Commit b3b851a23e6321841a2d789d31d3d48b06557378
1 parent
3124193a36
Exists in
master
add cov test scripts
Showing 2 changed files with 616 additions and 0 deletions Inline Diff
allan_cov.m
| File was created | 1 | function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose) | ||
| 2 | % ALLAN Compute the Allan deviation for a set of time-domain frequency data | |||
| 3 | % [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE) | |||
| 4 | % | |||
| 5 | % Inputs: | |||
| 6 | % DATA should be a structure and have the following fields: | |||
| 7 | % DATA.freq or DATA.phase | |||
| 8 | % A vector of fractional frequency measurements (df/f) in | |||
| 9 | % DATA.freq *or* phase offset data (seconds) in DATA.phase . | |||
| 10 | % If frequency data is not present, it will be generated by | |||
| 11 | % differentiating the phase data. | |||
| 12 | % If both fields are present, then DATA.freq will be used. | |||
| 13 | % Note: for general-purpose calculations of Allan deviation, | |||
| 14 | % (i.e. a two-sample variance) use DATA.freq . | |||
| 15 | % | |||
| 16 | % DATA.rate or DATA.time | |||
| 17 | % The sampling rate in Hertz (DATA.rate) or a vector of | |||
| 18 | % timestamps for each measurement in seconds (DATA.time). | |||
| 19 | % DATA.rate is used if both fields are present. | |||
| 20 | % If DATA.rate == 0, then the timestamps are used. | |||
| 21 | % | |||
| 22 | % DATA.units (optional) | |||
| 23 | % The units for the data. If present, the string DATA.units | |||
| 24 | % is added to the plot y-axis label. | |||
| 25 | % | |||
| 26 | % TAU is an array of tau values for computing Allan deviation. | |||
| 27 | % TAU values must be divisible by 1/DATA.rate (data points cannot be | |||
| 28 | % grouped in fractional quantities!) and invalid values are ignored. | |||
| 29 | % Leave empty to use default values. | |||
| 30 | % NAME is an optional label that is added to the plot titles. | |||
| 31 | % VERBOSE sets the level of status messages: | |||
| 32 | % 0 = silent & no data plots; | |||
| 33 | % 1 = status messages & minimum plots; | |||
| 34 | % 2 = all messages and plots (default) | |||
| 35 | % | |||
| 36 | % Outputs: | |||
| 37 | % RETVAL is the array of Allan deviation values at each TAU. | |||
| 38 | % S is an optional output of other statistical measures of the data (mean, std, etc). | |||
| 39 | % ERRORB is an optional output containing the error estimates for a 1-sigma | |||
| 40 | % confidence interval. These values are shown on the figure for each point. | |||
| 41 | % TAU is an optional output containing the array of tau values used in the | |||
| 42 | % calculation (which may be a truncated subset of the input or default values). | |||
| 43 | % | |||
| 44 | % Example: | |||
| 45 | % | |||
| 46 | % To compute the Allan deviation for the data in the variable "lt": | |||
| 47 | % >> lt | |||
| 48 | % lt = | |||
| 49 | % freq: [1x86400 double] | |||
| 50 | % rate: 0.5 | |||
| 51 | % | |||
| 52 | % Use: | |||
| 53 | % | |||
| 54 | % >> ad = allan(lt,[2 10 100],'lt data',1); | |||
| 55 | % | |||
| 56 | % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. | |||
| 57 | % 1-sigma confidence intervals will be indicated by vertical lines at each point. | |||
| 58 | % You can also use the default settings, which are usually a good starting point: | |||
| 59 | % | |||
| 60 | % >> ad = allan(lt); | |||
| 61 | % | |||
| 62 | % | |||
| 63 | % Notes: | |||
| 64 | % This function calculates the standard Allan deviation (ADEV), *not* the | |||
| 65 | % overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV. | |||
| 66 | % The calculation is performed using fractional frequency data. If only | |||
| 67 | % phase data is provided, frequency data is generated by differentiating | |||
| 68 | % the phase data. | |||
| 69 | % No pre-processing of the data is performed, except to remove any | |||
| 70 | % initial offset (i.e., starting gap) in the time record. | |||
| 71 | % For rate-based data, ADEV is computed only for tau values greater than the | |||
