allan_cov.m 22 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
function [retval, s, errorb, tau] = allan_cov(data,tau,name,verbose)
% ALLAN  Compute the Allan deviation for a set of time-domain frequency data
% [RETVAL, S, ERRORB, TAU] = ALLAN(DATA,TAU,NAME,VERBOSE)
%
% Inputs:
% DATA should be a structure and have the following fields:
%  DATA.freq or DATA.phase
%               A vector of fractional frequency measurements (df/f) in
%                DATA.freq *or* phase offset data (seconds) in DATA.phase .
%               If frequency data is not present, it will be generated by
%                differentiating the phase data.
%               If both fields are present, then DATA.freq will be used.
%               Note: for general-purpose calculations of Allan deviation,
%                (i.e. a two-sample variance) use DATA.freq .
%
%  DATA.rate or DATA.time
%               The sampling rate in Hertz (DATA.rate) or a vector of
%               timestamps for each measurement in seconds (DATA.time).
%               DATA.rate is used if both fields are present.
%               If DATA.rate == 0, then the timestamps are used.
%
%  DATA.units (optional)
%               The units for the data. If present, the string DATA.units
%               is added to the plot y-axis label.
%
% TAU is an array of tau values for computing Allan deviation.
%     TAU values must be divisible by 1/DATA.rate (data points cannot be
%     grouped in fractional quantities!) and invalid values are ignored.
%     Leave empty to use default values.
% NAME is an optional label that is added to the plot titles.
% VERBOSE sets the level of status messages:
%     0 = silent & no data plots;
%     1 = status messages & minimum plots;
%     2 = all messages and plots (default)
%
% Outputs:
% RETVAL is the array of Allan deviation values at each TAU.
% S is an optional output of other statistical measures of the data (mean, std, etc).
% ERRORB is an optional output containing the error estimates for a 1-sigma
%   confidence interval. These values are shown on the figure for each point.
% TAU is an optional output containing the array of tau values used in the
% calculation (which may be a truncated subset of the input or default values).
%
% Example:
%
% To compute the Allan deviation for the data in the variable "lt":
% >> lt
% lt = 
%     freq: [1x86400 double]
%     rate: 0.5
%
% Use:
%
% >> ad = allan(lt,[2 10 100],'lt data',1);
%
% The Allan deviation will be computed and plotted at tau = 2,10,100 seconds.
%  1-sigma confidence intervals will be indicated by vertical lines at each point.
% You can also use the default settings, which are usually a good starting point:
%
% >> ad = allan(lt);
%
%
% Notes:
%  This function calculates the standard Allan deviation (ADEV), *not* the
%   overlapping ADEV. Use "allan_overlap.m" for overlapping ADEV.
%  The calculation is performed using fractional frequency data. If only
%   phase data is provided, frequency data is generated by differentiating
%   the phase data.
%  No pre-processing of the data is performed, except to remove any
%   initial offset (i.e., starting gap) in the time record.
%  For rate-based data, ADEV is computed only for tau values greater than the
%   minimum time between samples and less than the half the total time. For
%   time-stamped data, only tau values greater than the maximum gap between
%   samples and less than half the total time are used.
%  The calculation for fixed sample rate data is *much* faster than for
%   time-stamp data. You may wish to run the rate-based calculation first,
%   then compare with time-stamp-based. Often the differences are insignificant.
%  To show the "tau bins" (y_k samples) on the data plot, set the variable
%   TAUBIN to 1 (search for "#TAUBIN").
%  You can choose between loglog and semilog plotting of results by
%   commenting in/out the appropriate line. Search for "#PLOTLOG".
%  I recommend installing "dsplot.m", which improves the performance of
%   plotting large data sets. Download from File Exchange, File ID: #15850.
%   allan.m will use dsplot.m if it is present on your MATLAB path.
%  This function has been validated using the test data from NBS Monograph
%   140, the 1000-point test data set given by Riley [1], and the example data
%   given in IEEE standard 1139-1999, Annex C.
%   The author welcomes other validation results, see contact info below.
%
% For more information, see:
% [1] W. J. Riley, "The Calculation of Time Domain Frequency Stability,"
% Available on the web:
%  http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht
%
%
% M.A. Hopcroft
%      mhopeng at gmail dot com
%
% I welcome your comments and feedback!
%
% MH Mar2014
% v2.24 fix bug related to generating freq data from phase with timestamps
%       (thanks to S. David-Grignot for finding the bug)
% MH Oct2010
% v2.22 tau truncation to integer groups; tau sort
%       plotting bugfix
% v2.20 sychronize updates across allan, allan_overlap, allan_modified
% v2.16 add TAU as output, fixed unusual error with dsplot v1.1
% v2.14 update plotting behaviour, default tau values
%

