complex(8) function zpsi (zin) implicit none c may 1978 edition. w. fullerton, c3, los alamos scientific lab. complex(8) zin, z, z2inv, corr, zcot dimension bern(13) real(8) bern,d1mach,pi,bound, dxrel, rmin, rbig real(8) x,y,cabsz integer nterm,ndx,n,i external zcot, d1mach c data bern( 1) / .8333333333 3333333 e-1 / data bern( 2) / -.8333333333 3333333 e-2 / data bern( 3) / .3968253968 2539683 e-2 / data bern( 4) / -.4166666666 6666667 e-2 / data bern( 5) / .7575757575 7575758 e-2 / data bern( 6) / -.2109279609 2796093 e-1 / data bern( 7) / .8333333333 3333333 e-1 / data bern( 8) / -.4432598039 2156863 e0 / data bern( 9) / .3053954330 2701197 e1 / data bern(10) / -.2645621212 1212121 e2 / data bern(11) / .2814601449 2753623 e3 / data bern(12) / -.3454885393 7728938 e4 / data bern(13) / .5482758333 3333333 e5 / c data pi / 3.141592653 589793 e0 / data nterm, bound, dxrel, rmin, rbig / 0, 4*0.0 / c if (nterm.ne.0) go to 10 nterm = -0.30*log(d1mach(3)) c maybe bound = n*(0.1*eps)**(-1/(2*n-1)) / (pi*exp(1)) bound = 0.1171*dble(nterm) * 1 (0.1*d1mach(3))**(-1.0/(2.0*dble(nterm)-1.0)) dxrel = sqrt(d1mach(4)) rmin = exp (max(log(d1mach(1)), -log(d1mach(2))) + 0.011 ) rbig = 1.0/d1mach(3) c 10 z = zin x = real(z) y = aimag(z) if (y.lt.0.0) z = conjg(z) c corr = (0.0, 0.0) cabsz = abs(z) if (x.ge.0.0 .and. cabsz.gt.bound) go to 50 if (x.lt.0.0 .and. abs(y).gt.bound) go to 50 c if (cabsz.lt.bound) go to 20 c c use the reflection formula for real(z) negative, cabs(z) large, and c abs(aimag(y)) small. c corr = -pi*zcot(pi*z) z = 1.0 - z go to 50 c c use the recursion relation for cabs(z) small. c 20 if (cabsz.lt.rmin) call seteru ( 1 56hzpsi zpsi called with z so near 0 that zpsi overflows, 1 56, 2, 2) c if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30 if ( abs((z-aint(x-0.5))/x).lt.dxrel) call seteru ( 1 68hzpsi answer lt half precision because z too near negative 2integer, 68, 1, 1) if (y.eq.0.0 .and. x.eq.aint(x)) call seteru ( 1 31hzpsi z is a negative integer, 31, 3, 2) c 30 n = sqrt(bound**2-y**2) - x + 1.0 do 40 i=1,n corr = corr - 1.0/z z = z + 1.0 40 continue c c now evaluate the asymptotic series for suitably large z. c 50 if (cabsz.gt.rbig) zpsi = log(z) + corr if (cabsz.gt.rbig) go to 70 c zpsi = (0.0, 0.0) z2inv = 1.0/z**2 do 60 i=1,nterm ndx = nterm + 1 - i zpsi = bern(ndx) + z2inv*zpsi 60 continue zpsi = log(z) - 0.5/z - zpsi*z2inv + corr c 70 if (y.lt.0.0) zpsi = conjg(zpsi) c return end