Blame view
allan_overlap.m
18.7 KB
b197c3fdf first commit |
1 2 3 4 5 6 7 8 |
function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose) % ALLAN_OVERLAP Compute the overlapping Allan deviation for a set of % time-domain frequency data % [RETVAL, S, ERRORB, TAU] = ALLAN_OVERLAP(DATA,TAU,NAME,VERBOSE) % % Inputs: % DATA should be a struct and have the following fields: % DATA.freq or DATA.phase |
1a0e88f0c replace 4-spaces ... |
9 10 11 12 13 |
% A vector of fractional frequency measurements (df/f) in % DATA.freq *or* phase offset data (seconds) in DATA.phase % If phase data is not present, it will be generated by % integrating the fractional frequency data. % If both fields are present, then DATA.phase will be used. |
b197c3fdf first commit |
14 15 |
% % DATA.rate or DATA.time |
1a0e88f0c replace 4-spaces ... |
16 17 18 19 |
% The sampling rate in Hertz (DATA.rate) or a vector of % timestamps for each measurement in seconds (DATA.time). % DATA.rate is used if both fields are present. % If DATA.rate == 0, then the timestamps are used. |
b197c3fdf first commit |
20 21 |
% % TAU is an array of tau values for computing Allan deviation. |
1a0e88f0c replace 4-spaces ... |
22 23 |
% TAU values must be divisible by 1/DATA.rate (data points cannot be % grouped in fractional quantities!). Invalid values are ignored. |
b197c3fdf first commit |
24 25 |
% NAME is an optional label that is added to the plot titles. % VERBOSE sets the level of status messages: |
1a0e88f0c replace 4-spaces ... |
26 |
% 0 = silent & no data plots; 1 = status messages; 2 = all messages |
b197c3fdf first commit |
27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
% % Outputs: % RETVAL is the array of overlapping Allan deviation values at each TAU. % S is an optional output of other statistical measures of the data (mean, std, etc). % ERRORB is an optional output containing the error estimates for a 1-sigma % confidence interval. Error bars are plotted as vertical lines at each point. % TAU is an optional output containing the array of tau values used in the % calculation (which may be a truncated subset of the input or default values). % % Example: % % To compute the overlapping Allan deviation for the data in the variable "lt": % >> lt % lt = |
1a0e88f0c replace 4-spaces ... |
41 42 |
% freq: [1x86400 double] % rate: 0.5 |
b197c3fdf first commit |
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
% % Use: % % >> ado = allan_overlap(lt,[2 10 100],'lt data',1); % % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds. % 1-sigma confidence intervals will be indicated by vertical lines. % You can also use the default settings, which are usually a good starting point: % % >> ado = allan_overlap(lt); % % % Notes: % This function calculates the overlapping Allan deviation (ADEV), *not* the % standard ADEV. Use "allan.m" for standard ADEV. % The calculation is performed using phase data. If only frequency data is % provided, phase data is generated by integrating the frequency data. % However, the timestamp-based calculation is performed using frequency % data. Phase data is differentiated to generate frequency data if necessary. % No pre-processing of the data is performed, except to remove any % initial offset in the time record. % For rate-based data, ADEV is computed only for tau values greater than the % minimum time between samples and less than the half the total time. For % time-stamped data, only tau values greater than the maximum gap between % samples and less than half the total time are used. % The calculation for fixed sample rate data is *much* faster than for % time-stamp data. You may wish to run the rate-based calculation first, % then compare with time-stamp-based. Often the differences are insignificant. % The error bars at each point are calculated using the 1-sigma intervals % based on the size of the data set. This is usually an overestimate for % overlapping ADEV; a more accurate (and usually smaller uncertainty) % value can be determined from chi-squared statistics, but that is not % implemented in this version. % You can choose between loglog and semilog plotting of results by % commenting in/out the appropriate line. Search for "#PLOTLOG". % This function has been validated using the test data from NBS Monograph % 140, the 1000-point test data set given by Riley [1], and the example data % given in IEEE standard 1139-1999, Annex C. % The author welcomes other validation results, see contact info below. % % For more information, see: % [1] W. J. Riley, "Addendum to a test suite for the calculation of time domain % frequency stability," presented at IEEE Frequency Control Symposium, % 1996. % Available on the web: % http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht % % % M.A. Hopcroft |
1a0e88f0c replace 4-spaces ... |
92 |
% mhopeng at gmail dot com |
b197c3fdf first commit |
93 94 95 96 97 |
% % I welcome your comments and feedback! % % MH Mar2014 % v2.24 fix bug related to generating freq data from phase with timestamps |
