % r2.12
  This variable must be defined by the user, it represent the number of different
  set of coefficients generated (for memory, we use \texttt{firls} and \texttt{fir1}
  functions from GNU Octave).
  We define binary
46ae3f9cf   Arthur HUGEAT   Final draft.
413
414
  variable $\delta_{ij}$ that has value 1 if stage~$i$ is in configuration~$j$
  and 0 otherwise. The new equations are as follows:
8d9489b3b   Arthur HUGEAT   Add first draft f...
415
416
417
418
419
420
421
422
423
424
425
  
  \begin{align}
  a_i & = \sum_{j=1}^p \delta_{ij} \times C_{ij} \times (\pi_{ij}^C + \pi_i^-), & \forall i \in [1, n] \label{eq:areadef2} \\
  r_i & = \sum_{j=1}^p \delta_{ij} \times F(C_{ij}, \pi_{ij}^C), & \forall i \in [1, n] \label{eq:rejectiondef2} \\
  \pi_i^+ & = \pi_i^- + \left(\sum_{j=1}^p \delta_{ij} \pi_{ij}^C\right) - \pi_i^S, & \forall i \in [1, n] \label{eq:bits2} \\
  \sum_{j=1}^p \delta_{ij} & \leq 1, & \forall i \in [1, n] \label{eq:config}
  \end{align}
  
  Equations \ref{eq:areadef2}, \ref{eq:rejectiondef2} and \ref{eq:bits2} replace
  respectively equations \ref{eq:areadef}, \ref{eq:rejectiondef} and \ref{eq:bits}.
  Equation~\ref{eq:config} states that for each stage, a single configuration is chosen at most.
b43d41ac2   Arthur HUGEAT   Première partie d...
426
427
428
429
  % r2.13
  This modified model is quadratic since we multiply two variables in the
  equation~\ref{eq:areadef2} ($\delta_{ij}$ by $\pi_{ij}^-$) but it can be linearised if necessary.
  The Gurobi
46ae3f9cf   Arthur HUGEAT   Final draft.
430
431
432
  (\url{www.gurobi.com}) optimization software is used to solve this quadratic
  model, and since Gurobi is able to linearize, the model is left as is. This model
  has $O(np)$ variables and $O(n)$ constraints.
0642fff00   jfriedt   relecture journal
433
434
435
436
437
  Two problems will be addressed using the workflow described in the next section: on the one
  hand maximizing the rejection capability of a set of cascaded filters occupying a fixed arbitrary
  silcon area (section~\ref{sec:fixed_area}) and on the second hand the dual problem of minimizing the silicon area
  for a fixed rejection criterion (section~\ref{sec:fixed_rej}). In the latter case, the
  objective function is replaced with:
8d9489b3b   Arthur HUGEAT   Add first draft f...
438
439
440
441
  \begin{align}
  \text{Minimize } & \sum_{i=1}^n a_i  
  otag
  \end{align}
0642fff00   jfriedt   relecture journal
442
443
  We adapt our constraints of quadratic program to replace equation \ref{eq:area}
  with equation \ref{eq:rejection_min} where $\mathcal{R}$ is the minimal
8d9489b3b   Arthur HUGEAT   Add first draft f...
444
445
446
447
448
449
450
451
  rejection required.
  
  \begin{align}
  \sum_{i=1}^n r_i & \geq \mathcal{R} & \label{eq:rejection_min}
  \end{align}
  
  \section{Design workflow}
  \label{sec:workflow}
0642fff00   jfriedt   relecture journal
452
  In this section, we describe the workflow to compute all the results presented in sections~\ref{sec:fixed_area}
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
453
  and \ref{sec:fixed_rej}. Figure~\ref{fig:workflow} shows the global workflow and the different steps involved
0642fff00   jfriedt   relecture journal
454
  in the computation of the results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
  
  \begin{figure}
    \centering
    \begin{tikzpicture}[node distance=0.75cm and 2cm]
      
  ode[draw,minimum size=1cm] (Solver) { Filter Solver } ;
      
  ode (Start) [left= 3cm of Solver] { } ;
      
  ode[draw,minimum size=1cm] (TCL) [right= of Solver] { TCL Script } ;
      
  ode (Input) [above= of TCL] { } ;
      
  ode[draw,minimum size=1cm] (Deploy) [below= of Solver] { Deploy Script } ;
      
  ode[draw,minimum size=1cm] (Bitstream) [below= of TCL] { Bitstream } ;
      
  ode[draw,minimum size=1cm,rounded corners] (Board) [below right= of Deploy] { Board } ;
      
  ode[draw,minimum size=1cm] (Postproc) [below= of Deploy] { Post-Processing } ;
      
  ode (Results) [left= of Postproc] { } ;
  