versionstr = 'allan v2.24';

% MH Jun2010
% v2.12 bugfix for rate data row/col orientation
%       add DATA.units for plotting
%       use dsplot.m for plotting
%
% MH MAR2010
% v2.1  minor interface and bugfixes
%       update data consistency check
%
% MH FEB2010
% v2.0  Consistent code behaviour for all "allan_x.m" functions:
%       accept phase data
%       verbose levels
%
%
% MH JAN2010
% v1.84  code cleanup
% v1.82  typos in comments and code cleanup
%        tau bin plotting changed for performance improvement
% v1.8   Performance improvements:
%        vectorize code for rate data
%        logical indexing for irregular rate data
% MH APR2008
% v1.62  loglog plot option
% v1.61  improve error handling, plotting
%        fix bug in regular data calc for high-rate data
%        fix bug in timestamp data calc for large starting gap
%         (thanks to C. B. Ruiz for identifying these bugs)
%        uses timestamps for DATA.rate=0
%        progress indicator for large timestamp data processing
% MH JUN2007
% v1.54 Improve data plotting and optional bin plotting
% MH FEB2007
% v1.5  use difference from median for plotting
%       added MAD calculation for outlier detection
% MH JAN2007
% v1.48 plotting typos fixes
% MH DEC2006
% v1.46 hack to plot error bars
% v1.44 further validation (Riley 1000-pt)
%       plot mean and std
% MH NOV2006
% v1.42 typo fix comments
% v1.4  fix irregular rate algorithm
%       irregular algorithm rejects tau less than max gap in time data
%       validate both algorithms using test data from NBS Monograph 140
% v1.3  fix time calc if data.time not present
%       add error bars (not possible due to bug in MATLAB R14SP3)
%       remove offset calculation
% v1.24 improve feedback
% MH SEP2006
% v1.22 updated comments
% v1.2  errors and warnings
% v1.1  handle irregular interval data
%#ok<*AGROW>

% defaults
if nargin < 4, verbose=2; end
if nargin < 3, name=''; end
if nargin < 2 || isempty(tau), tau=2.^(-10:10); end

% plot "tau bins"? #TAUBIN
TAUBIN = 0; % set 0 or 1 % WARNING: this has a significant impact on performance

% Formatting for plots
FontName = 'Arial';
FontSize = 14;
plotlinewidth=2;

if verbose >= 1, fprintf(1,'allan: %s\n\n',versionstr); end

%% Data consistency checks
if ~(isfield(data,'phase') || isfield(data,'freq'))
    error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
end
if isfield(data,'time')
    if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
        if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
            error('The time and freq vectors are not the same length. See help for details. [con2]');
        else
            error('The time and phase vectors are not the same length. See help for details. [con1]');
        end
    end
    if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
        error('The phase vector contains invalid elements (NaN/Inf). [con3]');
    end
    if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
        error('The freq vector contains invalid elements (NaN/Inf). [con4]');
    end
    if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
        error('The time vector contains invalid elements (NaN/Inf). [con5]');
    end
end

% sort tau vector
tau=sort(tau);