| 72 | % minimum time between samples and less than the half the total time. For | |||
| 73 | % time-stamped data, only tau values greater than the maximum gap between | |||
| 74 | % samples and less than half the total time are used. | |||
| 75 | % The calculation for fixed sample rate data is *much* faster than for | |||
| 76 | % time-stamp data. You may wish to run the rate-based calculation first, | |||
| 77 | % then compare with time-stamp-based. Often the differences are insignificant. | |||
| 78 | % To show the "tau bins" (y_k samples) on the data plot, set the variable | |||
| 79 | % TAUBIN to 1 (search for "#TAUBIN"). | |||
| 80 | % You can choose between loglog and semilog plotting of results by | |||
| 81 | % commenting in/out the appropriate line. Search for "#PLOTLOG". | |||
| 82 | % I recommend installing "dsplot.m", which improves the performance of | |||
| 83 | % plotting large data sets. Download from File Exchange, File ID: #15850. | |||
| 84 | % allan.m will use dsplot.m if it is present on your MATLAB path. | |||
| 85 | % This function has been validated using the test data from NBS Monograph | |||
| 86 | % 140, the 1000-point test data set given by Riley [1], and the example data | |||
| 87 | % given in IEEE standard 1139-1999, Annex C. | |||
| 88 | % The author welcomes other validation results, see contact info below. | |||
| 89 | % | |||
| 90 | % For more information, see: | |||
| 91 | % [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability," | |||
| 92 | % Available on the web: | |||
| 93 | % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht | |||
| 94 | % | |||
| 95 | % | |||
| 96 | % M.A. Hopcroft | |||
| 97 | % mhopeng at gmail dot com | |||
| 98 | % | |||
| 99 | % I welcome your comments and feedback! | |||
| 100 | % | |||
| 101 | % MH Mar2014 | |||
| 102 | % v2.24 fix bug related to generating freq data from phase with timestamps | |||
| 103 | % (thanks to S. David-Grignot for finding the bug) | |||
| 104 | % MH Oct2010 | |||
| 105 | % v2.22 tau truncation to integer groups; tau sort | |||
| 106 | % plotting bugfix | |||
| 107 | % v2.20 sychronize updates across allan, allan_overlap, allan_modified | |||
| 108 | % v2.16 add TAU as output, fixed unusual error with dsplot v1.1 | |||
| 109 | % v2.14 update plotting behaviour, default tau values | |||
| 110 | % | |||
| 111 | ||||
| 112 | versionstr = 'allan v2.24'; | |||
| 113 | ||||
| 114 | % MH Jun2010 | |||
| 115 | % v2.12 bugfix for rate data row/col orientation | |||
| 116 | % add DATA.units for plotting | |||
| 117 | % use dsplot.m for plotting | |||
| 118 | % | |||
| 119 | % MH MAR2010 | |||
| 120 | % v2.1 minor interface and bugfixes | |||
| 121 | % update data consistency check | |||
| 122 | % | |||
| 123 | % MH FEB2010 | |||
| 124 | % v2.0 Consistent code behaviour for all "allan_x.m" functions: | |||
| 125 | % accept phase data | |||
| 126 | % verbose levels | |||
| 127 | % | |||
| 128 | % | |||
| 129 | % MH JAN2010 | |||
| 130 | % v1.84 code cleanup | |||
| 131 | % v1.82 typos in comments and code cleanup | |||
| 132 | % tau bin plotting changed for performance improvement | |||
| 133 | % v1.8 Performance improvements: | |||
| 134 | % vectorize code for rate data | |||
| 135 | % logical indexing for irregular rate data | |||
| 136 | % MH APR2008 | |||
| 137 | % v1.62 loglog plot option | |||
| 138 | % v1.61 improve error handling, plotting | |||
| 139 | % fix bug in regular data calc for high-rate data | |||
| 140 | % fix bug in timestamp data calc for large starting gap | |||
| 141 | % (thanks to C. B. Ruiz for identifying these bugs) | |||
| 142 | % uses timestamps for DATA.rate=0 | |||
| 143 | % progress indicator for large timestamp data processing | |||
| 144 | % MH JUN2007 | |||
| 145 | % v1.54 Improve data plotting and optional bin plotting | |||
| 146 | % MH FEB2007 | |||
| 147 | % v1.5 use difference from median for plotting | |||
| 148 | % added MAD calculation for outlier detection | |||
| 149 | % MH JAN2007 | |||
| 150 | % v1.48 plotting typos fixes | |||
| 151 | % MH DEC2006 | |||
