Blame view

allan_overlap.m 18.7 KB
b197c3fdf   bmarechal   first commit
1
2
3
4
5
6
7
8
  function [retval, s, errorb, tau] = allan_overlap(data,tau,name,verbose)
  % ALLAN_OVERLAP  Compute the overlapping Allan deviation for a set of
  %   time-domain frequency data
  % [RETVAL, S, ERRORB, TAU] = ALLAN_OVERLAP(DATA,TAU,NAME,VERBOSE)
  %
  % Inputs:
  % DATA should be a struct and have the following fields:
  %  DATA.freq or DATA.phase
1a0e88f0c   bmarechal   replace 4-spaces ...
9
10
11
12
13
  %			   A vector of fractional frequency measurements (df/f) in
  %			   DATA.freq *or* phase offset data (seconds) in DATA.phase
  %			   If phase data is not present, it will be generated by
  %				integrating the fractional frequency data.
  %			   If both fields are present, then DATA.phase will be used.
b197c3fdf   bmarechal   first commit
14
15
  %
  %  DATA.rate or DATA.time
1a0e88f0c   bmarechal   replace 4-spaces ...
16
17
18
19
  %			   The sampling rate in Hertz (DATA.rate) or a vector of
  %				timestamps for each measurement in seconds (DATA.time).
  %			   DATA.rate is used if both fields are present.
  %			   If DATA.rate == 0, then the timestamps are used.
b197c3fdf   bmarechal   first commit
20
21
  %
  % TAU is an array of tau values for computing Allan deviation.
1a0e88f0c   bmarechal   replace 4-spaces ...
22
23
  %	 TAU values must be divisible by 1/DATA.rate (data points cannot be
  %	 grouped in fractional quantities!). Invalid values are ignored.
b197c3fdf   bmarechal   first commit
24
25
  % NAME is an optional label that is added to the plot titles.
  % VERBOSE sets the level of status messages:
1a0e88f0c   bmarechal   replace 4-spaces ...
26
  %	 0 = silent & no data plots; 1 = status messages; 2 = all messages 
b197c3fdf   bmarechal   first commit
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  %
  % Outputs:
  % RETVAL is the array of overlapping Allan deviation values at each TAU.
  % S is an optional output of other statistical measures of the data (mean, std, etc).
  % ERRORB is an optional output containing the error estimates for a 1-sigma
  %   confidence interval. Error bars are plotted as vertical lines at each point.
  % TAU is an optional output containing the array of tau values used in the
  %   calculation (which may be a truncated subset of the input or default values).
  %
  % Example:
  %
  % To compute the overlapping Allan deviation for the data in the variable "lt":
  % >> lt
  % lt = 
1a0e88f0c   bmarechal   replace 4-spaces ...
41
42
  %	 freq: [1x86400 double]
  %	 rate: 0.5
b197c3fdf   bmarechal   first commit
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
  %
  % Use:
  %
  % >> ado = allan_overlap(lt,[2 10 100],'lt data',1);
  %
  % The Allan deviation will be computed and plotted at tau = 2,10,100 seconds.
  %  1-sigma confidence intervals will be indicated by vertical lines.
  % You can also use the default settings, which are usually a good starting point:
  %
  % >> ado = allan_overlap(lt);
  %