      \draw[->] (Start) edge node [above] { $\mathcal{A}, n, \Pi^I$ } node [below] { $(C_{ij}, \pi_{ij}^C), F$ } (Solver) ;
      \draw[->] (Input) edge node [left] { ADC or PRN } (TCL) ;
      \draw[->] (Solver) edge node [below] { (1a) } (TCL) ;
      \draw[->] (Solver) edge node [right] { (1b) } (Deploy) ;
      \draw[->] (TCL) edge node [left] { (2) } (Bitstream) ;
      \draw[->,dashed] (Bitstream) -- (Deploy) ;
      \draw[->] (Deploy) to[out=-30,in=120] node [above] { (3) } (Board) ;
      \draw[->] (Board) to[out=150,in=-60] node [below] { (4) } (Deploy) ;
      \draw[->] (Deploy) edge node [left] { (5) } (Postproc) ;
      \draw[->] (Postproc) -- (Results) ;
    \end{tikzpicture}
    \caption{Design workflow from the input parameters to the results}
    \label{fig:workflow}
  \end{figure}
  
  The filter solver is a C++ program that takes as input the maximum area
  $\mathcal{A}$, the number of stages $n$, the size of the input signal $\Pi^I$,
  the FIR configurations $(C_{ij}, \pi_{ij}^C)$ and the function $F$. It creates
0642fff00   jfriedt   relecture journal
496
  the quadratic programs and uses the Gurobi solver to estimate the optimal results.
8d9489b3b   Arthur HUGEAT   Add first draft f...
497
498
499
500
  Then it produces two scripts: a TCL script ((1a) on figure~\ref{fig:workflow})
  and a deploy script ((1b) on figure~\ref{fig:workflow}).
  
  The TCL script describes the whole digital processing chain from the beginning
0642fff00   jfriedt   relecture journal
501
  (the raw signal data) to the end (the filtered data) in a language compatible
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
502
  with proprietary synthesis software, namely Vivado for Xilinx and Quartus for
0642fff00   jfriedt   relecture journal
503
  Intel/Altera. The raw input data generated from a 20-bit Pseudo Random Number (PRN)
8d9489b3b   Arthur HUGEAT   Add first draft f...
504
505
506
507
508
  generator inside the FPGA and $\Pi^I$ is fixed at 16~bits.
  Then the script builds each stage of the chain with a generic FIR task that
  comes from a skeleton library. The generic FIR is highly configurable
  with the number of coefficients and the size of the coefficients. The coefficients
  themselves are not stored in the script.
0642fff00   jfriedt   relecture journal
509
510
511
512
  As the signal is processed in real-time, the output signal is stored as
  consecutive bursts of data for post-processing, mainly assessing the consistency of the
  implemented FIR cascade transfer function with the design criteria and the expected
  transfer function.
8d9489b3b   Arthur HUGEAT   Add first draft f...
513
514
515
516
  
  The TCL script is used by Vivado to produce the FPGA bitstream ((2) on figure~\ref{fig:workflow}).
  We use the 2018.2 version of Xilinx Vivado and we execute the synthesized
  bitstream on a Redpitaya board fitted with a Xilinx Zynq-7010 series
0642fff00   jfriedt   relecture journal
517
518
519
520
  FPGA (xc7z010clg400-1) and two LTC2145 14-bit 125~MS/s ADC, loaded with 50~$\Omega$ resistors to
  provide a broadband noise source.
  The board runs the Linux kernel and surrounding environment produced from the
  Buildroot framework available at \url{https://github.com/trabucayre/redpitaya/}: configuring
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
521
  the Zynq FPGA, feeding the FIR with the set of coefficients, executing the simulation and
0642fff00   jfriedt   relecture journal
522
  fetching the results is automated.
8d9489b3b   Arthur HUGEAT   Add first draft f...
523
524
525
526
527
528
529
530
531
532
  
  The deploy script uploads the bitstream to the board ((3) on
  figure~\ref{fig:workflow}), flashes the FPGA, loads the different drivers,
  configures the coefficients of the FIR filters. It then waits for the results
  and retrieves the data to the main computer ((4) on figure~\ref{fig:workflow}).
  
  Finally, an Octave post-processing script computes the final results thanks to
  the output data ((5) on figure~\ref{fig:workflow}).
  The results are normalized so that the Power Spectrum Density (PSD) starts at zero
  and the different configurations can be compared.
0642fff00   jfriedt   relecture journal
533
  \section{Maximizing the rejection at fixed silicon area}
8d9489b3b   Arthur HUGEAT   Add first draft f...
534
535
536
  \label{sec:fixed_area}
  This section presents the output of the filter solver {\em i.e.} the computed
  configurations for each stage, the computed rejection and the computed silicon area.
0642fff00   jfriedt   relecture journal
537
  Such results allow for understanding the choices made by the solver to compute its solutions.
8d9489b3b   Arthur HUGEAT   Add first draft f...
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
  
  The experimental setup is composed of three cases. The raw input is generated
  by a Pseudo Random Number (PRN) generator, which fixes the input data size $\Pi^I$.
  Then the total silicon area $\mathcal{A}$ has been fixed to either 500, 1000 or 1500
  arbitrary units. Hence, the three cases have been named: MAX/500, MAX/1000, MAX/1500.
  The number of configurations $p$ is 1827, with $C_i$ ranging from 3 to 60 and $\pi^C$
  ranging from 2 to 22. In each case, the quadratic program has been able to give a
  result up to five stages ($n = 5$) in the cascaded filter.
  