| 152 | % v1.46 hack to plot error bars | |||
| 153 | % v1.44 further validation (Riley 1000-pt) | |||
| 154 | % plot mean and std | |||
| 155 | % MH NOV2006 | |||
| 156 | % v1.42 typo fix comments | |||
| 157 | % v1.4 fix irregular rate algorithm | |||
| 158 | % irregular algorithm rejects tau less than max gap in time data | |||
| 159 | % validate both algorithms using test data from NBS Monograph 140 | |||
| 160 | % v1.3 fix time calc if data.time not present | |||
| 161 | % add error bars (not possible due to bug in MATLAB R14SP3) | |||
| 162 | % remove offset calculation | |||
| 163 | % v1.24 improve feedback | |||
| 164 | % MH SEP2006 | |||
| 165 | % v1.22 updated comments | |||
| 166 | % v1.2 errors and warnings | |||
| 167 | % v1.1 handle irregular interval data | |||
| 168 | %#ok<*AGROW> | |||
| 169 | ||||
| 170 | % defaults | |||
| 171 | if nargin < 4, verbose=2; end | |||
| 172 | if nargin < 3, name=''; end | |||
| 173 | if nargin < 2 || isempty(tau), tau=2.^(-10:10); end | |||
| 174 | ||||
| 175 | % plot "tau bins"? #TAUBIN | |||
| 176 | TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance | |||
| 177 | ||||
| 178 | % Formatting for plots | |||
| 179 | FontName = 'Arial'; | |||
| 180 | FontSize = 14; | |||
| 181 | plotlinewidth=2; | |||
| 182 | ||||
| 183 | if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end | |||
| 184 | ||||
| 185 | %% Data consistency checks | |||
| 186 | if ~(isfield(data,'phase') || isfield(data,'freq')) | |||
| 187 | error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); | |||
| 188 | end | |||
| 189 | if isfield(data,'time') | |||
| 190 | if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) | |||
| 191 | if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) | |||
| 192 | error('The time and freq vectors are not the same length. See help for details. [con2]'); | |||
| 193 | else | |||
| 194 | error('The time and phase vectors are not the same length. See help for details. [con1]'); | |||
| 195 | end | |||
| 196 | end | |||
| 197 | if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) | |||
| 198 | error('The phase vector contains invalid elements (NaN/Inf). [con3]'); | |||
| 199 | end | |||
| 200 | if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) | |||
| 201 | error('The freq vector contains invalid elements (NaN/Inf). [con4]'); | |||
| 202 | end | |||
| 203 | if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) | |||
| 204 | error('The time vector contains invalid elements (NaN/Inf). [con5]'); | |||
| 205 | end | |||
| 206 | end | |||
| 207 | ||||
| 208 | % sort tau vector | |||
| 209 | tau=sort(tau); | |||
| 210 | ||||
| 211 | ||||
| 212 | %% Basic statistical tests on the data set | |||
| 213 | if ~isfield(data,'freq') | |||
| 214 | if isfield(data,'rate') && data.rate ~= 0 | |||
| 215 | data.freq=diff(data.phase).*data.rate; | |||
| 216 | elseif isfield(data,'time') | |||
| 217 | data.freq=diff(data.phase)./diff(data.time); | |||
| 218 | end | |||
| 219 | if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end | |||
| 220 | data.time(1)=[]; % make time stamps correspond to freq data | |||
| 221 | end | |||
| 222 | if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns | |||
| 223 | ||||
| 224 | s.numpoints=length(data.freq); | |||
| 225 | s.max=max(data.freq); | |||
| 226 | s.min=min(data.freq); | |||
| 227 | s.mean=mean(data.freq); | |||
| 228 | s.median=median(data.freq); | |||
| 229 | if isfield(data,'time') | |||
| 230 | if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns | |||
| 231 | s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); | |||
| 232 | elseif isfield(data,'rate') && data.rate ~= 0; | |||
| 233 | s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); | |||
| 234 | else | |||
| 235 | error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]'); | |||
| 236 | end | |||
| 237 | s.std=std(data.freq); | |||
| 238 | ||||
| 239 | if verbose >= 2 | |||
| 240 | fprintf(1,'allan: input data statistics:\n'); | |||
| 241 | disp(s); | |||
| 242 | end | |||
| 243 | ||||
| 244 | ||||