%% Basic statistical tests on the data set
if ~isfield(data,'freq')
    if isfield(data,'rate') && data.rate ~= 0
        data.freq=diff(data.phase).*data.rate;
    elseif isfield(data,'time')
        data.freq=diff(data.phase)./diff(data.time);
    end
    if verbose >= 1, fprintf(1,'allan: Fractional frequency data generated from phase data (M=%g).\n',length(data.freq)); end
    data.time(1)=[]; % make time stamps correspond to freq data 
end
if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
    
s.numpoints=length(data.freq);
s.max=max(data.freq);
s.min=min(data.freq);
s.mean=mean(data.freq);
s.median=median(data.freq);
if isfield(data,'time')
    if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
    s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
elseif isfield(data,'rate') && data.rate ~= 0;
    s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
else
    error('Either "time" or "rate" must be present in DATA. Type "help allan" for details. [err1]');
end
s.std=std(data.freq);

if verbose >= 2
    fprintf(1,'allan: input data statistics:\n');
    disp(s);
end


% center at median for plotting
medianfreq=data.freq-s.median;
sm=[]; sme=[];

% Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
s.MAD = median(abs(medianfreq)/0.6745);
if verbose >= 2
    fprintf(1, 'allan: 5x MAD value for outlier detection: %g\n',5*s.MAD);
end
if verbose >= 1 && any(abs(medianfreq) > 5*s.MAD)
    fprintf(1, 'allan: NOTE: There appear to be outliers in the frequency data. See plot.\n');
end


%%%%
% There are two cases, either using timestamps or fixed sample rate:

%% Fixed Sample Rate Data
%  If there is a regular interval between measurements, calculation is much
%   easier/faster
if isfield(data,'rate') && data.rate > 0 % if data rate was given
    if verbose >= 1, fprintf(1, 'allan: regular data (%g data points @ %g Hz)\n',length(data.freq),data.rate); end
    
    % string for plot title
    name=[name ' (' num2str(data.rate) ' Hz)'];
    
    % what is the time interval between data points?
    tmstep = 1/data.rate;
   
    % Is there time data? Just for curiosity/plotting, does not impact calculation
    if isfield(data,'time')
        % adjust time data to remove any starting gap; first time step
        %  should not be zero for comparison with freq data
        dtime=data.time-data.time(1)+mean(diff(data.time));
        if verbose >= 2
            fprintf(1,'allan: End of timestamp data: %g sec.\n',dtime(end));
            if (data.rate - 1/mean(diff(dtime))) > 1e-6
                fprintf(1,'allan: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)\n',data.rate,1/mean(diff(dtime)));
            end
        end
    else
        % create time axis data using rate (for plotting only)
        dtime=(tmstep:tmstep:length(data.freq)*tmstep)'; % column oriented
    end

    % check the range of tau values and truncate if necessary
    % find halfway point of time record
    halftime = round(tmstep*length(data.freq)/2);
    % truncate tau to appropriate values
    tau = tau(tau >= tmstep & tau <= halftime);
    if verbose >= 2, fprintf(1, 'allan: allowable tau range: %g to %g sec. (1/rate to total_time/2)\n',tmstep,halftime); end  
    
    % save the freq data for the loop
    dfreq=data.freq;
    dfreq2=data.freq2;
    % find the number of data points in each tau group
    m = data.rate.*tau;
    % only integer values allowed (no fractional groups of points)
    %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
    tau = tau(m==round(m));  % The round() test is only correct for values < 2^53
    %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
    m = m(m==round(m));
    %m=round(m);
    
    if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n       '); end
    
    % calculate the Allan deviation for each value of tau
    k=0; tic;
    for i = tau
        if verbose >= 2, fprintf(1,'%g ',i); end
        k=k+1;

        % truncate frequency set to an even multiple of this tau value
        freq=dfreq(1:end-rem(length(dfreq),m(k)));
        freq2=dfreq2(1:end-rem(length(dfreq2),m(k)));
        % group the data into tau-length groups or bins
        f = reshape(freq,m(k),[]); % Vectorize!     
        f2 = reshape(freq2,m(k),[]); % Vectorize!     
        % find average in each "tau group", y_k (each colummn of f)
        fa=mean(f,1);
        fa2=mean(f2,1);
        % first finite difference
        fd=diff(fa);
        fd2=diff(fa2);
        % calculate two-sample variance for this tau
        M=length(fa);
        sm(k)=sqrt(0.5/(M-1)*(sum(fd.*fd2)));

