
UMFPACK Version 5.1 User Guide

Timothy A. Davis
Dept. of Computer and Information Science and Engineering

Univ. of Florida, Gainesville, FL

May 31, 2007

Abstract

UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax = b,
using the Unsymmetric MultiFrontal method and direct sparse LU factorization. It is written in
ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3 Basic Linear Algebra
Subprograms (dense matrix multiply) for its performance. This code works on Windows and
many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX, SGI IRIX, and Compaq Alpha).

Technical Report TR-04-003 (revised)
UMFPACK Version 5.1, Copyright c©1995-2006 by Timothy A. Davis. All Rights Reserved.

UMFPACK is available under alternate licences; contact T. Davis for details.
UMFPACK License: Your use or distribution of UMFPACK or any modified version of

UMFPACK implies that you agree to this License.
This library is free software; you can redistribute it and/or modify it under the terms of the

GNU Lesser General Public License as published by the Free Software Foundation; either version
2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA

Permission is hereby granted to use or copy this program under the terms of the GNU LGPL,
provided that the Copyright, this License, and the Availability of the original version is retained on
all copies. User documentation of any code that uses this code or any modified version of this code
must cite the Copyright, this License, the Availability note, and ”Used by permission.” Permission
to modify the code and to distribute modified code is granted, provided the Copyright, this License,
and the Availability note are retained, and a notice that the code was modified is included.

Availability: http://www.cise.ufl.edu/research/sparse/umfpack
Acknowledgments:
This work was supported by the National Science Foundation, under grants DMS-9504974,

DMS-9803599, and CCR-0203270. The upgrade to Version 4.1 and the inclusion of the symmetric
and 2-by-2 pivoting strategies were done while the author was on sabbatical at Stanford University
and Lawrence Berkeley National Laboratory.

1

Contents

1 Overview 5

2 Availability 7

3 Primary changes from prior versions 7
3.1 Version 5.1.0 . 7
3.2 Version 5.0.3 . 7
3.3 Version 5.0 . 7
3.4 Version 4.6 . 8
3.5 Version 4.5 . 8
3.6 Version 4.4 . 8
3.7 Version 4.3.1 . 8
3.8 Version 4.3 . 8
3.9 Version 4.1 . 8

4 Using UMFPACK in MATLAB 9

5 Using UMFPACK in a C program 12
5.1 The size of an integer . 12
5.2 Real and complex floating-point . 13
5.3 Primary routines, and a simple example . 13
5.4 A note about zero-sized arrays . 15
5.5 Alternative routines . 15
5.6 Matrix manipulation routines . 16
5.7 Getting the contents of opaque objects . 17
5.8 Reporting routines . 18
5.9 Utility routines . 20
5.10 Control parameters . 20
5.11 Error codes . 21
5.12 Larger examples . 23

6 Synopsis of C-callable routines 23
6.1 Primary routines: real/int . 24
6.2 Alternative routines: real/int . 24
6.3 Matrix manipulation routines: real/int . 24
6.4 Getting the contents of opaque objects: real/int . 25
6.5 Reporting routines: real/int . 25
6.6 Primary routines: complex/int . 25
6.7 Alternative routines: complex/int . 25
6.8 Matrix manipulation routines: complex/int . 26
6.9 Getting the contents of opaque objects: complex/int 26
6.10 Reporting routines: complex/int . 26
6.11 Utility routines . 27
6.12 AMD ordering routines . 27

7 Using UMFPACK in a Fortran program 27

2

8 Installation 29
8.1 Installing the C library . 29
8.2 Installing the MATLAB interface . 32
8.3 Installing the Fortran interface . 32
8.4 Known Issues . 32

9 Future work 33

10 The primary UMFPACK routines 35
10.1 umfpack * symbolic . 35
10.2 umfpack * numeric . 45
10.3 umfpack * solve . 55
10.4 umfpack * free symbolic . 60
10.5 umfpack * free numeric . 61

11 Alternative routines 62
11.1 umfpack * defaults . 62
11.2 umfpack * qsymbolic . 64
11.3 umfpack * wsolve . 67

12 Matrix manipulation routines 70
12.1 umfpack * col to triplet . 70
12.2 umfpack * triplet to col . 72
12.3 umfpack * transpose . 77
12.4 umfpack * scale . 81

13 Getting the contents of opaque objects 83
13.1 umfpack * get lunz . 83
13.2 umfpack * get numeric . 86
13.3 umfpack * get symbolic . 91
13.4 umfpack * save numeric . 97
13.5 umfpack * load numeric . 99
13.6 umfpack * save symbolic . 101
13.7 umfpack * load symbolic . 103
13.8 umfpack * get determinant . 105

14 Reporting routines 109
14.1 umfpack * report status . 109
14.2 umfpack * report control . 111
14.3 umfpack * report info . 113
14.4 umfpack * report matrix . 115
14.5 umfpack * report numeric . 119
14.6 umfpack * report perm . 121
14.7 umfpack * report symbolic . 123
14.8 umfpack * report triplet . 125
14.9 umfpack * report vector . 128

3

15 Utility routines 131
15.1 umfpack timer . 131
15.2 umfpack tic and umfpack toc . 132

4

1 Overview

UMFPACK1 Version 5.0 is a set of routines for solving systems of linear equations, Ax = b, when
A is sparse and unsymmetric. It is based on the Unsymmetric-pattern MultiFrontal method [6, 7].
UMFPACK factorizes PAQ, PRAQ, or PR−1AQ into the product LU, where L and U are lower
and upper triangular, respectively, P and Q are permutation matrices, and R is a diagonal matrix
of row scaling factors (or R = I if row-scaling is not used). Both P and Q are chosen to reduce
fill-in (new nonzeros in L and U that are not present in A). The permutation P has the dual
role of reducing fill-in and maintaining numerical accuracy (via relaxed partial pivoting and row
interchanges).

The sparse matrix A can be square or rectangular, singular or non-singular, and real or complex
(or any combination). Only square matrices A can be used to solve Ax = b or related systems.
Rectangular matrices can only be factorized.

UMFPACK first finds a column pre-ordering that reduces fill-in, without regard to numerical
values. It scales and analyzes the matrix, and then automatically selects one of three strategies
for pre-ordering the rows and columns: unsymmetric, 2-by-2, and symmetric. These strategies are
described below.

First, all pivots with zero Markowitz cost are eliminated and placed in the LU factors. The
remaining submatrix S is then analyzed. The following rules are applied, and the first one that
matches defines the strategy.

• Rule 1: A rectangular → unsymmetric.

• Rule 2: If the zero-Markowitz elimination results in a rectangular S, or an S whose diagonal
has not been preserved, the unsymmetric strategy is used.

• The symmetry σ1 of S is computed. It is defined as the number of matched off-diagonal
entries, divided by the total number of off-diagonal entries. An entry sij is matched if sji is
also an entry. They need not be numerically equal. An entry is a value in A which is present
in the input data structure. All nonzeros are entries, but some entries may be numerically
zero. Rule 3: σ1 < 0.1 → unsymmetric. The matrix is very unsymmetric.

• Let d be the number of nonzero entries on the diagonal of S. Let S be ν-by-ν. Rule 4:
(σ1 ≥ 0.7) ∧ (d = ν) → symmetric. The matrix has a nearly symmetric nonzero pattern, and
a zero-free diagonal.

