dsplot.m
9.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
function hL = dsplot(x, y, numPoints)
%DSPLOT Create down sampled plot.
% This function creates a down sampled plot to improve the speed of
% exploration (zoom, pan).
%
% DSPLOT(X, Y) plots Y versus X by downsampling if there are large number
% of elements. X and Y needs to obey the following:
% 1. X must be a monotonically increasing vector.
% 2. If Y is a vector, it must be the same size as X.
% 3. If Y is a matrix, one of the dimensions must line up with X.
%
% DSPLOT(Y) plots the columns of Y versus their index.
%
% hLine = DSPLOT(X, Y) returns the handles of the line. Note that the
% lines may be downsampled, so they may not represent the full data set.
%
% DSPLOT(X, Y, NUMPOINTS) or DSPLOT(Y, [], NUMPOINTS) specifies the
% number of points (roughly) to display on the screen. The default is
% 50000 points (~390 kB doubles). NUMPOINTS can be a number greater than
% 500.
%
% It is very likely that more points will be displayed than specified by
% NUMPOINTS, because it will try to plot any outlier points in the range.
% If the signal is stochastic or has a lot of sharp changes, there will
% be more points on plotted on the screen.
%
% The figure title (name) will indicate whether the plot shown is
% downsampled or is the true representation.
%
% The figure can be saved as a .fig file, which will include the actual
% data. The figure can be reloaded and the actual data can be exported to
% the base workspace via a menu.
%
% Run the following examples and zoom/pan to see the performance.
%
% Example 1: (with small details)
% x = linspace(0, 2*pi, 1000000);
% y1 = sin(x)+.02*cos(200*x)+0.001*sin(2000*x)+0.0001*cos(20000*x);
% dsplot(x,y1);title('Down Sampled');
% % compare with
% figure;plot(x,y1);title('Normal Plot');
%
% Example 2: (with outlier points)
% x = linspace(0, 2*pi, 1000000);
% y1 = sin(x) + .01*cos(200*x) + 0.001*sin(2000*x);
% y2 = sin(x) + 0.3*cos(3*x) + 0.001*randn(size(x));
% y1([300000, 700000, 700001, 900000]) = [0, 1, -2, 0.5];
% y2(300000:500000) = y2(300000:500000) + 1;
% y2(500001:600000) = y2(500001:600000) - 1;
% y2(800000) = 0;
% dsplot(x, [y1;y2]);title('Down Sampled');
% % compare with
% figure;plot(x, [y1;y2]);title('Normal Plot');
%
% See also PLOT.
% Version:
% v1.0 - first version (Aug 1, 2007)
% v1.1 - added CreateFcn for the figure so that when the figure is saved
% and re-loaded, the zooming and panning works. Also added a menu
% item for saving out the original data back to the base
% workspace. (Aug 10, 2007)
%
% Jiro Doke
% August 1, 2007
debugMode = false;
%--------------------------------------------------------------------------
% Error checking
error(nargchk(1, 3, nargin, 'struct'));
if nargin < 3
% Number of points to show on the screen. It's quite possible that more
% points will be displayed if there are outlier points
numPoints = 50000; % ~390 kB for doubles
end
if nargin == 1 || isempty(y)
noXVar = true;
y = x;
x = [];
else
noXVar = false;
end
myErrorCheck;
%--------------------------------------------------------------------------
if size(x, 2) > 1 % it's a row vector -> transpose
x = x';
y = y';
varTranspose = true;
else
varTranspose = false;
end
% Number of lines
numSignals = size(y, 2);
% If the number of lines is greater than the number of data points per
% line, it's possible that the user may have mistaken the matrix
% orientation.
if numSignals > size(y, 1)
s = input(sprintf('Are you sure you want to plot %d lines? (y/n) ', ...
numSignals), 's');
if ~strcmpi(s, 'y')
disp('Canceled. You may want to transpose the matrix.');
if nargout == 1
hL = [];
end
return;
end
end
% Attempt to find outliers. Use a running average technique
filterWidth = ceil(min([50, length(x)/10])); % max window size of 50
a = y - filter(ones(filterWidth,1)/filterWidth, 1, y);
[iOutliers, jOutliers] = find(abs(a - repmat(mean(a), size(a, 1), 1)) > ...
repmat(4 * std(a), size(a, 1), 1));
clear a;
% Always create new figure because it messes around with zoom, pan,
% datacursors.
hFig = figure;
figName = '';
% Create template plot using NaNs
hLine = plot(NaN(2, numSignals), NaN(2, numSignals));
set(hLine, 'tag', 'dsplot_lines');
% Define CreateFcn for the figure
set(hFig, 'CreateFcn', @mycreatefcn);
mycreatefcn();
% Create menu for exporting data
hMenu = uimenu(hFig, 'Label', 'Data');
uimenu(hMenu, ...