  Table~\ref{tbl:gurobi_max_500} shows the results obtained by the filter solver for MAX/500.
  Table~\ref{tbl:gurobi_max_1000} shows the results obtained by the filter solver for MAX/1000.
  Table~\ref{tbl:gurobi_max_1500} shows the results obtained by the filter solver for MAX/1500.
  
  \renewcommand{\arraystretch}{1.4}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/500}
    \label{tbl:gurobi_max_500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (21, 7, 0)  & -           & -           & -           & -           & 32~dB           & 483   \\
              2 & (3, 3, 15)  & (31, 9, 0)  & -           & -           & -           & 58~dB           & 460   \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (5, 3, 0)   & -           & -           & 66~dB           & 488   \\
              4 & (3, 3, 15)  & (19, 7, 0)  & (11, 5, 0)  & (3, 3, 0)   & -           & 74~dB           & 499   \\
              5 & (3, 3, 15)  & (23, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 78~dB           & 489   \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1000}
    \label{tbl:gurobi_max_1000}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (37, 11, 0) & -           & -           & -           & -           & 56~dB           & 999  \\
              2 & (3, 3, 15)  & (51, 14, 0) & -           & -           & -           & 87~dB           & 975  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (19, 7, 0)  & -           & -           & 99~dB           & 1000 \\
              4 & (3, 4, 16)  & (27, 8, 0)  & (19, 7, 1)  & (11, 5, 0)  & -           & 103~dB          & 998  \\
              5 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 1)   & (3, 3, 0)   & 111~dB          & 984  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \begin{table}
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MAX/1500}
    \label{tbl:gurobi_max_1500}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (47, 15, 0) & -           & -           & -           & -           & 71~dB           & 1457  \\
              2 & (19, 6, 15) & (51, 14, 0) & -           & -           & -           & 103~dB          & 1489  \\
              3 & (3, 3, 15)  & (35, 11, 0) & (35, 11, 0) & -           & -           & 122~dB          & 1492  \\
              4 & (3, 3, 15)  & (27, 8, 0)  & (19, 7, 0)  & (27, 9, 0)  & -           & 129~dB          & 1498  \\
              5 & (3, 3, 15)  & (23, 9, 2)  & (27, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & 136~dB          & 1499  \\
          \hline
        \end{tabular}
      }
  \end{table}
  
  \renewcommand{\arraystretch}{1}
  
  From these tables, we can first state that the more stages are used to define
  the cascaded FIR filters, the better the rejection. It was an expected result as it has
  been previously observed that many small filters are better than
0642fff00   jfriedt   relecture journal
615
  a single large filter \cite{lim_1988, lim_1996, young_1992}, despite such conclusions
8d9489b3b   Arthur HUGEAT   Add first draft f...
616
617
618
619
  being hardly used in practice due to the lack of tools for identifying individual filter
  coefficients in the cascaded approach.
  
  Second, the larger the silicon area, the better the rejection. This was also an
0642fff00   jfriedt   relecture journal
620
621
  expected result as more area means a filter of better quality with more coefficients
  or more bits per coefficient.
8d9489b3b   Arthur HUGEAT   Add first draft f...
622
623
624
625
626
627
628
629
  
  Then, we also observe that the first stage can have a larger shift than the other
  stages. This is explained by the fact that the solver tries to use just enough
  bits for the computed rejection after each stage. In the first stage, a
  balance between a strong rejection with a low number of bits is targeted. Equation~\ref{eq:maxshift}
  gives the relation between both values.
  
  Finally, we note that the solver consumes all the given silicon area.
0642fff00   jfriedt   relecture journal
630
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
631
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
632
  data on the FPGA as measured experimentally and the dashed line are the noise levels
8d9489b3b   Arthur HUGEAT   Add first draft f...
633
634
635
636
637
  given by the quadratic solver. The configurations are those computed in the previous section.
  