If the strategy has not yet been determined, the 2-by-2 strategy is attempted. A row permuta-
tion P2 is found which attempts to reduce the number of small diagonal entries of P2S. An entry
sij is determined to be small if |sij | < 0.01 max |s∗j |, or large otherwise. If sii is numerically small,
the method attempts to swap two rows i and j, such that both sij and sji are large. Once these
rows are swapped, they remain in place. Let σ2 be the symmetry of P2S, and let d2 be the number
of nonzero entries (either small or large) on the diagonal of P2S.

• Rule 5: (σ2 > 1.1σ1) ∧ (d2 > 0.9ν) → 2-by-2. The 2-by-2 permutation has made the matrix
significantly more symmetric.

• Rule 6: σ2 < 0.7σ1 → unsymmetric. The 2-by-2 strategy has significantly deteriorated the
symmetry,

1Pronounced with two syllables: umph-pack

5

• Rule 7: σ2 < 0.25 → unsymmetric. The matrix is still very unsymmetric.

• Rule 8: σ2 ≥ 0.51 → 2-by-2. The matrix is roughly symmetric.

• Rule 9: σ2 ≥ 0.999σ1 → 2-by-2. The 2-by-2 permutation has preserved symmetry, or made
it only slightly worse.

• Rule 10: if no rule has yet triggered, use the unsymmetric strategy.

Each strategy is described below:

• unsymmetric: The column pre-ordering of S is computed by a modified version of COLAMD
[8, 9, 27]. The method finds a symmetric permutation Q of the matrix STS (without forming
STS explicitly). This is a good choice for Q, since the Cholesky factors of (SQ)T(SQ) are
an upper bound (in terms of nonzero pattern) of the factor U for the unsymmetric LU
factorization (PSQ = LU) regardless of the choice of P [19, 20, 22]. This modified version
of COLAMD also computes the column elimination tree and post-orders the tree. It finds
the upper bound on the number of nonzeros in L and U. It also has a different threshold for
determining dense rows and columns. During factorization, the column pre-ordering can be
modified. Columns within a single super-column can be reshuffled, to reduce fill-in. Threshold
partial pivoting is used with no preference given to the diagonal entry. Within a given pivot
column j, an entry aij can be chosen if |aij | ≥ 0.1 max |a∗j |. Among those numerically
acceptable entries, the sparsest row i is chosen as the pivot row.

• 2-by-2: The symmetric strategy (see below) is applied to the matrix P2S, rather than S.

• symmetric: The column ordering is computed from AMD [1, 2], applied to the pattern of S+
ST followed by a post-ordering of the supernodal elimination tree of S+ST. No modification
of the column pre-ordering is made during numerical factorization. Threshold partial pivoting
is used, with a strong preference given to the diagonal entry. The diagonal entry is chosen
if ajj ≥ 0.001 max |a∗j |. Otherwise, a sparse row is selected, using the same method used by
the unsymmetric strategy.

The symmetric and 2-by-2 strategies, and their automatic selection, are new to Version 4.1.
Version 4.0 only used the unsymmetric strategy.

Once the strategy is selected, the factorization of the matrix A is broken down into the fac-
torization of a sequence of dense rectangular frontal matrices. The frontal matrices are related
to each other by a supernodal column elimination tree, in which each node in the tree represents
one frontal matrix. This analysis phase also determines upper bounds on the memory usage, the
floating-point operation count, and the number of nonzeros in the LU factors.

UMFPACK factorizes each chain of frontal matrices in a single working array, similar to how
the unifrontal method [18] factorizes the whole matrix. A chain of frontal matrices is a sequence
of fronts where the parent of front i is i+1 in the supernodal column elimination tree. For the
nonsingular matrices factorized with the unsymmetric strategy, there are exactly the same number
of chains as there are leaves in the supernodal column elimination tree. UMFPACK is an outer-
product based, right-looking method. At the k-th step of Gaussian elimination, it represents the
updated submatrix Ak as an implicit summation of a set of dense sub-matrices (referred to as
elements, borrowing a phrase from finite-element methods) that arise when the frontal matrices are
factorized and their pivot rows and columns eliminated.

Each frontal matrix represents the elimination of one or more columns; each column of A will
be eliminated in a specific frontal matrix, and which frontal matrix will be used for which column

6

is determined by the pre-analysis phase. The pre-analysis phase also determines the worst-case size
of each frontal matrix so that they can hold any candidate pivot column and any candidate pivot
row. From the perspective of the analysis phase, any candidate pivot column in the frontal matrix
is identical (in terms of nonzero pattern), and so is any row. However, the numeric factorization
phase has more information than the analysis phase. It uses this information to reorder the columns
within each frontal matrix to reduce fill-in. Similarly, since the number of nonzeros in each row and
column are maintained (more precisely, COLMMD-style approximate degrees [21]), a pivot row can
be selected based on sparsity-preserving criteria (low degree) as well as numerical considerations
(relaxed threshold partial pivoting).

When the symmetric or 2-by-2 strategies are used, the column preordering is not refined during
numeric factorization. Row pivoting for sparsity and numerical accuracy is performed if the diagonal
entry is too small.

More details of the method, including experimental results, are described in [5, 4], available at
http://www.cise.ufl.edu/tech-reports.

2 Availability

In addition to appearing as a Collected Algorithm of the ACM, UMFPACK is available at http://www.cise.ufl.edu/research/sparse.
It is included as a built-in routine in MATLAB. Version 4.0 (in MATLAB 6.5) does not have the
symmetric or 2-by-2 strategies and it takes less advantage of the level-3 BLAS [11, 12, 28, 25].
Versions 5.0 through v4.1 tend to be much faster than Version 4.0, particularly on unsymmetric
matrices with mostly symmetric nonzero pattern (such as finite element and circuit simulation
matrices). Version 3.0 and following make use of a modified version of COLAMD V2.0 by Timothy
A. Davis, Stefan Larimore, John Gilbert, and Esmond Ng. The original COLAMD V2.1 is available
in as a built-in routine in MATLAB V6.0 (or later), and at http://www.cise.ufl.edu/research/sparse.
These codes are also available in Netlib [13] at http://www.netlib.org. UMFPACK Versions 2.2.1
and earlier, co-authored with Iain Duff, are available at http://www.cise.ufl.edu/research/sparse
and as MA38 (functionally equivalent to Version 2.2.1) in the Harwell Subroutine Library.

3 Primary changes from prior versions

A detailed list of changes is in the ChangeLog file.

3.1 Version 5.1.0

Port of MATLAB interface to 64-bit MATLAB.

3.2 Version 5.0.3

Renamed the MATLAB function to umfpack2, so as not to confict with itself (the MATLAB built-in
version of UMFPACK).

3.3 Version 5.0

Changed long to UF long, controlled by the UFconfig.h file. A UF long is normally just long,
except on the Windows 64 (WIN64) platform. In that case, it becomes int64.

7

3.4 Version 4.6

Added additional options to umf solve.c.

3.5 Version 4.5

Added function pointers for malloc, calloc, realloc, free, printf, hypot, and complex divisiion, so
that these functions can be redefined at run-time. Added a version number so you can determine
the version of UMFPACK at run time or compile time. UMFPACK requires AMD v2.0 or later.