  %
  % Notes:
  %  This function calculates the overlapping Allan deviation (ADEV), *not* the
  %   standard ADEV. Use "allan.m" for standard ADEV.
  %  The calculation is performed using phase data. If only frequency data is
  %   provided, phase data is generated by integrating the frequency data.
  %   However, the timestamp-based calculation is performed using frequency
  %   data. Phase data is differentiated to generate frequency data if necessary.
  %  No pre-processing of the data is performed, except to remove any
  %   initial offset in the time record. 
  %  For rate-based data, ADEV is computed only for tau values greater than the
  %   minimum time between samples and less than the half the total time. For
  %   time-stamped data, only tau values greater than the maximum gap between
  %   samples and less than half the total time are used.
  %  The calculation for fixed sample rate data is *much* faster than for
  %   time-stamp data. You may wish to run the rate-based calculation first,
  %   then compare with time-stamp-based. Often the differences are insignificant.
  %  The error bars at each point are calculated using the 1-sigma intervals
  %   based on the size of the data set. This is usually an overestimate for
  %   overlapping ADEV; a more accurate (and usually smaller uncertainty)
  %   value can be determined from chi-squared statistics, but that is not
  %   implemented in this version.
  %  You can choose between loglog and semilog plotting of results by
  %   commenting in/out the appropriate line. Search for "#PLOTLOG".
  %  This function has been validated using the test data from NBS Monograph
  %   140, the 1000-point test data set given by Riley [1], and the example data
  %   given in IEEE standard 1139-1999, Annex C.
  %   The author welcomes other validation results, see contact info below.
  %
  % For more information, see:
  % [1] W. J. Riley, "Addendum to a test suite for the calculation of time domain
  %  frequency stability," presented at IEEE Frequency Control Symposium,
  %  1996.
  % Available on the web:
  %  http://www.ieee-uffc.org/frequency_control/teaching.asp?name=paper1ht
  %
  %
  % M.A. Hopcroft
1a0e88f0c   bmarechal   replace 4-spaces ...
92
  %	  mhopeng at gmail dot com
b197c3fdf   bmarechal   first commit
93
94
95
96
97
  %
  % I welcome your comments and feedback!
  %
  % MH Mar2014
  % v2.24 fix bug related to generating freq data from phase with timestamps
1a0e88f0c   bmarechal   replace 4-spaces ...
98
  %	   (thanks to S. David-Grignot for finding the bug)
b197c3fdf   bmarechal   first commit
99
100
  % MH Oct2010
  % v2.22 tau truncation to integer groups; tau sort
1a0e88f0c   bmarechal   replace 4-spaces ...
101
  %	   plotting bugfix
b197c3fdf   bmarechal   first commit
102
  % v2.20 update to match allan.m (dsplot.m, columns)
1a0e88f0c   bmarechal   replace 4-spaces ...
103
  %	   discard tau values with timestamp irregularities
b197c3fdf   bmarechal   first commit
104
105
106
107
108
109
  