  Figure~\ref{fig:max_500_result} shows the rejection of the different configurations in the case of MAX/500.
  Figure~\ref{fig:max_1000_result} shows the rejection of the different configurations in the case of MAX/1000.
  Figure~\ref{fig:max_1500_result} shows the rejection of the different configurations in the case of MAX/1500.
27f5f4108   Arthur HUGEAT   Article étendu.
638

b43d41ac2   Arthur HUGEAT   Première partie d...
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_500}
  % \caption{Signal spectrum for MAX/500}
  % \label{fig:max_500_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1000}
  % \caption{Signal spectrum for MAX/1000}
  % \label{fig:max_1000_result}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/max_1500}
  % \caption{Signal spectrum for MAX/1500}
  % \label{fig:max_1500_result}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
661
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    \centering
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_500}
      \caption{Signal spectrum for MAX/500}
      \label{fig:max_500_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1000}
      \caption{Signal spectrum for MAX/1000}
      \label{fig:max_1000_result}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/max_1500}
      \caption{Signal spectrum for MAX/1500}
      \label{fig:max_1500_result}
    \end{subfigure}
    \caption{Signal spectrum of each experimental configurations MAX/500, MAX/1000 and MAX/1500}
842e804be   Arthur HUGEAT   Permier pas vers ...
681
  \end{figure}
8d9489b3b   Arthur HUGEAT   Add first draft f...
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
  In all cases, we observe that the actual rejection is close to the rejection computed by the solver.
  
  We compare the actual silicon resources given by Vivado to the
  resources in arbitrary units.
  The goal is to check that our arbitrary units of silicon area models well enough
  the real resources on the FPGA. Especially we want to verify that, for a given
  number of arbitrary units, the actual silicon resources do not depend on the
  number of stages $n$. Most significantly, our approach aims
  at remaining far enough from the practical logic gate implementation used by
  various vendors to remain platform independent and be portable from one
  architecture to another.
  
  Table~\ref{tbl:resources_usage} shows the resources usage in the case of MAX/500, MAX/1000 and
  MAX/1500 \emph{i.e.} when the maximum allowed silicon area is fixed to 500, 1000
  and 1500 arbitrary units. We have taken care to extract solely the resources used by
0642fff00   jfriedt   relecture journal
697
698
  the FIR filters and remove additional processing blocks including FIFO and Programmable
  Logic (PL -- FPGA) to Processing System (PS -- general purpose processor) communication.
27f5f4108   Arthur HUGEAT   Article étendu.
699

0642fff00   jfriedt   relecture journal
700
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage}
    \centering
        \begin{tabular}{|c|c|ccc|c|}
          \hline
          $n$ &          & MAX/500  & MAX/1000 & MAX/1500 & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 249      & 453      & 627      & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & \emph{120}               \\
              & DSP      & 21       & 37       & 47       & \emph{80}                \\ \hline
              & LUT      & 2374     & 5494     & 691      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 70       & \emph{80}                \\ \hline
              & LUT      & 2443     & 3304     & 3521     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 19       & 35       & \emph{80}                \\ \hline
              & LUT      & 2634     & 3753     & 2557     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 19       & 46       & \emph{80}                \\ \hline
              & LUT      & 2423     & 3047     & 2847     & \emph{17600}             \\
          5   & BRAM     & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & 0        & 22       & 46       & \emph{80}                \\ \hline
        \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
723
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
724

8d9489b3b   Arthur HUGEAT   Add first draft f...
725
  In some cases, Vivado replaces the DSPs by Look Up Tables (LUTs). We assume that,
0642fff00   jfriedt   relecture journal
726
727
  when the filter coefficients are small enough, or when the input size is small
  enough, Vivado optimizes resource consumption by selecting multiplexers to
8d9489b3b   Arthur HUGEAT   Add first draft f...
728
729
  implement the multiplications instead of a DSP. In this case, it is quite difficult
  to compare the whole silicon budget.
0642fff00   jfriedt   relecture journal
730
  However, a rough estimation can be made with a simple equivalence: looking at
8d9489b3b   Arthur HUGEAT   Add first draft f...
731
732
  the first column (MAX/500), where the number of LUTs is quite stable for $n \geq 2$,
  we can deduce that a DSP is roughly equivalent to 100~LUTs in terms of silicon
0642fff00   jfriedt   relecture journal
733
734
  area use. With this equivalence, our 500 arbitraty units correspond to 2500 LUTs,
  1000 arbitrary units correspond to 5000 LUTs and 1500 arbitrary units correspond
8d9489b3b   Arthur HUGEAT   Add first draft f...
735
  to 7300 LUTs. The conclusion is that the orders of magnitude of our arbitrary
0642fff00   jfriedt   relecture journal
736
  unit map well to actual hardware resources. The relatively small differences can probably be explained
8d9489b3b   Arthur HUGEAT   Add first draft f...
737
  by the optimizations done by Vivado based on the detailed map of available processing resources.
0642fff00   jfriedt   relecture journal
738
739
740
741
  We now present the computation time needed to solve the quadratic problem.
  For each case, the filter solver software is executed on a Intel(R) Xeon(R) CPU E5606
  clocked at 2.13~GHz. The CPU has 8 cores that are used by Gurobi to solve
  the quadratic problem. Table~\ref{tbl:area_time} shows the time needed to solve the quadratic
8d9489b3b   Arthur HUGEAT   Add first draft f...
742
  problem when the maximal area is fixed to 500, 1000 and 1500 arbitrary units.
0642fff00   jfriedt   relecture journal
743
744
  \begin{table}[h!tb]
  \caption{Time needed to solve the quadratic program with Gurobi}
8d9489b3b   Arthur HUGEAT   Add first draft f...
745
  \label{tbl:area_time}
842e804be   Arthur HUGEAT   Permier pas vers ...
746
  \centering
8d9489b3b   Arthur HUGEAT   Add first draft f...
747
748
749
750
751
752
753
  \begin{tabular}{|c|c|c|c|}\hline
  $n$ & Time (MAX/500)          & Time (MAX/1000)             & Time (MAX/1500)              \\\hline\hline
  1   & 0.1~s                   & 0.1~s                       & 0.3~s                        \\
  2   & 1.1~s                   & 2.2~s                       & 12~s                         \\
  3   & 17~s                    & 137~s  ($\approx$ 2~min)    & 275~s ($\approx$ 4~min)      \\
  4   & 52~s                    & 5448~s ($\approx$ 90~min)   & 5505~s ($\approx$ 17~h)      \\
  5   & 286~s ($\approx$ 4~min) & 4119~s ($\approx$ 68~min)   & 235479~s ($\approx$ 3~days)  \\\hline
842e804be   Arthur HUGEAT   Permier pas vers ...
754
  \end{tabular}
842e804be   Arthur HUGEAT   Permier pas vers ...
755
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
756