3.6 Version 4.4

Bug fix in strategy selection in umfpack * qsymbolic. Added packed complex case for all complex
input/output arguments. Added umfpack get determinant. Added minimal support for Microsoft
Visual Studio (the umf multicompile.c file).

3.7 Version 4.3.1

Minor bug fix in the forward/backsolve. This bug had the effect of turning off iterative refinement
when solving ATx = b after factorizing A. UMFPACK mexFunction now factorizes AT in its
forward-slash operation.

3.8 Version 4.3

No changes are visible to the C or MATLAB user, except the presence of one new control parameter
in the Control array, and three new statistics in the Info array. The primary change is the addition
of an (optional) drop tolerance.

3.9 Version 4.1

The following is a summary of the main changes that are visible to the C or MATLAB user:

1. New ordering strategies added. No changes are required in user code (either C or MATLAB) to
use the new default strategy, which is an automatic selection of the unsymmetric, symmetric,
or 2-by-2 strategies.

2. Row scaling added. This is only visible to the MATLAB caller when using the form [L,U,P,Q,R]
= umfpack (A), to retrieve the LU factors. Likewise, it is only visible to the C caller when
the LU factors are retrieved, or when solving systems with just L or U. New C-callable and
MATLAB-callable routines are included to get and to apply the scale factors computed by
UMFPACK. Row scaling is enabled by default, but can be disabled. Row scaling usually
leads to a better factorization, particularly when the symmetric strategy is used.

3. Error code UMFPACK ERROR problem to large removed. Version 4.0 would generate this error
when the upper bound memory usage exceeded 2GB (for the int version), even when the
actual memory usage was less than this. The new version properly handles this case, and can
successfully factorize the matrix if sufficient memory is available.

4. New control parameters and statistics provided.

5. The AMD symmetric approximate minimum degree ordering routine added [1, 2]. It is used
by UMFPACK, and can also be called independently from C or MATLAB.

8

6. The umfpack mexFunction now returns permutation matrices, not permutation vectors, when
using the form [L,U,P,Q] = umfpack (A) or the new form [L,U,P,Q,R] = umfpack (A).

7. New arguments added to the user-callable routines umfpack * symbolic, umfpack * qsymbolic,
umfpack * get numeric, and umfpack * get symbolic. The symbolic analysis now makes
use of the numerical values of the matrix A, to guide the 2-by-2 strategy. The subsequent
matrix passed to the numeric factorization step does not have to have the same numerical
values. All of the new arguments are optional. If you do not wish to include them, simply
pass NULL pointers instead. The 2-by-2 strategy will assume all entries are numerically large,
for example.

8. New routines added to save and load the Numeric and Symbolic objects to and from a binary
file.

9. A Fortran interface added. It provides access to a subset of UMFPACK’s features.

10. You can compute an incomplete LU factorization, by dropping small entries from L and U.
By default, no nonzero entry is dropped, no matter how small in absolute value. This feature
is new to Version 4.3.

4 Using UMFPACK in MATLAB

The easiest way to use UMFPACK is within MATLAB. Version 4.3 is a built-in routine in MATLAB
7.0.4, and is used in x = A\b when A is sparse, square, unsymmetric (or symmetric but not positive
definite), and with nonzero entries that are not confined in a narrow band. It is also used for the
[L,U,P,Q] = lu (A) usage of lu. Type help lu in MATLAB 6.5 or later for more details.

To use the UMFPACK mexFunction, you must download and compile it, since the mexFunction
itself is not part of MATLAB. The following discussion assumes that you have MATLAB Version 6.0
or later (which includes the BLAS, and the colamd ordering routine). To compile both the UMF-
PACK and AMD mexFunctions, just type make in the Unix system shell, while in the UMFPACK
directory. You can also type umfpack make in MATLAB, if you are in the UMFPACK/MATLAB direc-
tory, or if that directory is in your MATLAB path. This works on any system with MATLAB,
including Windows. See Section 8 for more details on how to install UMFPACK. Once installed,
the UMFPACK mexFunction can analyze, factor, and solve linear systems. Table 1 summarizes
some of the more common uses of the UMFPACK mexFunction within MATLAB.

An optional input argument can be used to modify the control parameters for UMFPACK, and
an optional output argument provides statistics on the factorization.

Refer to the AMD User Guide for more details about the AMD mexFunction.
Note: in MATLAB 6.5 or later, use spparms (’autoamd’,0) in addition to spparms (’autommd’,0),

in Table 1, to turn off MATLAB’s default reordering.
UMFPACK requires b to be a dense vector (real or complex) of the appropriate dimension.

This is more restrictive than what you can do with MATLAB’s backslash or forward slash. See
umfpack solve for an M-file that removes this restriction. This restriction does not apply to the
built-in backslash operator in MATLAB 6.5 or later, which uses UMFPACK to factorize the matrix.
You can do this yourself in MATLAB:

[L,U,P,Q,R] = umfpack (A) ;

x = Q * (U \ (L \ (P * (R \ b)))) ;

or, with no row scaling:

9

Table 1: Using UMFPACK’s MATLAB interface

Function Using UMFPACK MATLAB 6.0 equivalent

Solve Ax = b. x = umfpack (A,’\’,b) ; x = A \ b ;

Solve Ax = b using a dif-
ferent row and column pre-
ordering (symmetric order-
ing).

S = spones (A) ;

Q = symamd (S+S’) ;

Control = umfpack ;

Control (6) = 3 ;

x = umfpack (A,Q,’\’,b,Control) ;

spparms (’autommd’,0) ;

S = spones (A) ;

Q = symamd (S+S’) ;

x = A (Q,Q) \ b (Q) ;

x (Q) = x ;

spparms (’autommd’,1) ;

Solve ATxT = bT. x = umfpack (b,’/’,A) ;

Note: A is factorized.

x = b / A ;

Note: AT is factorized.

Scale and factorize A, then
solve Ax = b.

[L,U,P,Q,R] = umfpack (A) ;

c = P * (R \ b) ;

x = Q * (U \ (L \ c)) ;

[m n] = size (A) ;

r = full (sum (abs (A), 2)) ;

r (find (r == 0)) = 1 ;

R = spdiags (r, 0, m, m) ;

I = speye (n) ;

Q = I (:, colamd (A)) ;

[L,U,P] = lu ((R\A)*Q) ;

c = P * (R \ b) ;

x = Q * (U \ (L \ c)) ;

10

[L,U,P,Q] = umfpack (A) ;

x = Q * (U \ (L \ (P * b))) ;

The above examples do not make use of the iterative refinement that is built into x = umfpack
(A,’\’,b) however.

MATLAB’s [L,U,P] = lu(A) returns a lower triangular L, an upper triangular U, and a per-
mutation matrix P such that P*A is equal to L*U. UMFPACK behaves differently. By default, it
scales the rows of A and reorders the columns of A prior to factorization, so that L*U is equal to
P*(R\A)*Q, where R is a diagonal sparse matrix of scale factors for the rows of A. The scale factors
R are applied to A via the MATLAB expression R\A to avoid multiplying by the reciprocal, which
can be numerically inaccurate.