  versionstr = 'allan_overlap v2.24';
  
  %
  % MH MAR2010
  % v2.1  bugfixes for irregular sample rates
1a0e88f0c   bmarechal   replace 4-spaces ...
110
111
112
113
  %		(thanks to Ryad Ben-El-Kezadri for feedback and testing)
  %	   handle empty rate field
  %	   fix integer comparisons for fractional sample rates
  %	   update consistency check
b197c3fdf   bmarechal   first commit
114
115
116
  %
  % MH FEB2010
  % v2.0  use phase data for calculation- much faster
1a0e88f0c   bmarechal   replace 4-spaces ...
117
118
119
  %	   Consistent code behaviour for all "allan_x.m" functions:
  %	   accept phase data
  %	   verbose levels
b197c3fdf   bmarechal   first commit
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
  %
  % MH JAN2010
  % v1.0  based on allan v1.84
  %
  
  %#ok<*AGROW>
  
  
  % defaults
  if nargin < 4, verbose = 2; end
  if nargin < 3, name=''; end
  if nargin < 2 || isempty(tau), tau=2.^(-10:10); end
  if isfield(data,'rate') && isempty(data.rate), data.rate=0; end % v2.1 
  
  % Formatting for plots
  FontName = 'Arial';
  FontSize = 14;
  plotlinewidth=2;
  
  if verbose >= 1, fprintf(1,'allan_overlap: %s
  
  ',versionstr); end
  
  %% Data consistency checks v2.1
  if ~(isfield(data,'phase') || isfield(data,'freq'))
1a0e88f0c   bmarechal   replace 4-spaces ...
145
  	error('Either ''phase'' or ''freq'' must be present in DATA. See help file for details. [con0]');
b197c3fdf   bmarechal   first commit
146
147
  end
  if isfield(data,'time')
1a0e88f0c   bmarechal   replace 4-spaces ...
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
  	if isfield(data,'phase') && (length(data.phase) ~= length(data.time))
  		if isfield(data,'freq') && (length(data.freq) ~= length(data.time))
  			error('The time and freq vectors are not the same length. See help for details. [con2]');
  		else
  			error('The time and phase vectors are not the same length. See help for details. [con1]');
  		end
  	end
  	if isfield(data,'phase') && (any(isnan(data.phase)) || any(isinf(data.phase)))
  		error('The phase vector contains invalid elements (NaN/Inf). [con3]');
  	end
  	if isfield(data,'freq') && (any(isnan(data.freq)) || any(isinf(data.freq)))
  		error('The freq vector contains invalid elements (NaN/Inf). [con4]');
  	end
  	if isfield(data,'time') && (any(isnan(data.time)) || any(isinf(data.time)))
  		error('The time vector contains invalid elements (NaN/Inf). [con5]');
  	end
b197c3fdf   bmarechal   first commit
164
165
166
167
168
169
170
  end
  
  % sort tau vector
  tau=sort(tau);
  
  %% Basic statistical tests on the data set
  if ~isfield(data,'freq')
1a0e88f0c   bmarechal   replace 4-spaces ...
171
172
173
174
175
176
177
  	if isfield(data,'rate') && data.rate ~= 0
  		data.freq=diff(data.phase).*data.rate;
  	elseif isfield(data,'time')
  		data.freq=diff(data.phase)./diff(data.time);
  	end
  	if verbose >= 1, fprintf(1,'allan_overlap: Fractional frequency data generated from phase data (M=%g).
  ',length(data.freq)); end
b197c3fdf   bmarechal   first commit
178
179
  end
  if size(data.freq,2) > size(data.freq,1), data.freq=data.freq'; end % ensure columns
1a0e88f0c   bmarechal   replace 4-spaces ...
180
  	
b197c3fdf   bmarechal   first commit
181
182
183
184
185
186
  s.numpoints=length(data.freq);
  s.max=max(data.freq);
  s.min=min(data.freq);
  s.mean=mean(data.freq);
  s.median=median(data.freq);
  if isfield(data,'time')
1a0e88f0c   bmarechal   replace 4-spaces ...
187
188
  	if size(data.time,2) > size(data.time,1), data.time=data.time'; end % ensure columns
  	s.linear=polyfit(data.time(1:length(data.freq)),data.freq,1);
b197c3fdf   bmarechal   first commit
189
  elseif isfield(data,'rate') && data.rate ~= 0;
1a0e88f0c   bmarechal   replace 4-spaces ...
190
  	s.linear=polyfit((1/data.rate:1/data.rate:length(data.freq)/data.rate)',data.freq,1);
b197c3fdf   bmarechal   first commit
191
  else
1a0e88f0c   bmarechal   replace 4-spaces ...
192
  	error('Either "time" or "rate" must be present in DATA. Type "help allan_overlap" for details. [err1]');
b197c3fdf   bmarechal   first commit
193
194
195
196
  end
  s.std=std(data.freq);
  
  if verbose >= 2
1a0e88f0c   bmarechal   replace 4-spaces ...
197
198
199
  	fprintf(1,'allan_overlap: fractional frequency data statistics:
  ');
  	disp(s);
b197c3fdf   bmarechal   first commit
200
201
202
203
204
205
206
207
208
209
  end
  
  
  % scale to median for plotting
  medianfreq=data.freq-s.median;
  sm=[]; sme=[];
  
  % Screen for outliers using 5x Median Absolute Deviation (MAD) criteria
  MAD = median(abs(medianfreq)/0.6745);
  if verbose >= 1 && any(abs(medianfreq) > 5*MAD)
1a0e88f0c   bmarechal   replace 4-spaces ...
210
211
  	fprintf(1, 'allan_overlap: NOTE: There appear to be outliers in the frequency data. See plot.
  ');
b197c3fdf   bmarechal   first commit
212
213
214
215
216
217
218
219
220
  end
  