1a0e88f0c replace 4-spaces ... |
98 |
% (thanks to S. David-Grignot for finding the bug) |
b197c3fdf first commit |
99 100 |
% MH Oct2010 % v2.22 tau truncation to integer groups; tau sort |
1a0e88f0c replace 4-spaces ... |
101 |
% plotting bugfix |
b197c3fdf first commit |
102 |
% v2.20 update to match allan.m (dsplot.m, columns) |
1a0e88f0c replace 4-spaces ... |
103 |
% discard tau values with timestamp irregularities |
b197c3fdf first commit |
104 105 106 107 108 109 |
versionstr = 'allan_overlap v2.24'; % % MH MAR2010 % v2.1 bugfixes for irregular sample rates |
1a0e88f0c replace 4-spaces ... |
110 111 112 113 |
% (thanks to Ryad Ben-El-Kezadri for feedback and testing) % handle empty rate field % fix integer comparisons for fractional sample rates % update consistency check |
b197c3fdf first commit |
114 115 116 |
% % MH FEB2010 % v2.0 use phase data for calculation- much faster |
1a0e88f0c replace 4-spaces ... |
117 118 119 |
% Consistent code behaviour for all "allan_x.m" functions: % accept phase data % verbose levels |
b197c3fdf first commit |
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
% % MH JAN2010 % v1.0 based on allan v1.84 % %#ok<*AGROW> % defaults if nargin < 4, verbose = 2; end if nargin < 3, name=''; end if nargin < 2 || isempty(tau), tau=2.^(-10:10); end if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v2.1 % Formatting for plots FontName = 'Arial'; FontSize = 14; plotlinewidth=2; if verbose >= 1, fprintf(1,'allan_overlap: %s ',versionstr); end %% Data consistency checks v2.1 if ~(isfield(data,'phase') || isfield(data,'freq')) |
1a0e88f0c replace 4-spaces ... |
145 |
error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]'); |
b197c3fdf first commit |
146 147 |
end if isfield(data,'time') |
1a0e88f0c replace 4-spaces ... |
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
if isfield(data,'phase') && (length(data.phase) ~= length(data.time)) if isfield(data,'freq') && (length(data.freq) ~= length(data.time)) error('The time and freq vectors are not the same length. See help for details. [con2]'); else error('The time and phase vectors are not the same length. See help for details. [con1]'); end end if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase))) error('The phase vector contains invalid elements (NaN/Inf). [con3]'); end if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq))) error('The freq vector contains invalid elements (NaN/Inf). [con4]'); end if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time))) error('The time vector contains invalid elements (NaN/Inf). [con5]'); end |
b197c3fdf first commit |
164 165 166 167 168 169 170 |
end % sort tau vector tau=sort(tau); %% Basic statistical tests on the data set if ~isfield(data,'freq') |
1a0e88f0c replace 4-spaces ... |
171 172 173 174 175 176 177 |
if isfield(data,'rate') && data.rate ~= 0 data.freq=diff(data.phase).*data.rate; elseif isfield(data,'time') data.freq=diff(data.phase)./diff(data.time); end if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g). ',length(data.freq)); end |
b197c3fdf first commit |
178 179 |
end if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns |
1a0e88f0c replace 4-spaces ... |
180 |
|
b197c3fdf first commit |
181 182 183 184 185 186 |
s.numpoints=length(data.freq); s.max=max(data.freq); s.min=min(data.freq); s.mean=mean(data.freq); s.median=median(data.freq); if isfield(data,'time') |
1a0e88f0c replace 4-spaces ... |
187 188 |
if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1); |
b197c3fdf first commit |
189 |
elseif isfield(data,'rate') && data.rate ~= 0; |
1a0e88f0c replace 4-spaces ... |
190 |
s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1); |
b197c3fdf first commit |
191 |
else |
1a0e88f0c replace 4-spaces ... |
192 |
error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]'); |
b197c3fdf first commit |
193 194 195 196 |
end s.std=std(data.freq); if verbose >= 2 |
1a0e88f0c replace 4-spaces ... |
197 198 199 |
fprintf(1,'allan_overlap: fractional frequency data statistics: '); disp(s); |
b197c3fdf first commit |
200 201 202 203 204 205 206 207 208 209 |
end % scale to median for plotting medianfreq=data.freq-s.median; sm=[]; sme=[]; % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria MAD = median(abs(medianfreq)/0.6745); if verbose >= 1 && any(abs(medianfreq) > 5*MAD) |
1a0e88f0c replace 4-spaces ... |
210 211 |
fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot. '); |
b197c3fdf first commit |
212 213 214 215 216 217 218 219 220 |
end %%%% % There are four cases, freq or phase data, using timestamps or rate: %% Fixed Sample Rate Data % If there is a regular interval between measurements, calculation is much % easier/faster if isfield(data,'rate') && data.rate > 0 % if data rate was given |
1a0e88f0c replace 4-spaces ... |
221 222 223 224 225 226 227 228 229 230 231 232 233 |