There are more options; you can provide your own column pre-ordering (in which case UMF-
PACK does not call COLAMD or AMD), you can modify other control settings (similar to the
spparms in MATLAB), and you can get various statistics on the analysis, factorization, and solution
of the linear system. Type umfpack details and umfpack report in MATLAB for more informa-
tion. Two demo M-files are provided. Just type umfpack simple and umfpack demo to run them.
The output of these two programs should be about the same as the files umfpack simple.m.out
and umfpack demo.m.out that are provided.

Factorizing A’ (or A.’) and using the transposed factors can sometimes be faster than factorizing
A. It can also be preferable to factorize A’ if A is rectangular. UMFPACK pre-orders the columns
to maintain sparsity; the row ordering is not determined until the matrix is factorized. Thus, if A
is m by n with rank m and m < n, then umfpack might not find a factor U with a zero-free diagonal.
Unless the matrix ill-conditioned or poorly scaled, factorizing A’ in this case will guarantee that
both factors will have zero-free diagonals. Here’s how you can factorize A’ and get the factors of A
instead:

[l,u,p,q] = umfpack (A’) ;
L = u’ ;
U = l’ ;
P = q ;
Q = p ;
clear l u p q

This is an alternative to [L,U,P,Q]=umfpack(A).
A simple M-file (umfpack btf) is provided that first permutes the matrix to upper block trian-

gular form, using MATLAB’s dmperm routine, and then solves each block. The LU factors are not
returned. Its usage is simple: x = umfpack btf(A,b). Type help umfpack btf for more options.
An estimate of the 1-norm of L*U-P*A*Q can be computed in MATLAB as lu normest(P*A*Q,L,U),
using the lu normest.m M-file by Hager and Davis [10] that is included with the UMFPACK dis-
tribution. With row scaling enabled, use lu normest(P*(R\A)*Q,L,U) instead.

One issue you may encounter is how UMFPACK allocates its memory when being used in
a mexFunction. One part of its working space is of variable size. The symbolic analysis phase
determines an upper bound on the size of this memory, but not all of this memory will typically
be used in the numerical factorization. UMFPACK tries to allocate a decent amount of working
space. This is 70% of the upper bound, by default, for the unsymmetric strategy. For the symmetric
strategy, the fraction of the upper bound is computed automatically (assuming a best-case scenario
with no numerical pivoting required during numeric factorization). If this initial allocation fails, it
reduces its request and uses less memory. If the space is not large enough during factorization, it
is increased via mxRealloc.

11

However, mxMalloc and mxRealloc abort the umfpack mexFunction if they fail, so this strategy
does not work in MATLAB.

To compute the determinant with UMFPACK:

d = umfpack (A, ’det’) ;
[d e] = umfpack (A, ’det’) ;

The first case is identical to MATLAB’s det. The second case returns the determinant in the
form d× 10e, which avoids overflow if e is large.

5 Using UMFPACK in a C program

The C-callable UMFPACK library consists of 32 user-callable routines and one include file. All but
three of the routines come in four versions, with different sizes of integers and for real or complex
floating-point numbers:

1. umfpack di *: real double precision, int integers.

2. umfpack dl *: real double precision, UF long integers.

3. umfpack zi *: complex double precision, int integers.

4. umfpack zl *: complex double precision, UF long integers.

where * denotes the specific name of one of the routines. Routine names beginning with umf are
internal to the package, and should not be called by the user. The include file umfpack.h must
be included in any C program that uses UMFPACK. The other three routines are the same for all
four versions.

In addition, the C-callable AMD library distributed with UMFPACK includes 4 user-callable
routines (in two versions with int and UF long integers) and one include file. Refer to the AMD
documentation for more details.

Use only one version for any one problem; do not attempt to use one version to analyze the
matrix and another version to factorize the matrix, for example.

The notation umfpack di * refers to all user-callable routines for the real double precision
and int integer case. The notation umfpack * numeric, for example, refers all four versions
(real/complex, int/UF long) of a single operation (in this case numeric factorization).

5.1 The size of an integer

The umfpack di * and umfpack zi * routines use int integer arguments; those starting with
umfpack dl or umfpack zl use UF long integer arguments. If you compile UMFPACK in the
standard ILP32 mode (32-bit int’s, long’s, and pointers) then the versions are essentially identi-
cal. You will be able to solve problems using up to 2GB of memory. If you compile UMFPACK in
the standard LP64 mode, the size of an int remains 32-bits, but the size of a long and a pointer
both get promoted to 64-bits. In the LP64 mode, the umfpack dl * and umfpack zl * routines
can solve huge problems (not limited to 2GB), limited of course by the amount of available mem-
ory. The only drawback to the 64-bit mode is that not all BLAS libraries support 64-bit integers.
This limits the performance you will obtain. Those that do support 64-bit integers are specific to
particular architectures, and are not portable. UMFPACK and AMD should be compiled in the
same mode. If you compile UMFPACK and AMD in the LP64 mode, be sure to add -DLP64 to
the compilation command. See the examples in the UFconfig/UFconfig.mk file.

12

5.2 Real and complex floating-point

The umfpack di * and umfpack dl * routines take (real) double precision arguments, and return
double precision arguments. In the umfpack zi * and umfpack zl * routines, these same arguments
hold the real part of the matrices; and second double precision arrays hold the imaginary part of
the input and output matrices. Internally, complex numbers are stored in arrays with their real
and imaginary parts interleaved, as required by the BLAS (“packed” complex form).

New to Version 4.4 is the option of providing input/output arguments in packed complex form.

5.3 Primary routines, and a simple example

Five primary UMFPACK routines are required to factorize A or solve Ax = b. They are fully
described in Section 10:

• umfpack * symbolic:

Pre-orders the columns of A to reduce fill-in. Returns an opaque Symbolic object as a
void * pointer. The object contains the symbolic analysis and is needed for the numeric
factorization. This routine requires only O(|A|) space, where |A| is the number of nonzero
entries in the matrix. It computes upper bounds on the nonzeros in L and U, the floating-
point operations required, and the memory usage of umfpack * numeric. The Symbolic
object is small; it contains just the column pre-ordering, the supernodal column elimination
tree, and information about each frontal matrix. It is no larger than about 13n integers if A
is n-by-n.

• umfpack * numeric:

Numerically scales and then factorizes a sparse matrix into PAQ, PRAQ, or PR−1AQ into
the product LU, where P and Q are permutation matrices, R is a diagonal matrix of scale
factors, L is lower triangular with unit diagonal, and U is upper triangular. Requires the
symbolic ordering and analysis computed by umfpack * symbolic or umfpack * qsymbolic.
Returns an opaque Numeric object as a void * pointer. The object contains the numeri-
cal factorization and is used by umfpack * solve. You can factorize a new matrix with a
different values (but identical pattern) as the matrix analyzed by umfpack * symbolic or
umfpack * qsymbolic by re-using the Symbolic object (this feature is available when using
UMFPACK in a C or Fortran program, but not in MATLAB). The matrix U will have zeros
on the diagonal if A is singular; this produces a warning, but the factorization is still valid.

• umfpack * solve:

Solves a sparse linear system (Ax = b, ATx = b, or systems involving just L or U), using
the numeric factorization computed by umfpack * numeric. Iterative refinement with sparse
backward error [3] is used by default. The matrix A must be square. If it is singular,
then a divide-by-zero will occur, and your solution with contain IEEE Inf’s or NaN’s in the
appropriate places.