8d9489b3b   Arthur HUGEAT   Add first draft f...
757
758
  As expected, the computation time seems to rise exponentially with the number of stages. % TODO: exponentiel ?
  When the area is limited, the design exploration space is more limited and the solver is able to
5e2bf244b   Arthur HUGEAT   Suppression d'un ...
759
  find an optimal solution faster.
0642fff00   jfriedt   relecture journal
760
761
  
  \subsection{Minimizing resource occupation at fixed rejection}\label{sec:fixed_rej}
8d9489b3b   Arthur HUGEAT   Add first draft f...
762

0642fff00   jfriedt   relecture journal
763
764
  This section presents the results of the complementary quadratic program aimed at
  minimizing the area occupation for a targeted rejection level.
8d9489b3b   Arthur HUGEAT   Add first draft f...
765

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
766
  The experimental setup is composed of four cases. The raw input is the same
0642fff00   jfriedt   relecture journal
767
  as in the previous section, from a PRN generator, which fixes the input data size $\Pi^I$.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
768
769
  Then the targeted rejection $\mathcal{R}$ has been fixed to either 40, 60, 80 or 100~dB.
  Hence, the three cases have been named: MIN/40, MIN/60, MIN/80 and MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
770
771
772
773
774
  The number of configurations $p$ is the same as previous section.
  
  Table~\ref{tbl:gurobi_min_40} shows the results obtained by the filter solver for MIN/40.
  Table~\ref{tbl:gurobi_min_60} shows the results obtained by the filter solver for MIN/60.
  Table~\ref{tbl:gurobi_min_80} shows the results obtained by the filter solver for MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
775
  Table~\ref{tbl:gurobi_min_100} shows the results obtained by the filter solver for MIN/100.
8d9489b3b   Arthur HUGEAT   Add first draft f...
776
777
  
  \renewcommand{\arraystretch}{1.4}
0642fff00   jfriedt   relecture journal
778
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/40}
    \label{tbl:gurobi_min_40}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (27, 8, 0)  & -           & -           & -           & -           & 41~dB           & 648   \\
              2 & (3, 2, 14)  & (19, 7, 0)  & -           & -           & -           & 40~dB           & 263   \\
              3 & (3, 3, 15)  & (11, 5, 0)  & (3, 3, 0)   & -           & -           & 41~dB           & 192   \\
              4 & (3, 3, 15)  & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & -           & 42~dB           & 147   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
794
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
795

0642fff00   jfriedt   relecture journal
796
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/60}
    \label{tbl:gurobi_min_60}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area \\
          \hline
              1 & (39, 13, 0) & -           & -           & -           & -           & 60~dB           & 1131 \\
              2 & (3, 3, 15)  & (35, 10, 0) & -           & -           & -           & 60~dB           & 547  \\
              3 & (3, 3, 15)  & (27, 8, 0)  & (3, 3, 0)   & -           & -           & 62~dB           & 426  \\
              4 & (3, 2, 14)  & (11, 5, 1)  & (11, 5, 0)  & (3, 3, 0)   & -           & 60~dB           & 344  \\
              5 & (3, 2, 14)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & (3, 3, 0)   & 60~dB           & 279  \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
813
  \end{table}
27f5f4108   Arthur HUGEAT   Article étendu.
814

