program test_sparse use fvn implicit none integer(kind=sp_kind), parameter :: nz=12 integer(kind=sp_kind), parameter :: n=5 complex(kind=dp_kind),dimension(nz) :: A real(kind=dp_kind),dimension(nz) :: Ax,Az complex(kind=dp_kind),dimension(n,n) :: As integer(kind=sp_kind),dimension(nz) :: Ti,Tj complex(kind=dp_kind),dimension(n) :: B,x real(kind=dp_kind),dimension(n) :: Bx,Bz integer(kind=sp_kind) :: status,i real(kind=dp_kind),dimension(3) :: det character(len=80) :: fmcmplx fmcmplx='(5("(",f8.5,",",f8.5,") "))' ! Description of the matrix in triplet form A = (/ (2.,-1.),(3.,2.),(3.,1.),(-1.,5.),(4.,-7.),(4.,0.),(-3.,-4.),(1.,3.),(2.,0.),(2.,-2.),(6.,4.),(1.,0.) /) B = (/ (8.,3.), (45.,1.), (-3.,-2.), (3.,0.), (19.,2.) /) Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /) Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /) Ax=real(A) Az=aimag(A) Bx=real(B) Bz=aimag(B) ! Reconstruction of the matrix in standard form As=0. do i=1,nz As(Ti(i),Tj(i))=A(i) end do ! sparse routines must be fed up with 0-based indices Ti=Ti-1 Tj=Tj-1 write(*,*) "Matrix in standard representation :" do i=1,5 write(*,fmcmplx) As(i,:) end do write(*,*) write(*,*) "Standard determinant : ",fvn_det(5,As) write(*,*) write(*,*) "Right hand side :" write(*,fmcmplx) B ! can use either specific interface, fvn_zi_sparse_det ! either generic one fvn_sparse_det call fvn_zi_sparse_det(n,nz,Ax,Az,Ti,Tj,det,status) write(*,*) write(*,*) "Sparse Det = ",cmplx(det(1),det(2),kind=dp_kind)*10**det(3) ! can use either specific interface fvn_zi_sparse_solve ! either generic one fvn_sparse_solve ! parameter det is optional call fvn_zi_sparse_solve(n,nz,Ax,Az,Ti,Tj,Bx,Bz,x,status,det) write(*,*) write(*,*) "Sparse Det as solve option= ",cmplx(det(1),det(2),kind=dp_kind)*10**det(3) write(*,*) write(*,*) "Solution :" write(*,fmcmplx) x write(*,*) write(*,*) "Product matrix Solution :" write(*,fmcmplx) matmul(As,x) end program