• umfpack * free symbolic:

Frees the Symbolic object created by umfpack * symbolic or umfpack * qsymbolic.

• umfpack * free numeric:

Frees the Numeric object created by umfpack * numeric.

13

Be careful not to free a Symbolic object with umfpack * free numeric. Nor should you attempt
to free a Numeric object with umfpack * free symbolic. Failure to free these objects will lead to
memory leaks.

The matrix A is represented in compressed column form, which is identical to the sparse matrix
representation used by MATLAB. It consists of three or four arrays, where the matrix is m-by-n,
with nz entries. For the int version of UMFPACK:

int Ap [n+1] ;

int Ai [nz] ;

double Ax [nz] ;

For the UF long version of UMFPACK:

UF_long Ap [n+1] ;

UF_long Ai [nz] ;

double Ax [nz] ;

The complex versions add another array for the imaginary part:

double Az [nz] ;

Alternatively, if Az is NULL, the real part of the kth entry is located in Ax[2*k] and the imaginary
part is located in Ax[2*k+1], and the Ax array is of size 2*nz.

All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in
column j are stored in Ai[Ap[j] . . . Ap[j+1]-1]. The corresponding numerical values are stored
in Ax[Ap[j] . . . Ap[j+1]-1]. The imaginary part, for the complex versions, is stored in Az[Ap[j]
. . . Ap[j+1]-1] (see above for the packed complex case).

No duplicate row indices may be present, and the row indices in any given column must be
sorted in ascending order. The first entry Ap[0] must be zero. The total number of entries in the
matrix is thus nz = Ap[n]. Except for the fact that extra zero entries can be included, there is thus
a unique compressed column representation of any given matrix A. For a more flexible method for
providing an input matrix to UMFPACK, see Section 5.6.

Here is a simple main program, umfpack simple.c, that illustrates the basic usage of UMF-
PACK. See Section 6 for a short description of each calling sequence, including a list of options for
the first argument of umfpack di solve.

#include <stdio.h>

#include "umfpack.h"

int n = 5 ;

int Ap [] = {0, 2, 5, 9, 10, 12} ;

int Ai [] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ;

double Ax [] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ;

double b [] = {8., 45., -3., 3., 19.} ;

double x [5] ;

int main (void)

{

double *null = (double *) NULL ;

int i ;

void *Symbolic, *Numeric ;

(void) umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null) ;

(void) umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ;

14

umfpack_di_free_symbolic (&Symbolic) ;

(void) umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null) ;

umfpack_di_free_numeric (&Numeric) ;

for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ;

return (0) ;

}

The Ap, Ai, and Ax arrays represent the matrix

A =


2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

 .

and the solution to Ax = b is x = [1 2 3 4 5]T. The program uses default control settings and
does not return any statistics about the ordering, factorization, or solution (Control and Info are
both (double *) NULL). It also ignores the status value returned by most user-callable UMFPACK
routines.

5.4 A note about zero-sized arrays

UMFPACK uses many user-provided arrays of size m or n (the order of the matrix), and of size
nz (the number of nonzeros in a matrix). UMFPACK does not handle zero-dimensioned arrays; it
returns an error code if m or n are zero. However, nz can be zero, since all singular matrices are
handled correctly. If you attempt to malloc an array of size nz = 0, however, malloc will return
a null pointer which UMFPACK will report as a missing argument. If you malloc an array of size
nz to pass to UMFPACK, make sure that you handle the nz = 0 case correctly (use a size equal to
the maximum of nz and 1, or use a size of nz+1).

5.5 Alternative routines

Three alternative routines are provided that modify UMFPACK’s default behavior. They are fully
described in Section 11:

• umfpack * defaults:

Sets the default control parameters in the Control array. These can then be modified as
desired before passing the array to the other UMFPACK routines. Control parameters are
summarized in Section 5.10. Three particular parameters deserve special notice. UMFPACK
uses relaxed partial pivoting, where a candidate pivot entry is numerically acceptable if its
magnitude is greater than or equal to a tolerance parameter times the magnitude of the
largest entry in the same column. The parameter Control [UMFPACK PIVOT TOLERANCE]
has a default value of 0.1, and is used for the unsymmetric strategy. For complex matrices,
a cheap approximation of the absolute value is used for the threshold pivoting test (|a| ≈
|areal|+ |aimag|).
For the symmetric strategy, a second tolerance is used for diagonal entries:
Control [UMFPACK SYM PIVOT TOLERANCE], with a default value of 0.001. The first parame-
ter (with a default of 0.1) is used for any off-diagonal candidate pivot entries.

15

These two parameters may be too small for some matrices, particularly for ill-conditioned or
poorly scaled ones. With the default pivot tolerances and default iterative refinement, x =
umfpack (A,’\’,b) is just as accurate as (or more accurate) than x = A\b in MATLAB 6.1
for nearly all matrices.

If Control [UMFPACK PIVOT TOLERANCE] is zero, than any nonzero entry is acceptable as a
pivot (this is changed from Version 4.0, which treated a value of 0.0 the same as 1.0). If the
symmetric strategy is used, and Control [UMFPACK SYM PIVOT TOLERANCE] is zero, then any
nonzero entry on the diagonal is accepted as a pivot. Off-diagonal pivoting will still occur if the
diagonal entry is exactly zero. The Control [UMFPACK SYM PIVOT TOLERANCE] parameter is
new to Version 4.1. It is similar in function to the pivot tolerance for left-looking methods (the
MATLAB THRESH option in [L,U,P] = lu (A, THRESH), and the pivot tolerance parameter
in SuperLU).

The parameter Control [UMFPACK STRATEGY] can be used to bypass UMFPACK’s automatic
strategy selection. The automatic strategy nearly always selects the best method. When it
does not, the different methods nearly always give about the same quality of results. There
may be cases where the automatic strategy fails to pick a good strategy. Also, you can save
some computing time if you know the right strategy for your set of matrix problems.

• umfpack * qsymbolic:

An alternative to umfpack * symbolic. Allows the user to specify his or her own column
pre-ordering, rather than using the default COLAMD or AMD pre-orderings. For example,
a graph partitioning-based order of ATA would be suitable for UMFPACK’s unsymmetric
strategy. A partitioning of A + AT would be suitable for UMFPACK’s symmetric or 2-by-2
strategies.

• umfpack * wsolve:

An alternative to umfpack * solve which does not dynamically allocate any memory. Re-
quires the user to pass two additional work arrays.

5.6 Matrix manipulation routines

The compressed column data structure is compact, and simplifies the UMFPACK routines that
operate on the sparse matrix A. However, it can be inconvenient for the user to generate. Section 12
presents the details of routines for manipulating sparse matrices in triplet form, compressed column
form, and compressed row form (the transpose of the compressed column form). The triplet form
of a matrix consists of three or four arrays. For the int version of UMFPACK:

int Ti [nz] ;

int Tj [nz] ;

double Tx [nz] ;

For the UF long version:

UF_long Ti [nz] ;

UF_long Tj [nz] ;

double Tx [nz] ;

The complex versions use another array to hold the imaginary part:

double Tz [nz] ;

16

The k-th triplet is (i, j, aij), where i = Ti[k], j = Tj[k], and aij = Tx[k]. For the complex
versions, Tx[k] is the real part of aij and Tz[k] is the imaginary part. The triplets can be in any
order in the Ti, Tj, and Tx arrays (and Tz for the complex versions), and duplicate entries may
exist. If Tz is NULL, then the array Tx becomes of size 2*nz, and the real and imaginary parts
of the k-th triplet are located in Tx[2*k] and Tx[2*k+1], respectively. Any duplicate entries are
summed when the triplet form is converted to compressed column form. This is a convenient way
to create a matrix arising in finite-element methods, for example.