  %%%%
  % There are four cases, freq or phase data, using timestamps or rate:
  
  %% Fixed Sample Rate Data
  %   If there is a regular interval between measurements, calculation is much
  %   easier/faster
  if isfield(data,'rate') && data.rate > 0 % if data rate was given
1a0e88f0c   bmarechal   replace 4-spaces ...
221
222
223
224
225
226
227
228
229
230
231
232
233
  	if verbose >= 1
  		fprintf(1, 'allan_overlap: regular data ');
  		if isfield(data,'freq')
  			fprintf(1, '(%g freq data points @ %g Hz)
  ',length(data.freq),data.rate);
  		elseif isfield(data,'phase')
  			fprintf(1, '(%g phase data points @ %g Hz)
  ',length(data.phase),data.rate);
  		else
  			error('
   phase or freq data missing [err10]');
  		end
  	end
b197c3fdf   bmarechal   first commit
234
    
1a0e88f0c   bmarechal   replace 4-spaces ...
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
  	% string for plot title
  	name=[name ' (' num2str(data.rate) ' Hz)'];
  
  	% what is the time interval between data points?
  	tmstep = 1/data.rate;	  
  	
  	% Is there time data? Just for curiosity/plotting, does not impact calculation
  	if isfield(data,'time')
  		% adjust time data to remove any starting gap; first time step
  		%  should not be zero for comparison with freq data
  		dtime=data.time-data.time(1)+mean(diff(data.time)); 
  		dtime=dtime(1:length(medianfreq)); % equalize the data vector lengths for plotting (v2.1)
  		if verbose >= 2
  			fprintf(1,'allan_overlap: End of timestamp data: %g sec.
  ',dtime(end));
  			if (data.rate - 1/mean(diff(dtime))) > 1e-6
  				fprintf(1,'allan_overlap: NOTE: data.rate (%f Hz) does not match average timestamped sample rate (%f Hz)
  ',data.rate,1/mean(diff(dtime)));
  			end
  		end
  	else
  		% create time axis data using rate (for plotting only)
  		dtime=(tmstep:tmstep:length(data.freq)*tmstep);
  	end
b197c3fdf   bmarechal   first commit
259
260
  
    
1a0e88f0c   bmarechal   replace 4-spaces ...
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  	% is phase data present? If not, generate it
  	if ~isfield(data,'phase')
  		nfreq=data.freq-s.mean;
  		dphase=zeros(1,length(nfreq)+1);
  		dphase(2:end) = cumsum(nfreq)./data.rate;
  		if verbose >= 1, fprintf(1,'allan_overlap: phase data generated from fractional frequency data (N=%g).
  ',length(dphase)); end
  	else
  		dphase=data.phase;
  	end
  	
  	% check the range of tau values and truncate if necessary
  	% find halfway point of time record
  	halftime = round(tmstep*length(data.freq)/2);
  	% truncate tau to appropriate values
  	tau = tau(tau >= tmstep & tau <= halftime);
  	if verbose >= 2, fprintf(1, 'allan_overlap: allowable tau range: %g to %g sec. (1/rate to total_time/2)
  ',tmstep,halftime); end
  	
  	% number of samples
  	N=length(dphase);
  	% number of samples per tau period
  	m = data.rate.*tau;
  	% only integer values allowed for m (no fractional groups of points)
  	%tau = tau(m-round(m)<1e-8); % numerical precision issues (v2.1)
  	tau = tau(m==round(m));  % The round() test is only correct for values < 2^53
  	%m = m(m-round(m)<1e-8); % change to round(m) for integer test v2.22
  	m = m(m==round(m));
  	%m=round(m);
  	%fprintf(1,'m: %.50f
  ',m)
  		
  	if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...
  	   '); end
  	
  	% calculate the Allan deviation for each value of tau
  	k=0; tic;
  	for i = tau
  		k=k+1;
  		if verbose >= 2, fprintf(1,'%d ',i); end
  