| 245 | % center at median for plotting | |||
| 246 | medianfreq=data.freq-s.median; | |||
| 247 | sm=[]; sme=[]; | |||
| 248 | ||||
| 249 | % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria | |||
| 250 | s.MAD = median(abs(medianfreq)/0.6745); | |||
| 251 | if verbose >= 2 | |||
| 252 | fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD); | |||
| 253 | end | |||
| 254 | if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD) | |||
| 255 | fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n'); | |||
| 256 | end | |||
| 257 | ||||
| 258 | ||||
| 259 | %%%% | |||
| 260 | % There are two cases, either using timestamps or fixed sample rate: | |||
| 261 | ||||
| 262 | %% Fixed Sample Rate Data | |||
| 263 | % If there is a regular interval between measurements, calculation is much | |||
| 264 | % easier/faster | |||
| 265 | if isfield(data,'rate') && data.rate > 0 % if data rate was given | |||
| 266 | if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end | |||
| 267 | ||||
| 268 | % string for plot title | |||
| 269 | name=[name ' (' num2str(data.rate) ' Hz)']; | |||
| 270 | ||||
| 271 | % what is the time interval between data points? | |||
| 272 | tmstep = 1/data.rate; | |||
| 273 | ||||
| 274 | % Is there time data? Just for curiosity/plotting, does not impact calculation | |||
| 275 | if isfield(data,'time') | |||
| 276 | % adjust time data to remove any starting gap; first time step | |||
| 277 | % should not be zero for comparison with freq data | |||
| 278 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
| 279 | if verbose >= 2 | |||
| 280 | fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end)); | |||
| 281 | if (data.rate - 1/mean(diff(dtime))) > 1e-6 | |||
| 282 | fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime))); | |||
| 283 | end | |||
| 284 | end | |||
| 285 | else | |||
| 286 | % create time axis data using rate (for plotting only) | |||
| 287 | dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented | |||
| 288 | end | |||
| 289 | ||||
| 290 | % check the range of tau values and truncate if necessary | |||
| 291 | % find halfway point of time record | |||
| 292 | halftime = round(tmstep*length(data.freq)/2); | |||
| 293 | % truncate tau to appropriate values | |||
| 294 | tau = tau(tau >= tmstep & tau <= halftime); | |||
| 295 | if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end | |||
| 296 | ||||
| 297 | % save the freq data for the loop | |||
| 298 | dfreq=data.freq; | |||
| 299 | dfreq2=data.freq2; | |||
| 300 | % find the number of data points in each tau group | |||
| 301 | m = data.rate.*tau; | |||
| 302 | % only integer values allowed (no fractional groups of points) | |||
| 303 | %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) | |||
| 304 | tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 | |||
| 305 | %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 | |||
| 306 | m = m(m==round(m)); | |||
| 307 | %m=round(m); | |||
| 308 | ||||
| 309 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n '); end | |||
| 310 | ||||
| 311 | % calculate the Allan deviation for each value of tau | |||
| 312 | k=0; tic; | |||
| 313 | for i = tau | |||
| 314 | if verbose >= 2, fprintf(1,'%g ',i); end | |||
| 315 | k=k+1; | |||
| 316 | ||||
| 317 | % truncate frequency set to an even multiple of this tau value | |||
| 318 | freq=dfreq(1:end-rem(length(dfreq),m(k))); | |||
| 319 | freq2=dfreq2(1:end-rem(length(dfreq2),m(k))); | |||
| 320 | % group the data into tau-length groups or bins | |||
| 321 | f = reshape(freq,m(k),[]); % Vectorize! | |||
| 322 | f2 = reshape(freq2,m(k),[]); % Vectorize! | |||
| 323 | % find average in each "tau group", y_k (each colummn of f) | |||
| 324 | fa=mean(f,1); | |||
| 325 | fa2=mean(f2,1); | |||
| 326 | % first finite difference | |||
| 327 | fd=diff(fa); | |||
| 328 | fd2=diff(fa2); | |||
| 329 | % calculate two-sample variance for this tau | |||
| 330 | M=length(fa); | |||
| 331 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.*fd2))); | |||
| 332 | ||||