if verbose >= 1 fprintf(1, 'allan_overlap: regular data '); if isfield(data,'freq') fprintf(1, '(%g freq data points @ %g Hz) ',length(data.freq),data.rate); elseif isfield(data,'phase') fprintf(1, '(%g phase data points @ %g Hz) ',length(data.phase),data.rate); else error(' phase or freq data missing [err10]'); end end |
b197c3fdf first commit |
234 |
|
1a0e88f0c replace 4-spaces ... |
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
% string for plot title name=[name ' (' num2str(data.rate) ' Hz)']; % what is the time interval between data points? tmstep = 1/data.rate; % Is there time data? Just for curiosity/plotting, does not impact calculation if isfield(data,'time') % adjust time data to remove any starting gap; first time step % should not be zero for comparison with freq data dtime=data.time-data.time(1)+mean(diff(data.time)); dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1) if verbose >= 2 fprintf(1,'allan_overlap: End of timestamp data: %g sec. ',dtime(end)); if (data.rate - 1/mean(diff(dtime))) > 1e-6 fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz) ',data.rate,1/mean(diff(dtime))); end end else % create time axis data using rate (for plotting only) dtime=(tmstep:tmstep:length(data.freq)*tmstep); end |
b197c3fdf first commit |
259 260 |
|
1a0e88f0c replace 4-spaces ... |
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
% is phase data present? If not, generate it if ~isfield(data,'phase') nfreq=data.freq-s.mean; dphase=zeros(1,length(nfreq)+1); dphase(2:end) = cumsum(nfreq)./data.rate; if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g). ',length(dphase)); end else dphase=data.phase; end % check the range of tau values and truncate if necessary % find halfway point of time record halftime = round(tmstep*length(data.freq)/2); % truncate tau to appropriate values tau = tau(tau >= tmstep & tau <= halftime); if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2) ',tmstep,halftime); end % number of samples N=length(dphase); % number of samples per tau period m = data.rate.*tau; % only integer values allowed for m (no fractional groups of points) %tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1) tau = tau(m==round(m)); % The round() test is only correct for values < 2^53 %m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22 m = m(m==round(m)); %m=round(m); %fprintf(1,'m: %.50f ',m) if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation... '); end % calculate the Allan deviation for each value of tau k=0; tic; for i = tau k=k+1; if verbose >= 2, fprintf(1,'%d ',i); end % pad phase data set length to an even multiple of this tau value mphase=zeros(ceil(length(dphase)./m(k))*m(k),1); mphase(1:N)=dphase; % group phase values mp=reshape(mphase,m(k),[]); % compute second differences of phase values (x_k+m - x_k) md1=diff(mp,1,2); md2=diff(md1,1,2); md1=reshape(md2,1,[]); % compute overlapping ADEV from phase values % only the first N-2*m(k) samples are valid sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2)); % estimate error bars sme(k)=sm(k)/sqrt(N-2*m(k)); end % repeat for each value of tau if verbose >= 2, fprintf(1,' '); end calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds ',calctime); end %% Irregular data, no fixed interval |
b197c3fdf first commit |
331 |
elseif isfield(data,'time') |
1a0e88f0c replace 4-spaces ... |
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
% the interval between measurements is irregular % so we must group the data by time if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate) '); end % string for plot title name=[name ' (timestamp)']; % adjust time to remove any starting offset dtime=data.time-data.time(1)+mean(diff(data.time)); % save the freq data for the loop dfreq=data.freq; dtime=dtime(1:length(dfreq)); dfdtime=diff(dtime); % only need to do this once (v2.1) % where is the maximum gap in time record? gap_pos=find(dfdtime==max(dfdtime)); % what is average data spacing? avg_gap = mean(dfdtime); s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1) if verbose >= 2 fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate). '); fprintf(1, ' Calculation time may be long and the results subject to interpretation. '); fprintf(1, ' You are advised to estimate using an average sample rate (%g Hz) instead of timestamps. ',1/avg_gap); fprintf(1, ' Continue at your own risk! (press any key to continue) '); pause; end if verbose >= 1 fprintf(1, 'allan_overlap: End of timestamp data: %g sec ',dtime(end)); fprintf(1, ' Average rate: %g Hz (%g sec/measurement) ',1/avg_gap,avg_gap); if max(diff(dtime)) ~= 1/mean(diff(dtime)) fprintf(1, ' Max. gap in time record: %g sec at position %d ',max(dfdtime),gap_pos(1)); end if max(diff(dtime)) > 5*avg_gap fprintf(1, ' WARNING: Max. gap in time record is suspiciously large (>5x the average interval). '); end end % find halfway point halftime = fix(dtime(end)/2); % truncate tau to appropriate values tau = tau(tau >= max(dfdtime) & tau <= halftime); if isempty(tau) error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s) ',max(dfdtime),halftime); end % number of samples M=length(dfreq); % number of