0642fff00   jfriedt   relecture journal
815
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/80}
    \label{tbl:gurobi_min_80}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & (55, 16, 0) & -           & -           & -           & -           & 81~dB           & 1760  \\
              2 & (3, 3, 15)  & (47, 14, 0) & -           & -           & -           & 80~dB           & 903   \\
              3 & (3, 3, 15)  & (23, 9, 0)  & (19, 7, 0)  & -           & -           & 80~dB           & 698   \\
              4 & (3, 3, 15)  & (27, 9, 0)  & (7, 7, 4)   & (3, 3, 0)   & -           & 80~dB           & 605   \\
              5 & (3, 2, 14)  & (27, 8, 0)  & (3, 3, 1)   & (3, 3, 0)   & (3, 3, 0)   & 81~dB           & 534   \\
          \hline
        \end{tabular}
      }
842e804be   Arthur HUGEAT   Permier pas vers ...
832
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
  
  \begin{table}[h!tb]
    \caption{Configurations $(C_i, \pi_i^C, \pi_i^S)$, rejections and areas (in arbitrary units) for MIN/100}
    \label{tbl:gurobi_min_100}
    \centering
      {\scalefont{0.77}
        \begin{tabular}{|c|ccccc|c|c|}
          \hline
           $n$  & $i = 1$     & $i = 2$     & $i = 3$     & $i = 4$     & $i = 5$     & Rejection       & Area  \\
          \hline
              1 & -           & -           & -           & -           & -           & -               & -     \\
              2 & (15, 7, 17) & (51, 14, 0) & -           & -           & -           & 100~dB          & 1365  \\
              3 & (3, 3, 15)  & (27, 9, 0)  & (27, 9, 0)  & -           & -           & 100~dB          & 1002  \\
              4 & (3, 3, 15)  & (31, 9, 0)  & (19, 7, 0)  & (3, 3, 0)   & -           & 101~dB          & 909   \\
              5 & (3, 3, 15)  & (23, 8, 1)  & (19, 7, 0)  & (3, 3, 0)   & (3, 3, 0)   & 101~dB          & 810   \\
          \hline
        \end{tabular}
      }
  \end{table}
8d9489b3b   Arthur HUGEAT   Add first draft f...
852
  \renewcommand{\arraystretch}{1}
27f5f4108   Arthur HUGEAT   Article étendu.
853

9b83af848   jfriedt   final corrections
854
  From these tables, we can first state that almost all configurations reach the targeted rejection
0642fff00   jfriedt   relecture journal
855
  level or even better thanks to our underestimate of the cascade rejection as the sum of the
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
856
  individual filter rejection. The only exception is for the monolithic case ($n = 1$) in
9b83af848   jfriedt   final corrections
857
  MIN/100: no solution is found for a single monolithic filter reach a 100~dB rejection.
0642fff00   jfriedt   relecture journal
858
859
860
861
862
863
864
865
866
867
868
869
  Futhermore, the area of the monolithic filter is twice as big as the two cascaded filters
  (1131 and 1760  arbitrary units v.s 547 and 903 arbitrary units for 60 and 80~dB rejection
  respectively). More generally, the more filters are cascaded, the lower the occupied area.
  
  Like in previous section, the solver chooses always a little filter as first
  filter stage and the second one is often the biggest filter. This choice can be explained
  as in the previous section, with the solver using just enough bits not to degrade the input
  signal and in the second filter selecting a better filter to improve rejection without
  having too many bits in the output data.
  
  For the specific case of MIN/40 for $n = 5$ the solver has determined that the optimal
  number of filters is 4 so it did not chose any configuration for the last filter. Hence this
8d9489b3b   Arthur HUGEAT   Add first draft f...
870
  solution is equivalent to the result for $n = 4$.
0642fff00   jfriedt   relecture journal
871
  The following graphs present the rejection for real data on the FPGA. In all the following
8d9489b3b   Arthur HUGEAT   Add first draft f...
872
  figures, the solid line represents the actual rejection of the filtered
0642fff00   jfriedt   relecture journal
873
  data on the FPGA as measured experimentally and the dashed line is the noise level
8d9489b3b   Arthur HUGEAT   Add first draft f...
874
875
876
877
878
  given by the quadratic solver.
  