Four routines are provided for manipulating sparse matrices:

• umfpack * triplet to col:

Converts a triplet form of a matrix to compressed column form (ready for input to
umfpack * symbolic, umfpack * qsymbolic, and umfpack * numeric). Identical to A =
spconvert(i,j,x) in MATLAB, except that zero entries are not removed, so that the pattern
of entries in the compressed column form of A are fully under user control. This is important
if you want to factorize a new matrix with the Symbolic object from a prior matrix with the
same pattern as the new one.

• umfpack * col to triplet:

The opposite of umfpack * triplet to col. Identical to [i,j,x] = find(A) in MATLAB,
except that numerically zero entries may be included.

• umfpack * transpose:

Transposes and optionally permutes a column form matrix [26]. Identical to R = A(P,Q)’
(linear algebraic transpose, using the complex conjugate) or R = A(P,Q).’ (the array trans-
pose) in MATLAB, except for the presence of numerically zero entries.

Factorizing AT and then solving Ax = b with the transposed factors can sometimes be much
faster or much slower than factorizing A. It is highly dependent on your particular matrix.

• umfpack * scale:

Applies the row scale factors to a user-provided vector. This is not required to solve the
sparse linear system Ax = b or ATx = b, since umfpack * solve applies the scale factors
for those systems.

It is quite easy to add matrices in triplet form, subtract them, transpose them, permute them,
construct a submatrix, and multiply a triplet-form matrix times a vector. UMFPACK does not pro-
vide code for these basic operations, however. Refer to the discussion of umfpack * triplet to col
in Section 12 for more details on how to compute these operations in your own code. The only
primary matrix operation not provided by UMFPACK is the multiplication of two sparse matri-
ces [26]. The CHOLMOD provides many of these matrix operations, which can then be used in
conjunction with UMFPACK. See my web page for details.

5.7 Getting the contents of opaque objects

There are cases where you may wish to do more with the LU factorization of a matrix than solve a
linear system. The opaque Symbolic and Numeric objects are just that - opaque. You cannot do
anything with them except to pass them back to subsequent calls to UMFPACK. Three routines are
provided for copying their contents into user-provided arrays using simpler data structures. Four
routines are provided for saving and loading the Numeric and Symbolic objects to/from binary

17

files. An additional routine is provided that computes the determinant. They are fully described
in Section 13:

• umfpack * get lunz:

Returns the number of nonzeros in L and U.

• umfpack * get numeric:

Copies L, U, P, Q, and R from the Numeric object into arrays provided by the user. The
matrix L is returned in compressed row form (with the column indices in each row sorted
in ascending order). The matrix U is returned in compressed column form (with sorted
columns). There are no explicit zero entries in L and U, but such entries may exist in the
Numeric object. The permutations P and Q are represented as permutation vectors, where
P[k] = i means that row i of the original matrix is the the k-th row of PAQ, and where
Q[k] = j means that column j of the original matrix is the k-th column of PAQ. This is
identical to how MATLAB uses permutation vectors (type help colamd in MATLAB 6.1 or
later).

• umfpack * get symbolic:

Copies the contents of the Symbolic object (the initial row and column preordering, supern-
odal column elimination tree, and information about each frontal matrix) into arrays provided
by the user.

• umfpack * get determinant:

Computes the determinant from the diagonal of U and the permutations P and Q. This is
mostly of theoretical interest. It is not a good test to determine if your matrix is singular or
not.

• umfpack * save numeric:

Saves a copy of the Numeric object to a file, in binary format.

• umfpack * load numeric:

Creates a Numeric object by loading it from a file created by umfpack * save numeric.

• umfpack * save symbolic:

Saves a copy of the Symbolic object to a file, in binary format.

• umfpack * load symbolic:

Creates a Symbolic object by loading it from a file created by umfpack * save symbolic.

UMFPACK itself does not make use of these routines; they are provided solely for returning
the contents of the opaque Symbolic and Numeric objects to the user, and saving/loading them
to/from a binary file. None of them do any computation, except for umfpack * get determinant.

5.8 Reporting routines

None of the UMFPACK routines discussed so far prints anything, even when an error occurs.
UMFPACK provides you with nine routines for printing the input and output arguments (including
the Control settings and Info statistics) of UMFPACK routines discussed above. They are fully
described in Section 14:

18

• umfpack * report status:

Prints the status (return value) of other umfpack * routines.

• umfpack * report info:

Prints the statistics returned in the Info array by umfpack * *symbolic, umfpack * numeric,
and umfpack * *solve.

• umfpack * report control:

Prints the Control settings.

• umfpack * report matrix:

Verifies and prints a compressed column-form or compressed row-form sparse matrix.

• umfpack * report triplet:

Verifies and prints a matrix in triplet form.

• umfpack * report symbolic:

Verifies and prints a Symbolic object.

• umfpack * report numeric:

Verifies and prints a Numeric object.

• umfpack * report perm:

Verifies and prints a permutation vector.

• umfpack * report vector:

Verifies and prints a real or complex vector.

The umfpack * report * routines behave slightly differently when compiled into the C-callable
UMFPACK library than when used in the MATLAB mexFunction. MATLAB stores its sparse
matrices using the same compressed column data structure discussed above, where row and column
indices of an m-by-n matrix are in the range 0 to m− 1 or n− 1, respectively2 It prints them as if
they are in the range 1 to m or n. The UMFPACK mexFunction behaves the same way.

You can control how much the umfpack * report * routines print by modifying the Control
[UMFPACK PRL] parameter. Its default value is 1. Here is a summary of how the routines use this
print level parameter:

• umfpack * report status:

No output if the print level is 0 or less, even when an error occurs. If 1, then error messages
are printed, and nothing is printed if the status is UMFPACK OK. A warning message is printed
if the matrix is singular. If 2 or more, then the status is always printed. If 4 or more, then
the UMFPACK Copyright is printed. If 6 or more, then the UMFPACK License is printed.
See also the first page of this User Guide for the Copyright and License.

2Complex matrices in MATLAB use the split array form, with one double array for the real part and another
array for the imaginary part. UMFPACK supports that format, as well as the packed complex format (new to Version
4.4).

19

• umfpack * report control:

No output if the print level is 1 or less. If 2 or more, all of Control is printed.

• umfpack * report info:

No output if the print level is 1 or less. If 2 or more, all of Info is printed.

• all other umfpack * report * routines:

If the print level is 2 or less, then these routines return silently without checking their inputs.
If 3 or more, the inputs are fully verified and a short status summary is printed. If 4, then
the first few entries of the input arguments are printed. If 5, then all of the input arguments
are printed.