samples per tau period m=round(tau./avg_gap); if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation... '); end k=0; tic; for i = tau k=k+1; fa=[]; if verbose >= 2, fprintf(1,'%d ',i); end freq = dfreq; time = dtime; % compute overlapping samples (y_k) for this tau %for j = 1:i for j = 1:m(k) % (v2.1) km=0; %fprintf(1,'j: %d ',j); % (v2.1) truncating not correct for overlapping samples % truncate data set to an even multiple of this tau value %freq = freq(time <= time(end)-rem(time(end),i)); %time = time(time <= time(end)-rem(time(end),i)); % break up the data into overlapping groups of tau length while i*km <= time(end) km=km+1; %i*km % progress bar if verbose >= 2 if rem(km,100)==0, fprintf(1,'.'); end if rem(km,1000)==0, fprintf(1,'%g/%g ',km,round(time(end)/i)); end end f = freq(i*(km-1) < (time) & (time) <= i*km); if ~isempty(f) fa(j,km)=mean(f); else fa(j,km)=0; end end %fa % shift data vector by -1 and repeat freq=circshift(dfreq,(size(freq)>1)*-j); freq(end-j+1:end)=[]; time=circshift(dtime,(size(time)>1)*-j); time(end-j+1:end)=[]; time=time-time(1)+avg_gap; % remove time offset end % compute second differences of fractional frequency values (y_k+m - y_k) fd1=diff(fa,1,2); fd1=reshape(fd1,1,[]); % compute overlapping ADEV from fractional frequency values % only the first M-2*m(k)+1 samples are valid if length(fd1) >= M-2*m(k)+1 sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2)); % estimate error bars sme(k)=sm(k)/sqrt(M+1); if verbose >= 2, fprintf(1,' '); end else if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities ',tau(k)); end sm(k)=0; sme(k)=0; end end if verbose >= 2, fprintf(1,' '); end calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds ',calctime); end % remove any points that were dropped tau(sm==0)=[]; sm(sm==0)=[]; sme(sme==0)=[]; |
b197c3fdf first commit |
487 488 489 490 |
else |
1a0e88f0c replace 4-spaces ... |
491 |
error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]'); |
b197c3fdf first commit |
492 493 494 495 496 497 498 |
end %%%%%%%% %% Plotting if verbose >= 2 % show all data |
1a0e88f0c replace 4-spaces ... |
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
% plot the frequency data, centered on median if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle try % dsplot makes a new figure hd=dsplot(dtime,medianfreq); catch ME figure; hd=plot(dtime,medianfreq); if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850). '); end if verbose >= 2, fprintf(1,' (Message: %s) ',ME.message); end end set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-' hold on; fx = xlim; % plot([fx(1) fx(2)],[s.median s.median],'-k'); plot([fx(1) fx(2)],[0 0],':k'); % show 5x Median Absolute deviation (MAD) values hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r'); plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r'); % show linear fit line hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g'); title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial'); %set(get(gca,'Title'),'Interpreter','none'); xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName); if isfield(data,'units') ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName); else ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName); end set(gca,'FontSize',FontSize,'FontName',FontName); legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2)); % tighten up xlim([dtime(1) dtime(end)]); |
b197c3fdf first commit |
538 539 540 541 |
end % end plot raw data if verbose >= 1 % show analysis results |
1a0e88f0c replace 4-spaces ... |
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
% plot Allan deviation results if ~isempty(sm) figure % Choose loglog or semilogx plot here #PLOTLOG %semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24); % in R14SP3, there is a bug that screws up the error bars on a semilog plot. % When this is fixed, uncomment below to use normal errorbars %errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log'); % this is a hack to approximate the error bars hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2)); grid on; title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName); %set(get(gca,'Title'),'Interpreter','none'); xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial'); ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName); set(gca,'FontSize',FontSize,'FontName',FontName); % expand the x axis a little bit so that the errors bars look nice adax = axis; axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]); % display the minimum value fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds ',min(sm),tau(sm==min(sm))); elseif verbose >= 1 fprintf(1,'allan_overlap: WARNING: no values calculated. '); fprintf(1,' Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate '); fprintf(1,'Type "help allan_overlap" for more information. '); end |
b197c3fdf first commit |
580 |
end % end plot analysis |
1a0e88f0c replace 4-spaces ... |
581 |
|
b197c3fdf first commit |
582 583 584 585 |
retval = sm; errorb = sme; return |