RingDown.py
1.12 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import matplotlib.pyplot as plt
import numpy as np
import csv, glob, sys
from scipy.optimize import curve_fit
list_files = (glob.glob(sys.argv[1]))
data = []
for f in list_files:
data_iter = csv.reader(open(f, 'r'), delimiter = ',', quotechar = '"')
for i in range(2):
data_iter.next()
#temp_data = [value for value in data_iter] #if ends with a number
temp_data = [value[:-1] for value in data_iter]#if ends with a comma
data.extend(temp_data)
data = np.asarray(data, dtype = float)
del(temp_data, list_files, value, f)
plt.subplot(111)
plt.clf()
plt.plot(data[data[:,0]>=0,0], data[data[:,0]>=0,1], label ='mes')
def func(t, tau, A, w , a, b):
return A * np.exp(-t/tau) * np.sin((w+a*t)*t) + b
popt, pcov = curve_fit(func, data[data[:,0]>=0,0], data[data[:,0]>=0,1], p0 = [1e-5, 1e-2, 1e5, 1e10, 1e-4], maxfev=10000)
yfit = func(data[data[:,0]>=0,0], *popt)
tau = float(popt[0])
Q = np.pi*299792458*tau/(2.*140e-3)
#print(np.sqrt(np.diag(pcov)))
print(tau, Q)
plt.plot(data[data[:,0]>=0,0], yfit, label ='fit')
plt.xlabel('t')
plt.ylabel('Intensity')
plt.grid(which='both')
plt.legend()
plt.show()