  
  		% pad phase data set length to an even multiple of this tau value
  		mphase=zeros(ceil(length(dphase)./m(k))*m(k),1);
  		mphase(1:N)=dphase;
  		% group phase values
  		mp=reshape(mphase,m(k),[]);
  		% compute second differences of phase values (x_k+m - x_k)
  		md1=diff(mp,1,2);
  		md2=diff(md1,1,2);
  		md1=reshape(md2,1,[]);
  		
  		% compute overlapping ADEV from phase values
  		%  only the first N-2*m(k) samples are valid
  		sm(k)=sqrt((1/(2*(N-2*m(k))*i^2))*sum(md1(1:N-2*m(k)).^2));
  		
  		% estimate error bars
  		sme(k)=sm(k)/sqrt(N-2*m(k));
  		
  
  	end % repeat for each value of tau
  	
  	if verbose >= 2, fprintf(1,'
  '); end
  	calctime=toc; if verbose >= 2, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds
  ',calctime); end
  
  		
  	
  %% Irregular data, no fixed interval	
b197c3fdf   bmarechal   first commit
331
  elseif isfield(data,'time')
1a0e88f0c   bmarechal   replace 4-spaces ...
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
  	% the interval between measurements is irregular
  	%  so we must group the data by time
  	if verbose >= 1, fprintf(1, 'allan_overlap: irregular rate data (no fixed sample rate)
  '); end
  
  	
  	% string for plot title
  	name=[name ' (timestamp)'];
  	
  
  	% adjust time to remove any starting offset
  	dtime=data.time-data.time(1)+mean(diff(data.time));
  	
  	% save the freq data for the loop
  	dfreq=data.freq;
  	dtime=dtime(1:length(dfreq));
  	
  	dfdtime=diff(dtime); % only need to do this once (v2.1)
  	% where is the maximum gap in time record?
  	gap_pos=find(dfdtime==max(dfdtime));
  	% what is average data spacing?
  	avg_gap = mean(dfdtime);
  	s.avg_rate = 1/avg_gap; % save avg rate for user (v2.1)
  	
  	if verbose >= 2
  		fprintf(1, 'allan_overlap: WARNING: irregular timestamp data (no fixed sample rate).
  ');
  		fprintf(1, '	   Calculation time may be long and the results subject to interpretation.
  ');
  		fprintf(1, '	   You are advised to estimate using an average sample rate (%g Hz) instead of timestamps.
  ',1/avg_gap);
  		fprintf(1, '	   Continue at your own risk! (press any key to continue)
  ');
  		pause;
  	end
  	
  	if verbose >= 1
  		fprintf(1, 'allan_overlap: End of timestamp data: %g sec
  ',dtime(end));
  		fprintf(1, '	   Average rate: %g Hz (%g sec/measurement)
  ',1/avg_gap,avg_gap);
  		if max(diff(dtime)) ~= 1/mean(diff(dtime))
  			fprintf(1, '	   Max. gap in time record: %g sec at position %d
  ',max(dfdtime),gap_pos(1));
  		end
  		if max(diff(dtime)) > 5*avg_gap
  			fprintf(1, '	   WARNING: Max. gap in time record is suspiciously large (>5x the average interval).
  ');
  		end
  	end
  	
  
  	% find halfway point
  	halftime = fix(dtime(end)/2);
  	% truncate tau to appropriate values
  	tau = tau(tau >= max(dfdtime) & tau <= halftime);
  	if isempty(tau)
  		error('allan_overlap: ERROR: no appropriate tau values (> %g s, < %g s)
  ',max(dfdtime),halftime);
  	end
  	