  Figure~\ref{fig:min_40} shows the rejection of the different configurations in the case of MIN/40.
  Figure~\ref{fig:min_60} shows the rejection of the different configurations in the case of MIN/60.
  Figure~\ref{fig:min_80} shows the rejection of the different configurations in the case of MIN/80.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
879
  Figure~\ref{fig:min_100} shows the rejection of the different configurations in the case of MIN/100.
27f5f4108   Arthur HUGEAT   Article étendu.
880

b43d41ac2   Arthur HUGEAT   Première partie d...
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_40}
  % \caption{Signal spectrum for MIN/40}
  % \label{fig:min_40}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_60}
  % \caption{Signal spectrum for MIN/60}
  % \label{fig:min_60}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_80}
  % \caption{Signal spectrum for MIN/80}
  % \label{fig:min_80}
  % \end{figure}
  %
  % \begin{figure}
  % \centering
  % \includegraphics[width=\linewidth]{images/min_100}
  % \caption{Signal spectrum for MIN/100}
  % \label{fig:min_100}
  % \end{figure}
  
  % r2.14 et r2.15 et r2.16
842e804be   Arthur HUGEAT   Permier pas vers ...
910
  \begin{figure}
b43d41ac2   Arthur HUGEAT   Première partie d...
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
    \centering
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/min_40}
      \caption{Signal spectrum for MIN/40}
      \label{fig:min_40}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/min_60}
      \caption{Signal spectrum for MIN/60}
      \label{fig:min_60}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/min_80}
      \caption{Signal spectrum for MIN/80}
      \label{fig:min_80}
    \end{subfigure}
  
    \begin{subfigure}{\linewidth}
      \includegraphics[width=\linewidth]{images/min_100}
      \caption{Signal spectrum for MIN/100}
      \label{fig:min_100}
    \end{subfigure}
    \caption{Signal spectrum of each experimental configurations MIN/40, MIN/60, MIN/80 and MIN/100}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
936
  \end{figure}
0642fff00   jfriedt   relecture journal
937
938
  We observe that all rejections given by the quadratic solver are close to the experimentally
  measured rejection. All curves prove that the constraint to reach the target rejection is
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
939
  respected with both monolithic (except in MIN/100 which has no monolithic solution) or cascaded filters.
8d9489b3b   Arthur HUGEAT   Add first draft f...
940

b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
941
942
  Table~\ref{tbl:resources_usage} shows the resource usage in the case of MIN/40, MIN/60;
  MIN/80 and MIN/100 \emph{i.e.} when the target rejection is fixed to 40, 60, 80 and 100~dB. We
8d9489b3b   Arthur HUGEAT   Add first draft f...
943
944
945
  have taken care to extract solely the resources used by
  the FIR filters and remove additional processing blocks including FIFO and PL to
  PS communication.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
946
  \renewcommand{\arraystretch}{1.2}
8d9489b3b   Arthur HUGEAT   Add first draft f...
947
948
949
950
  \begin{table}
    \caption{Resource occupation. The last column refers to available resources on a Zynq-7010 as found on the Redpitaya.}
    \label{tbl:resources_usage_comp}
    \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
951
952
    {\scalefont{0.90}
        \begin{tabular}{|c|c|cccc|c|}
8d9489b3b   Arthur HUGEAT   Add first draft f...
953
          \hline
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
          $n$ &          & MIN/40   & MIN/60   & MIN/80   & MIN/100  & \emph{Zynq 7010}         \\ \hline\hline
              & LUT      & 343      & 334      & 772      & -        & \emph{17600}             \\
          1   & BRAM     & 1        & 1        & 1        & -        & \emph{120}               \\
              & DSP      & 27       & 39       & 55       & -        & \emph{80}                \\ \hline
              & LUT      & 1252     & 2862     & 5099     & 640      & \emph{17600}             \\
          2   & BRAM     & 2        & 2        & 2        & 2        & \emph{120}               \\
              & DSP      & 0        & 0        & 0        & 66       & \emph{80}                \\ \hline
              & LUT      & 891      & 2148     & 2023     & 2448     & \emph{17600}             \\
          3   & BRAM     & 3        & 3        & 3        & 3        & \emph{120}               \\
              & DSP      & 0        & 0        & 19       & 27       & \emph{80}                \\ \hline
              & LUT      & 662      & 1729     & 2451     & 2893     & \emph{17600}             \\
          4   & BRAM     & 4        & 4        & 4        & 4        & \emph{120}               \\
              & DPS      & 0        & 0        & 7        & 19       & \emph{80}                \\ \hline
              & LUT      & -        & 1259     & 2602     & 2505     & \emph{17600}             \\
          5   & BRAM     & -        & 5        & 5        & 5        & \emph{120}               \\
              & DPS      & -        & 0        & 0        & 19       & \emph{80}                \\ \hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
970
        \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
971
    }
8d9489b3b   Arthur HUGEAT   Add first draft f...
972
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
973
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
974

0642fff00   jfriedt   relecture journal
975
976
977
  If we keep the previous estimation of cost of one DSP in terms of LUT (1 DSP $\approx$ 100 LUT)
  the real resource consumption decreases as a function of the number of stages in the cascaded
  filter according
8d9489b3b   Arthur HUGEAT   Add first draft f...
978
979
  to the solution given by the quadratic solver. Indeed, we have always a decreasing
  consumption even if the difference between the monolithic and the two cascaded
0642fff00   jfriedt   relecture journal
980
  filters is less than expected.
8d9489b3b   Arthur HUGEAT   Add first draft f...
981