        % estimate error bars
        sme(k)=sm(k)/sqrt(M+1);
        
        if TAUBIN == 1
            % save the binning points for plotting
            fs(k,1:length(freq)/m(k))=m(k):m(k):length(freq); fval{k}=mean(f,1);
        end
        
    end % repeat for each value of tau
    
    if verbose >= 2, fprintf(1,'\n'); end
    calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
    
       
    
%% Irregular data (timestamp)   
elseif isfield(data,'time')
    % the interval between measurements is irregular
    %  so we must group the data by time
    if verbose >= 1, fprintf(1, 'allan: irregular rate data (no fixed sample rate)\n'); end
    
    % string for plot title
    name=[name ' (timestamp)'];
    
    % adjust time to remove any initial offset or zero
    dtime=data.time-data.time(1)+mean(diff(data.time));
    %dtime=data.time;
    % where is the maximum gap in time record?
    gap_pos=find(diff(dtime)==max(diff(dtime)));
    % what is average data spacing?
    avg_gap = mean(diff(dtime));
    
    if verbose >= 2
        fprintf(1, 'allan: WARNING: irregular timestamp data (no fixed sample rate).\n');
        fprintf(1, '       Calculation time may be long and the results subject to interpretation.\n');
        fprintf(1, '       You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.\n',1/avg_gap);
        fprintf(1, '       Continue at your own risk! (press any key to continue)\n');
        pause;
    end
    
    if verbose >= 1
        fprintf(1, 'allan: End of timestamp data: %g sec\n',dtime(end));
    	fprintf(1, '       Average rate: %g Hz (%g sec/measurement)\n',1/avg_gap,avg_gap);
        if max(diff(dtime)) ~= 1/mean(diff(dtime))
            fprintf(1, '       Max. gap: %g sec at position %d\n',max(diff(dtime)),gap_pos(1));
        end
        if max(diff(dtime)) > 5*avg_gap
            fprintf(1, '       WARNING: Max. gap in time record is suspiciously large (>5x the average interval).\n');
        end        
    end
 

    % find halfway point
    halftime = fix(dtime(end)/2);
    % truncate tau to appropriate values
    tau = tau(tau >= max(diff(dtime)) & tau <= halftime);
    if isempty(tau)
        error('allan: ERROR: no appropriate tau values (> %g s, < %g s)\n',max(diff(dtime)),halftime);
    end
    
    % save the freq data for the loop
    dfreq=data.freq;
    dtime=dtime(1:length(dfreq));

    if verbose >= 1, fprintf(1,'allan: calculating Allan deviation...\n'); end

    k=0; tic;
    for i = tau
        if verbose >= 2, fprintf(1,'%d ',i); end
        
        k=k+1; fa=[]; %f=[];
        km=0;
        
        % truncate data set to an even multiple of this tau value
        freq=dfreq(dtime <= dtime(end)-rem(dtime(end),i));
        time=dtime(dtime <= dtime(end)-rem(dtime(end),i));
        %freq=dfreq;
        %time=dtime;
        
        % break up the data into groups of tau length in sec
        while i*km < time(end)
            km=km+1;
                        
            % progress bar
            if verbose >= 2
                if rem(km,100)==0, fprintf(1,'.'); end
                if rem(km,1000)==0, fprintf(1,'%g/%g\n',km,round(time(end)/i)); end
            end

            f = freq(i*(km-1) < time & time <= i*km);
            f = f(~isnan(f)); % make sure values are valid
            
            if ~isempty(f)
                fa(km)=mean(f);
            else
                fa(km)=0;
            end

            if TAUBIN == 1 % WARNING: this has a significant impact on performance
                % save the binning points for plotting
                %if find(time <= i*km) > 0
                    fs(k,km)=max(time(time <= i*km));
                %else
                if isempty(fs(k,km))
                    fs(k,km)=0;
                end
                fval{k}=fa;
            end % save tau bin plot points
            
        end
        
        if verbose >= 2, fprintf(1,'\n'); end

        % first finite difference of the averaged results
        fd=diff(fa);
        % calculate Allan deviation for this tau
        M=length(fa);
        sm(k)=sqrt(0.5/(M-1)*(sum(fd.^2)));