  
  	% number of samples
  	M=length(dfreq);
  	% number of samples per tau period
  	m=round(tau./avg_gap);
  
  	if verbose >= 1, fprintf(1,'allan_overlap: calculating overlapping Allan deviation...
  '); end
  
  	k=0; tic;
  	for i = tau
  		k=k+1;
  		fa=[];
  
  		if verbose >= 2, fprintf(1,'%d ',i); end
  		
  		freq = dfreq; time = dtime;
  	   
  		
  		% compute overlapping samples (y_k) for this tau
  		%for j = 1:i
  		for j = 1:m(k) % (v2.1)
  			km=0;
  			%fprintf(1,'j: %d ',j);
  
  			% (v2.1) truncating not correct for overlapping samples
  			% truncate data set to an even multiple of this tau value
  			%freq = freq(time <= time(end)-rem(time(end),i));
  			%time = time(time <= time(end)-rem(time(end),i));
  						
  			% break up the data into overlapping groups of tau length
  			while i*km <= time(end)
  				km=km+1;
  				%i*km
  
  				% progress bar
  				if verbose >= 2
  					if rem(km,100)==0, fprintf(1,'.'); end
  					if rem(km,1000)==0, fprintf(1,'%g/%g
  ',km,round(time(end)/i)); end
  				end
  
  				f = freq(i*(km-1) < (time) & (time) <= i*km);
  
  				if ~isempty(f)
  					fa(j,km)=mean(f);
  				else
  					fa(j,km)=0;
  				end
  
  			end
  			%fa
  			
  			% shift data vector by -1 and repeat
  			freq=circshift(dfreq,(size(freq)>1)*-j);
  			freq(end-j+1:end)=[];
  			time=circshift(dtime,(size(time)>1)*-j);
  			time(end-j+1:end)=[];
  			time=time-time(1)+avg_gap; % remove time offset
  			
  		end
  		
  		% compute second differences of fractional frequency values (y_k+m - y_k)
  		fd1=diff(fa,1,2);
  		fd1=reshape(fd1,1,[]);
  		% compute overlapping ADEV from fractional frequency values
  		%  only the first M-2*m(k)+1 samples are valid
  		if length(fd1) >= M-2*m(k)+1
  			sm(k)=sqrt((1/(2*(M-2*m(k)+1)))*sum(fd1(1:M-2*m(k)+1).^2));
  
  			% estimate error bars
  			sme(k)=sm(k)/sqrt(M+1);
  			
  			if verbose >= 2, fprintf(1,'
  '); end
  			
  		else
  			if verbose >=2, fprintf(1,' tau=%g dropped due to timestamp irregularities
  ',tau(k)); end
  			sm(k)=0; sme(k)=0;
  		end
  		
  
  	end
  
  	if verbose >= 2, fprintf(1,'
  '); end
  	calctime=toc; if verbose >= 1, fprintf(1,'allan_overlap: Elapsed time for calculation: %g seconds
  ',calctime); end
  
  	% remove any points that were dropped
  	tau(sm==0)=[];
  	sm(sm==0)=[];
  	sme(sme==0)=[];
b197c3fdf   bmarechal   first commit
487
488
489
490
  
  
  
  else
1a0e88f0c   bmarechal   replace 4-spaces ...
491
  	error('allan_overlap: WARNING: no DATA.rate or DATA.time! Type "help allan" for more information. [err2]');
b197c3fdf   bmarechal   first commit
492
493
494
495
496
497
498
  end
  
  
  %%%%%%%%
  %% Plotting
  
  if verbose >= 2 % show all data
1a0e88f0c   bmarechal   replace 4-spaces ...
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
  	