'Label' , 'Export data to workspace.', ...
'Callback', @myExportFcn);
% Update lines
updateLines([min(x), max(x)]);
% Deal with output argument
if nargout == 1
hL = hLine;
end
%--------------------------------------------------------------------------
function myExportFcn(varargin)
% This callback allows for extracting the actual data from the figure.
% This means that if you save this figure and load it back later, you
% can get back the data.
% Determine the variable name
allVarNames = evalin('base', 'who');
newVarName = genvarname('dsplotData', allVarNames);
% X
if ~noXVar
if varTranspose
dat.x = x';
else
dat.x = x;
end
end
% Y
if varTranspose
dat.y = y';
else
dat.y = y;
end
assignin('base', newVarName, dat);
msgbox(sprintf('Data saved to the base workspace as ''%s''.', ...
newVarName), 'Saved', 'modal');
end
%--------------------------------------------------------------------------
function mycreatefcn(varargin)
% This callback defines the custom zoom/pan functions. It is defined as
% the CreateFcn of the figure, so it allows for saving and reloading of
% the figure.
if nargin > 0
hFig = varargin{1};
end
hLine = findobj(hFig, 'type', 'axes');
hLine(strmatch('legend', get(hLine, 'tag'))) = [];
hLine = get(hLine, 'Children');
% Create Zoom, Pan, Datacursor objects
hZoom = zoom(hFig);
hPan = pan(hFig);
hDc = datacursormode(hFig);
set(hZoom, 'ActionPostCallback', @mypostcallback);
set(hPan , 'ActionPostCallback', @mypostcallback);
set(hDc , 'UpdateFcn' , @myDCupdatefcn);
end
%--------------------------------------------------------------------------
function mypostcallback(obj, evd) %#ok
% This callback that gets called when the mouse is released after
% zooming or panning.
% single or double-click
switch get(hFig, 'SelectionType')
case {'normal', 'alt'}
updateLines(xlim(evd.Axes));
case 'open'
updateLines([min(x), max(x)]);
end
end
%--------------------------------------------------------------------------
function updateLines(rng)
% This helper function is for determining the points to plot on the
% screen based on which portion is visible in the current limits.
% find indeces inside the range
id = find(x >= rng(1) & x <= rng(2));
% if there are more points than we want
if length(id) > numPoints / numSignals
% see how many outlier points are in this range
blah = iOutliers > id(1) & iOutliers < id(end);
% determine indeces of points to plot.
idid = round(linspace(id(1), id(end), round(numPoints/numSignals)))';
x2 = cell(numSignals, 1);
y2 = x2;
for iSignals = 1:numSignals
% add outlier points
ididid = unique([idid; iOutliers(blah & jOutliers == iSignals)]);
x2{iSignals} = x(ididid);
y2{iSignals} = y(ididid, iSignals);
end
if debugMode
figName = ['downsampled - ', sprintf('%d, ', cellfun('length', y2))];
else
figName = 'downsampled';
end
else % no need to down sample
figName = 'true';
x2 = repmat({x(id)}, numSignals, 1);
y2 = mat2cell(y(id, :), length(id), ones(1, numSignals))';
end
% Update plot
set(hLine, {'xdata', 'ydata'} , [x2, y2]);
set(hFig, 'Name', figName);
end
%--------------------------------------------------------------------------
function txt = myDCupdatefcn(empt, event_obj) %#ok
% This function displays appropriate data cursor message based on the
% display type
pos = get(event_obj,'Position');
switch figName
case 'true'
txt = {['X: ',num2str(pos(1))],...
['Y: ',num2str(pos(2))]};
otherwise
txt = {['X: ',num2str(pos(1))],...
['Y: ',num2str(pos(2))], ...
'Warning: Downsampled', ...
'May not be accurate'};
end
end
%--------------------------------------------------------------------------
function myErrorCheck
% Do some error checking on the input arguments.
if ~isa(numPoints, 'double') || numel(numPoints) > 1 || numPoints < 500
error('Third argument must be a scalar greater than 500');
end
if ~isnumeric(x) || ~isnumeric(y)
error('Arguments must be numeric');
end
if length(size(x)) > 2 || length(size(y)) > 2
error('Only 2-D data accepted');
end
% If only one input, create index vector X
if isempty(x)
if ismember(1, size(y))
x = reshape(1:numel(y), size(y));
else
x = (1:size(y, 1))';
end
end
if ~ismember(1, size(x))
error('First argument has to be a vector');
end
if ~isequal(size(x, 1), size(y, 1)) && ~isequal(size(x, 2), size(y, 2))
error('One of the dimensions of the two arguments must match');
end
if any(diff(x) <= 0)
error('The first argument has to be a monotonically increasing vector');
end
end
end