0642fff00   jfriedt   relecture journal
982
  Finally, table~\ref{tbl:area_time_comp} shows the computation time to solve
8d9489b3b   Arthur HUGEAT   Add first draft f...
983
  the quadratic program.
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
984
  \renewcommand{\arraystretch}{1.2}
0642fff00   jfriedt   relecture journal
985
  \begin{table}[h!tb]
8d9489b3b   Arthur HUGEAT   Add first draft f...
986
987
988
  \caption{Time to solve the quadratic program with Gurobi}
  \label{tbl:area_time_comp}
  \centering
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
989
990
991
992
993
994
995
996
  {\scalefont{0.90}
  \begin{tabular}{|c|c|c|c|c|}\hline
  $n$ & Time (MIN/40)           & Time (MIN/60)               & Time (MIN/80) & Time (MIN/100)               \\\hline\hline
  1   & 0.07~s                  & 0.02~s                      & 0.01~s        & -                            \\
  2   & 7.8~s                   & 16~s                        & 14~s          & 1.8~s                        \\
  3   & 4.7~s                   & 14~s                        & 28~s          & 39~s                         \\
  4   & 39~s                    & 20~s                        & 193~s         & 522~s  ($\approx$ 9~min)     \\
  5   & -                       & 12~s                        & 170~s         & 1048~s ($\approx$ 17~min)    \\\hline
8d9489b3b   Arthur HUGEAT   Add first draft f...
997
  \end{tabular}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
998
  }
8d9489b3b   Arthur HUGEAT   Add first draft f...
999
  \end{table}
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1000
  \renewcommand{\arraystretch}{1}
8d9489b3b   Arthur HUGEAT   Add first draft f...
1001

0642fff00   jfriedt   relecture journal
1002
  The time needed to solve this configuration is significantly shorter than the time
b312dca6a   Arthur HUGEAT   Ajout de MIN/100.
1003
  needed in the previous section. Indeed the worst time in this case is only 17~minutes,
0642fff00   jfriedt   relecture journal
1004
1005
  compared to 3~days in the previous section: this problem is more easily solved than the
  previous one.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1006

27f5f4108   Arthur HUGEAT   Article étendu.
1007
  \section{Conclusion}
0642fff00   jfriedt   relecture journal
1008
1009
1010
1011
1012
1013
1014
1015
  We have proposed a new approach to schedule a set of signal processing blocks whose performances
  and resource consumption has been tabulated, and applied this methodology to the practical
  case of implementing cascaded FIR filters inside a FPGA.
  This method aims to be hardware independent and focuses an a high-level of abstraction.
  We have modeled the FIR filter operation and the impact of data shift. Thanks to this model,
  we have created a quadratic program to select the optimal FIR taps to reach a targeted
  rejection. Individual filter taps have been identified using commonly available tools and the
  emphasis is on FIR assembly rather than individual FIR coefficient identification.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1016
1017
1018
  
  Our experimental results are very promising in providing a rational approach to selecting
  the coefficients of each FIR filter in the context of a performance target for a chain of
0642fff00   jfriedt   relecture journal
1019
1020
1021
  such filters. The FPGA design that is produced automatically by the proposed
  workflow is able to filter an input signal as expected, validating experimentally our model and our approach.
  The quadratic program can be adapted it to an other problem based on assembling skeleton blocks.
8d9489b3b   Arthur HUGEAT   Add first draft f...
1022
1023
  
  A perspective is to model and add the decimators to the processing chain to have a classical
0642fff00   jfriedt   relecture journal
1024
1025
  FIR filter and decimator. The impact of the decimator is not trivial, especially in terms of silicon
  area usage for subsequent stages since some hardware optimization can be applied in
8d9489b3b   Arthur HUGEAT   Add first draft f...
1026
1027
1028
1029
  this case.
  
  The software used to demonstrate the concepts developed in this paper is based on the
  CPU-FPGA co-design framework available at \url{https://github.com/oscimp/oscimpDigital}.
27f5f4108   Arthur HUGEAT   Article étendu.
1030
1031
1032
1033
1034
  \section*{Acknowledgement}
  
  This work is supported by the ANR Programme d'Investissement d'Avenir in
  progress at the Time and Frequency Departments of the FEMTO-ST Institute
  (Oscillator IMP, First-TF and Refimeve+), and by R\'egion de Franche-Comt\'e.
842e804be   Arthur HUGEAT   Permier pas vers ...
1035
  The authors would like to thank E. Rubiola, F. Vernotte, and G. Cabodevila
27f5f4108   Arthur HUGEAT   Article étendu.
1036
1037
1038
1039
1040
1041
  for support and fruitful discussions.
  
  \bibliographystyle{IEEEtran}
  \balance
  \bibliography{references,biblio}
  \end{document}