This print level parameter has an additional effect on the MATLAB mexFunction. If zero, then
no warnings of singular or nearly singular matrices are printed (similar to the MATLAB commands
warning off MATLAB:singularMatrix and warning off MATLAB:nearlySingularMatrix).

5.9 Utility routines

UMFPACK v4.0 included a routine that returns the time used by the process, umfpack timer.
The routine uses either getrusage (which is preferred), or the ANSI C clock routine if that is not
available. It is fully described in Section 15. It is still available in UMFPACK v4.1 and following, but
not used internally. Two new timing routines are provided in UMFPACK Version 4.1 and following,
umfpack tic and umfpack toc. They use POSIX-compliant sysconf and times routines to find
both the CPU time and wallclock time. These three routines are the only user-callable routine that
is identical in all four int/UF long, real/complex versions (there is no umfpack di timer routine,
for example).

5.10 Control parameters

UMFPACK uses an optional double array (currently of size 20) to modify its control parameters.
If you pass (double *) NULL instead of a Control array, then defaults are used. These defaults
provide nearly optimal performance (both speed, memory usage, and numerical accuracy) for a
wide range of matrices from real applications.

This array will almost certainly grow in size in future releases, so be sure to dimension your
Control array to be of size UMFPACK CONTROL. That constant is currently defined to be 20, but may
increase in future versions, since all 20 entries are in use.

The contents of this array may be modified by the user (see umfpack * defaults). Each user-
callable routine includes a complete description of how each control setting modifies its behavior.
Table 2 summarizes the entire contents of the Control array. Note that ANSI C uses 0-based
indexing, while MATLAB uses 1-based indexing. Thus, Control(1) in MATLAB is the same as
Control[0] or Control[UMFPACK PRL] in ANSI C.

Let αr =Control [UMFPACK DENSE ROW], αc =Control [UMFPACK DENSE COL], and α =Control
[UMFPACK AMD DENSE]. Suppose the submatrix S, obtained after eliminating pivots with zero Markowitz
cost, is m-by-n. Then a row is considered “dense” if it has more than max(16, 16αr

√
n) entries. A

column is considered “dense” if it has more than max(16, 16αc
√

m) entries. These rows and columns
are treated different in COLAMD and during numerical factorization. In COLAMD, dense columns
are placed last in their natural order, and dense rows are ignored. During numerical factorization,
dense rows are stored differently. In AMD, a row/column of the square matrix S + ST is consid-
ered “dense” if it has more than max(16, α

√
n) entries. These rows/columns are placed last in

20

Table 2: UMFPACK Control parameters
MATLAB ANSI C default description

Control(1) Control[UMFPACK PRL] 1 printing level
Control(2) Control[UMFPACK DENSE ROW] 0.2 dense row parameter
Control(3) Control[UMFPACK DENSE COL] 0.2 dense column parameter
Control(4) Control[UMFPACK PIVOT TOLERANCE] 0.1 partial pivoting tolerance
Control(5) Control[UMFPACK BLOCK SIZE] 32 BLAS block size
Control(6) Control[UMFPACK STRATEGY] 0 (auto) select strategy
Control(7) Control[UMFPACK ALLOC INIT] 0.7 initial memory allocation
Control(8) Control[UMFPACK IRSTEP] 2 max iter. refinement steps
Control(13) Control[UMFPACK 2BY2 TOLERANCE] 0.01 defines “large” entries
Control(14) Control[UMFPACK FIXQ] 0 (auto) fix or modify Q
Control(15) Control[UMFPACK AMD DENSE] 10 AMD dense row/column parameter
Control(16) Control[UMFPACK SYM PIVOT TOLERANCE] 0.001 for diagonal entries
Control(17) Control[UMFPACK SCALE] 1 (sum) row scaling (none, sum, or max)
Control(18) Control[UMFPACK FRONT ALLOC INIT] 0.5 frontal matrix allocation ratio
Control(19) Control[UMFPACK DROPTOL] 0 drop tolerance
Control(20) Control[UMFPACK AGGRESSIVE] 1 (yes) aggressive absorption

in AMD and COLAMD

Can only be changed at compile time:
Control(9) Control[UMFPACK COMPILED WITH BLAS] - true if BLAS is used
Control(10) Control[UMFPACK COMPILED FOR MATLAB] - true for mexFunction
Control(11) Control[UMFPACK COMPILED WITH GETRUSAGE] - 1 if getrusage used
Control(12) Control[UMFPACK COMPILED IN DEBUG MODE] - true if debug mode enabled

AMD’s output ordering. For more details on the control parameters, refer to the documentation of
umfpack * qsymbolic, umfpack * numeric, umfpack * solve, and the umfpack * report * rou-
tines, in Sections 10 through 14, below.

5.11 Error codes

Many of the routines return a status value. This is also returned as the first entry in the Info
array, for those routines with that argument. The following list summarizes all of the error codes
in UMFPACK. Each error code is given a specific name in the umfpack.h include file, so you can
use those constants instead of hard-coded values in your program. Future versions may report
additional error codes.

A value of zero means everything was successful, and the matrix is non-singular. A value greater
than zero means the routine was successful, but a warning occurred. A negative value means the
routine was not successful. In this case, no Symbolic or Numeric object was created.

• UMFPACK OK, (0): UMFPACK was successful.

• UMFPACK WARNING singular matrix, (1): Matrix is singular. There are exact zeros on the
diagonal of U.

• UMFPACK WARNING determinant underflow, (2): The determinant is nonzero, but smaller in
magnitude than the smallest positive floating-point number.

• UMFPACK WARNING determinant overflow, (3): The determinant is larger in magnitude than
the largest positive floating-point number (IEEE Inf).

• UMFPACK ERROR out of memory, (-1): Not enough memory. The ANSI C malloc or realloc
routine failed.

21

• UMFPACK ERROR invalid Numeric object, (-3): Routines that take a Numeric object as input
(or load it from a file) check this object and return this error code if it is invalid. This can
be caused by a memory leak or overrun in your program, which can overwrite part of the
Numeric object. It can also be caused by passing a Symbolic object by mistake, or some other
pointer. If you try to factorize a matrix using one version of UMFPACK and then use the
factors in another version, this error code will trigger as well. You cannot factor your matrix
using version 4.0 and then solve with version 4.1, for example.3. You cannot use different
precisions of the same version (real and complex, for example). It is possible for the Numeric
object to be corrupted by your program in subtle ways that are not detectable by this quick
check. In this case, you may see an UMFPACK ERROR different pattern error code, or even
an UMFPACK ERROR internal error.

• UMFPACK ERROR invalid Symbolic object, (-4): Routines that take a Symbolic object as
input (or load it from a file) check this object and return this error code if it is invalid.
The causes of this error are analogous to the UMFPACK ERROR invalid Numeric object error
described above.

• UMFPACK ERROR argument missing, (-5): Some arguments of some are optional (you can pass
a NULL pointer instead of an array). This error code occurs if you pass a NULL pointer when
that argument is required to be present.

• UMFPACK ERROR n nonpositive (-6): The number of rows or columns of the matrix must be
greater than zero.

• UMFPACK ERROR invalid matrix (-8): The matrix is invalid. For the column-oriented input,
this error code will occur if the contents of Ap and/or Ai are invalid.