  	% plot the frequency data, centered on median
  	if size(dtime,2) > size(dtime,1), dtime=dtime'; end % this should not be necessary, but dsplot 1.1 is a little bit brittle
  	try
  		% dsplot makes a new figure
  		hd=dsplot(dtime,medianfreq);
  	catch ME
  		figure;
  		hd=plot(dtime,medianfreq);
  		if verbose >= 1, fprintf(1,'allan_overlap: Note: Install dsplot.m for improved plotting of large data sets (File Exchange File ID: #15850).
  '); end
  		if verbose >= 2, fprintf(1,'			 (Message: %s)
  ',ME.message); end
  	end
  	set(hd,'Marker','.','LineStyle','none','Color','b'); % equivalent to '.-'
  	hold on;
  
  	fx = xlim;
  	% plot([fx(1) fx(2)],[s.median s.median],'-k');
  	plot([fx(1) fx(2)],[0 0],':k');
  	% show 5x Median Absolute deviation (MAD) values
  	hm=plot([fx(1) fx(2)],[5*MAD 5*MAD],'-r');
  	plot([fx(1) fx(2)],[-5*MAD -5*MAD],'-r');
  	% show linear fit line
  	hf=plot(xlim,polyval(s.linear,xlim)-s.median,'-g');	
  	title(['Data: ' name],'FontSize',FontSize+2,'FontName','Arial');
  	%set(get(gca,'Title'),'Interpreter','none');
  	xlabel('Time [sec]','FontSize',FontSize,'FontName',FontName);
  	if isfield(data,'units')
  		ylabel(['data - median(data) [' data.units ']'],'FontSize',FontSize,'FontName',FontName);
  	else
  		ylabel('freq - median(freq)','FontSize',FontSize,'FontName',FontName);
  	end
  	set(gca,'FontSize',FontSize,'FontName',FontName);
  	legend([hd hm hf],{'data (centered on median)','5x MAD outliers',['Linear Fit (' num2str(s.linear(1),'%g') ')']},'FontSize',max(10,FontSize-2));
  	% tighten up
  	xlim([dtime(1) dtime(end)]);
  
  	
b197c3fdf   bmarechal   first commit
538
539
540
541
  end % end plot raw data
  
  
  if verbose >= 1 % show analysis results
1a0e88f0c   bmarechal   replace 4-spaces ...
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
  	% plot Allan deviation results
  	if ~isempty(sm)
  		figure
  
  		% Choose loglog or semilogx plot here	#PLOTLOG
  		%semilogx(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  		loglog(tau,sm,'.-b','LineWidth',plotlinewidth,'MarkerSize',24);
  
  		% in R14SP3, there is a bug that screws up the error bars on a semilog plot.
  		%  When this is fixed, uncomment below to use normal errorbars
  		%errorbar(tau,sm,sme,'.-b'); set(gca,'XScale','log');
  		% this is a hack to approximate the error bars
  		hold on; plot([tau; tau],[sm+sme; sm-sme],'-k','LineWidth',max(plotlinewidth-1,2));
  
  		grid on;
  		title(['Overlapping Allan Deviation: ' name],'FontSize',FontSize+2,'FontName',FontName);
  		%set(get(gca,'Title'),'Interpreter','none');
  		xlabel('\tau [sec]','FontSize',FontSize,'FontName','Arial');
  		ylabel(' Overlapping \sigma_y(\tau)','FontSize',FontSize,'FontName',FontName);
  		set(gca,'FontSize',FontSize,'FontName',FontName);
  		% expand the x axis a little bit so that the errors bars look nice
  		adax = axis;
  		axis([adax(1)*0.9 adax(2)*1.1 adax(3) adax(4)]);
  		
  		% display the minimum value
  		fprintf(1,'allan: Minimum overlapping ADEV value: %g at tau = %g seconds
  ',min(sm),tau(sm==min(sm)));		
  		
  	elseif verbose >= 1
  		fprintf(1,'allan_overlap: WARNING: no values calculated.
  ');
  		fprintf(1,'	   Check that TAU > 1/DATA.rate and TAU values are divisible by 1/DATA.rate
  ');
  		fprintf(1,'Type "help allan_overlap" for more information.
  
  ');
  	end
  	
b197c3fdf   bmarechal   first commit
580
  end % end plot analysis
1a0e88f0c   bmarechal   replace 4-spaces ...
581
  		
b197c3fdf   bmarechal   first commit
582
583
584
585
  retval = sm;
  errorb = sme;
  
  return