| 333 | % estimate error bars | |||
| 334 | sme(k)=sm(k)/sqrt(M+1); | |||
| 335 | ||||
| 336 | if TAUBIN == 1 | |||
| 337 | % save the binning points for plotting | |||
| 338 | fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1); | |||
| 339 | end | |||
| 340 | ||||
| 341 | end % repeat for each value of tau | |||
| 342 | ||||
| 343 | if verbose >= 2, fprintf(1,'\n'); end | |||
| 344 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |||
| 345 | ||||
| 346 | ||||
| 347 | ||||
| 348 | %% Irregular data (timestamp) | |||
| 349 | elseif isfield(data,'time') | |||
| 350 | % the interval between measurements is irregular | |||
| 351 | % so we must group the data by time | |||
| 352 | if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end | |||
| 353 | ||||
| 354 | % string for plot title | |||
| 355 | name=[name ' (timestamp)']; | |||
| 356 | ||||
| 357 | % adjust time to remove any initial offset or zero | |||
| 358 | dtime=data.time-data.time(1)+mean(diff(data.time)); | |||
| 359 | %dtime=data.time; | |||
| 360 | % where is the maximum gap in time record? | |||
| 361 | gap_pos=find(diff(dtime)==max(diff(dtime))); | |||
| 362 | % what is average data spacing? | |||
| 363 | avg_gap = mean(diff(dtime)); | |||
| 364 | ||||
| 365 | if verbose >= 2 | |||
| 366 | fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n'); | |||
| 367 | fprintf(1, ' Calculation time may be long and the results subject to interpretation.\n'); | |||
| 368 | fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap); | |||
| 369 | fprintf(1, ' Continue at your own risk! (press any key to continue)\n'); | |||
| 370 | pause; | |||
| 371 | end | |||
| 372 | ||||
| 373 | if verbose >= 1 | |||
| 374 | fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end)); | |||
| 375 | fprintf(1, ' Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap); | |||
| 376 | if max(diff(dtime)) ~= 1/mean(diff(dtime)) | |||
| 377 | fprintf(1, ' Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1)); | |||
| 378 | end | |||
| 379 | if max(diff(dtime)) > 5*avg_gap | |||
| 380 | fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n'); | |||
| 381 | end | |||
| 382 | end | |||
| 383 | ||||
| 384 | ||||
| 385 | % find halfway point | |||
| 386 | halftime = fix(dtime(end)/2); | |||
| 387 | % truncate tau to appropriate values | |||
| 388 | tau = tau(tau >= max(diff(dtime)) & tau <= halftime); | |||
| 389 | if isempty(tau) | |||
| 390 | error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime); | |||
| 391 | end | |||
| 392 | ||||
| 393 | % save the freq data for the loop | |||
| 394 | dfreq=data.freq; | |||
| 395 | dtime=dtime(1:length(dfreq)); | |||
| 396 | ||||
| 397 | if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end | |||
| 398 | ||||
| 399 | k=0; tic; | |||
| 400 | for i = tau | |||
| 401 | if verbose >= 2, fprintf(1,'%d ',i); end | |||
| 402 | ||||
| 403 | k=k+1; fa=[]; %f=[]; | |||
| 404 | km=0; | |||
| 405 | ||||
| 406 | % truncate data set to an even multiple of this tau value | |||
| 407 | freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i)); | |||
| 408 | time=dtime(dtime <= dtime(end)-rem(dtime(end),i)); | |||
| 409 | %freq=dfreq; | |||
| 410 | %time=dtime; | |||
| 411 | ||||
| 412 | % break up the data into groups of tau length in sec | |||
| 413 | while i*km < time(end) | |||
| 414 | km=km+1; | |||
| 415 | ||||
| 416 | % progress bar | |||
| 417 | if verbose >= 2 | |||
| 418 | if rem(km,100)==0, fprintf(1,'.'); end | |||
| 419 | if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end | |||
| 420 | end | |||
| 421 | ||||
| 422 | f = freq(i*(km-1) < time & time <= i*km); | |||
| 423 | f = f(~isnan(f)); % make sure values are valid | |||
| 424 | ||||
| 425 | if ~isempty(f) | |||
| 426 | fa(km)=mean(f); | |||
| 427 | else | |||
| 428 | fa(km)=0; | |||
| 429 | end | |||
| 430 | ||||
| 431 | if TAUBIN == 1 % WARNING: this has a significant impact on performance | |||
| 432 | % save the binning points for plotting | |||
| 433 | %if find(time <= i*km) > 0 | |||
| 434 | fs(k,km)=max(time(time <= i*km)); | |||