        % estimate error bars
        sme(k)=sm(k)/sqrt(M+1);
        

    end

    if verbose == 2, fprintf(1,'\n'); end
    calctime=toc; if verbose >= 2, fprintf(1,'allan: Elapsed time for calculation: %e seconds\n',calctime); end
    

else
    error('allan: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
end


%%%%%%%%
%% Plotting

if verbose >= 2 % show all data
    
    % plot the frequency data, centered on median
    if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
    try
        % dsplot makes a new figure
        hd=dsplot(dtime,medianfreq);
    catch ME
        figure;
        if length(dtime) ~= length(medianfreq)
            fprintf(1,'allan: Warning: length of time axis (%d) is not equal to data array (%d)\n',length(dtime),length(medianfreq));
        end
        hd=plot(dtime,medianfreq);
        if verbose >= 1, fprintf(1,'allan: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).\n'); end
        if verbose >= 2, fprintf(1,'             (Message: %s)\n',ME.message); end
    end
    set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
    hold on;

    % show center (0)
    plot(xlim,[0 0],':k');
    % show 5x Median Absolute Deviation (MAD) values
    hm=plot(xlim,[5*s.MAD 5*s.MAD],'-r');
    plot(xlim,[-5*s.MAD -5*s.MAD],'-r');
    % show linear fit line
    hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');
    title(['Data: ' name],'FontSize',FontSize+2,'FontName',FontName);
    %set(get(gca,'Title'),'Interpreter','none');
    xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
    if isfield(data,'units')
        ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
    else
        ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
    end
    set(gca,'FontSize',FontSize,'FontName',FontName);
    legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
    % tighten up
    xlim([dtime(1) dtime(end)]);


    % Optional tau bin (y_k samples) plot
    if TAUBIN == 1
        % plot the tau divisions on the data plot
        rfs=size(fs,1);
        colororder=get(gca,'ColorOrder');
        axis tight; kc=2;
        %ap=axis;
        for j=1:rfs
            kc=kc+1; if rem(kc,length(colororder))==1, kc=2; end
            %for b=1:max(find(fs(j,:))); % new form of "find" in r2009a
            for b=1:find(fs(j,:), 1, 'last' );
                % plot the tau division boundaries
                %plot([fs(j,b) fs(j,b)],[ap(3)*1.1 ap(4)*1.1],'-','Color',colororder(kc,:));
                % plot tau group y values
                if b == 1
                    plot([dtime(1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
                else
                    plot([fs(j,b-1) fs(j,b)],[fval{j}(b)-s.median fval{j}(b)-s.median],'-','Color',colororder(kc,:),'LineWidth',4);
                end
            end
        end
        axis auto
    end % End optional bin plot
    
end % end plot raw data


if verbose >= 1 % show ADEV results

    % plot Allan deviation results
    if ~isempty(sm)
        figure

        % Choose loglog or semilogx plot here    #PLOTLOG
        %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
        loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);

        % in R14SP3, there is a bug that screws up the error bars on a semilog plot.
        %  When this is fixed in a future release, uncomment below to use normal errorbars
        %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
        % this is a hack to approximate the error bars
        hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));

        grid on;
        title(['Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
        %set(get(gca,'Title'),'Interpreter','none');
        xlabel('\tau [sec]','FontSize',FontSize,'FontName',FontName);
        if isfield(data,'units')
            ylabel(['\sigma_y(\tau) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
        else
            ylabel('\sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
        end
        set(gca,'FontSize',FontSize,'FontName',FontName);
        % expand the x axis a little bit so that the errors bars look nice
        adax = axis;
        axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
        
        % display the minimum value
        fprintf(1,'allan: Minimum ADEV value: %g at tau = %g seconds\n',min(sm),tau(sm==min(sm)));
        
    elseif verbose >= 1
        fprintf(1,'allan: WARNING: no values calculated.\n');
        fprintf(1,'       Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate\n');
        fprintf(1,'Type "help allan" for more information.\n\n');
    end

end % end plot ADEV data
    
retval = sm;
errorb = sme;

return