| 435 | %else | |||
| 436 | if isempty(fs(k,km)) | |||
| 437 | fs(k,km)=0; | |||
| 438 | end | |||
| 439 | fval{k}=fa; | |||
| 440 | end % save tau bin plot points | |||
| 441 | ||||
| 442 | end | |||
| 443 | ||||
| 444 | if verbose >= 2, fprintf(1,'\n'); end | |||
| 445 | ||||
| 446 | % first finite difference of the averaged results | |||
| 447 | fd=diff(fa); | |||
| 448 | % calculate Allan deviation for this tau | |||
| 449 | M=length(fa); | |||
| 450 | sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2))); | |||
| 451 | ||||
| 452 | % estimate error bars | |||
| 453 | sme(k)=sm(k)/sqrt(M+1); | |||
| 454 | ||||
| 455 | ||||
| 456 | end | |||
| 457 | ||||
| 458 | if verbose == 2, fprintf(1,'\n'); end | |||
| 459 | calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end | |||
| 460 | ||||
| 461 | ||||
| 462 | else | |||
| 463 | error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); | |||
| 464 | end | |||
| 465 | ||||
| 466 | ||||
| 467 | %%%%%%%% | |||
| 468 | %% Plotting | |||
| 469 | ||||
| 470 | if verbose >= 2 % show all data | |||
| 471 | ||||
| 472 | % plot the frequency data, centered on median | |||
| 473 | if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle | |||
| 474 | try | |||
| 475 | % dsplot makes a new figure | |||
| 476 | hd=dsplot(dtime,medianfreq); | |||
| 477 | catch ME | |||
| 478 | figure; | |||
| 479 | if length(dtime) ~= length(medianfreq) | |||
| 480 | fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq)); | |||
| 481 | end | |||
| 482 | hd=plot(dtime,medianfreq); | |||
| 483 | if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end | |||
| 484 | if verbose >= 2, fprintf(1,' (Message: %s)\n',ME.message); end | |||
| 485 | end | |||
| 486 | set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' | |||
| 487 | hold on; | |||
| 488 | ||||
| 489 | % show center (0) | |||
| 490 | plot(xlim,[0 0],':k'); | |||
| 491 | % show 5x Median Absolute Deviation (MAD) values | |||
| 492 | hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r'); | |||
| 493 | plot(xlim,[-5*s.MAD -5*s.MAD],'-r'); | |||
| 494 | % show linear fit line | |||
| 495 | hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); | |||
| 496 | title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName); | |||
| 497 | %set(get(gca,'Title'),'Interpreter','none'); | |||
| 498 | xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); | |||
| 499 | if isfield(data,'units') | |||
| 500 | ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); | |||
| 501 | else | |||
| 502 | ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); | |||
| 503 | end | |||
| 504 | set(gca,'FontSize',FontSize,'FontName',FontName); |
allanplot_cov.m
| File was created | 1 | #!/usr/bin/octave-cli --persist | ||
| 2 | ||||
| 3 | filename = argv(){1}; | |||
| 4 | col1 = eval(argv(){2}); | |||
| 5 | col2 = eval(argv(){3}); | |||
| 6 | mult1 = eval(argv(){4}); | |||
| 7 | mult2 = eval(argv(){5}); | |||
| 8 | ||||
| 9 | if length(col1) == length(mult1) | |||
| 10 | figure | |||
| 11 | hold all | |||
| 12 | grid on | |||
| 13 | cc = 'bkcgmry'; | |||
| 14 | for i = [1:length(col1)] | |||
| 15 | data.freq = load(filename)(:,col1(i)).*mult1(i); | |||
| 16 | data.freq2 = load(filename)(:,col2(i)).*mult2(i); | |||
| 17 | if eval(argv(){end-1}) == 1 | |||
| 18 | printf('\ndata1 drift removed\n\n') | |||
| 19 | data.freq = detrend(data.freq); | |||
| 20 | end | |||
| 21 | if eval(argv(){end}) == 1 | |||
| 22 | printf('\ndata2 drift removed\n\n') | |||
| 23 | data.freq2 = detrend(data.freq2); | |||
| 24 | end | |||
| 25 | data.rate = 1; | |||
| 26 | [ad, S, err, tau] = allan_cov(data, 2.^[0:nextpow2(length(data.freq))-3]./data.rate, strcat(strsplit(filename, '/'){end}, num2str(i)), 0); | |||
| 27 | loglogerr(tau, ad, err, strcat(cc(mod(i, length(cc))), '-s')) | |||
| 28 | leg{i} = strcat(filename, ' cov col', num2str(col1(i)), ' col', num2str(col2(i))); | |||
| 29 | axis(10.^ceil(log10([tau(1), tau(end)]))) | |||
| 30 | hold on | |||
| 31 | end | |||
| 32 | legend(leg) | |||
| 33 | input("Press to continue..."); |