Ap is an integer array of size n col+1. On input, it holds the “pointers” for the column form of
the sparse matrix A. Column j of the matrix A is held in Ai [(Ap [j]) . . . (Ap [j+1]-1)].
The first entry, Ap [0], must be zero, and Ap [j] ≤ Ap [j+1] must hold for all j in the
range 0 to n col-1. The value nz = Ap [n col] is thus the total number of entries in the
pattern of the matrix A. nz must be greater than or equal to zero.

The nonzero pattern (row indices) for column j is stored in Ai [(Ap [j]) . . . (Ap [j+1]-1)].
The row indices in a given column j must be in ascending order, and no duplicate row indices
may be present. Row indices must be in the range 0 to n row-1 (the matrix is 0-based).

Some routines take a triplet-form input, with arguments nz, Ti, and Tj. This error code is
returned if nz is less than zero, if any row index in Ti is outside the range 0 to n col-1, or
if any column index in Tj is outside the range 0 to n row-1.

• UMFPACK ERROR different pattern, (-11): The most common cause of this error is that the
pattern of the matrix has changed between the symbolic and numeric factorization. It can
also occur if the Numeric or Symbolic object has been subtly corrupted by your program.

• UMFPACK ERROR invalid system, (-13): The sys argument provided to one of the solve rou-
tines is invalid.

• UMFPACK ERROR invalid permutation, (-15): The permutation vector provided as input is
invalid.

3Exception: v4.3, v4.3.1, and v4.4 use identical data structures for the Numeric and Symbolic objects

22

• UMFPACK ERROR file IO, (-17): This error code is returned by the routines that save and
load the Numeric or Symbolic objects to/from a file, if a file I/O error has occurred. The file
may not exist or may not be readable, you may be trying to create a file that you don’t have
permission to create, or you may be out of disk space. The file you are trying to read might
be the wrong one, and an earlier end-of-file condition would then result in this error.

• UMFPACK ERROR internal error, (-911): An internal error has occurred, of unknown cause.
This is either a bug in UMFPACK, or the result of a memory overrun from your program. Try
modifying the file AMD/Include/amd internal.h and adding the statement #undef NDEBUG,
to enable the debugging mode. Recompile UMFPACK and rerun your program. A failed
assertion might occur which can give you a better indication as to what is going wrong. Be
aware that UMFPACK will be extraordinarily slow when running in debug mode. If all else
fails, contact the developer (davis@cise.ufl.edu) with as many details as possible.

5.12 Larger examples

Full examples of all user-callable UMFPACK routines are available in four stand-alone C main
programs, umfpack * demo.c. Another example is the UMFPACK mexFunction, umfpackmex.c.
The mexFunction accesses only the user-callable C interface to UMFPACK. The only features
that it does not use are the support for the triplet form (MATLAB’s sparse arrays are already
in the compressed column form) and the ability to reuse the Symbolic object to numerically
factorize a matrix whose pattern is the same as a prior matrix analyzed by umfpack * symbolic or
umfpack * qsymbolic. The latter is an important feature, but the mexFunction does not return its
opaque Symbolic and Numeric objects to MATLAB. Instead, it gets the contents of these objects
after extracting them via the umfpack * get * routines, and returns them as MATLAB sparse
matrices.

The umf4.c program for reading matrices in Harwell/Boeing format [15] is provided. It re-
quires three Fortran 77 programs (readhb.f, readhb nozeros.f, and readhb size.f) for reading
in the sample Harwell/Boeing files in the UMFPACK/Demo/HB directory. More matrices are avail-
able at http://www.cise.ufl.edu/research/sparse/matrices. Type make hb in the UMFPACK/Demo/HB
directory to compile and run this demo. This program was used for the experimental results in [5].

6 Synopsis of C-callable routines

Each subsection, below, summarizes the input variables, output variables, return values, and calling
sequences of the routines in one category. Variables with the same name as those already listed in
a prior category have the same size and type.

The real, UF long integer umfpack dl * routines are identical to the real, int routines, except
that di is replaced with dl in the name, and all int arguments become UF long. Similarly, the
complex, UF long integer umfpack zl * routines are identical to the complex, int routines, except
that zi is replaced with zl in the name, and all int arguments become UF long. Only the real
and complex int versions are listed in the synopsis below.

The matrix A is m-by-n with nz entries.
The sys argument of umfpack * solve is an integer in the range 0 to 14 which defines which

linear system is to be solved. 4 Valid values are listed in Table 3. The notation AH refers to the
4Integer values for sys are used instead of strings (as in LINPACK and LAPACK) to avoid C-to-Fortran portability

issues.

23

Table 3: UMFPACK sys parameter
Value system

UMFPACK A (0) Ax = b

UMFPACK At (1) AHx = b

UMFPACK Aat (2) ATx = b

UMFPACK Pt L (3) PTLx = b
UMFPACK L (4) Lx = b

UMFPACK Lt P (5) LHPx = b

UMFPACK Lat P (6) LTPx = b

UMFPACK Lt (7) LHx = b

UMFPACK Lat (8) LTx = b

UMFPACK U Qt (9) UQTx = b
UMFPACK U (10) Ux = b

UMFPACK Q Ut (11) QUHx = b

UMFPACK Q Uat (12) QUTx = b

UMFPACK Ut (13) UHx = b

UMFPACK Uat (14) UTx = b

matrix transpose, which is the complex conjugate transpose for complex matrices (A’ in MATLAB).
The array transpose is AT, which is A.’ in MATLAB.

6.1 Primary routines: real/int

#include "umfpack.h"

int status, sys, n, m, nz, Ap [n+1], Ai [nz] ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;

void *Symbolic, *Numeric ;

status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ;

status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;

status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

umfpack_di_free_symbolic (&Symbolic) ;

umfpack_di_free_numeric (&Numeric) ;

6.2 Alternative routines: real/int

int Qinit [n], Wi [n] ;

double W [5*n] ;

umfpack_di_defaults (Control) ;

status = umfpack_di_qsymbolic (m, n, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ;

status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info, Wi, W) ;

6.3 Matrix manipulation routines: real/int

int Ti [nz], Tj [nz], P [m], Q [n], Rp [m+1], Ri [nz], Map [nz] ;

double Tx [nz], Rx [nz], Y [m], Z [m] ;

24

status = umfpack_di_col_to_triplet (n, Ap, Tj) ;

status = umfpack_di_triplet_to_col (m, n, nz, Ti, Tj, Tx, Ap, Ai, Ax, Map) ;

status = umfpack_di_transpose (m, n, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

status = umfpack_di_scale (Y, Z, Numeric) ;

6.4 Getting the contents of opaque objects: real/int

The filename string should be large enough to hold the name of a file.

int lnz, unz, Lp [m+1], Lj [lnz], Up [n+1], Ui [unz], do_recip ;

double Lx [lnz], Ux [unz], D [min (m,n)], Rs [m], Mx [1], Ex [1] ;

int nfr, nchains, P1 [m], Q1 [n], Front_npivcol [n+1], Front_parent [n+1], Front_1strow [n+1],

Front_leftmostdesc [n+1], Chain_start [n+1], Chain_maxrows [n+1], Chain_maxcols [n+1] ;

char filename [100] ;

status = umfpack_di_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ;

status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, D,

&do_recip, Rs, Numeric) ;

status = umfpack_di_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1,

Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,

Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;

status = umfpack_di_load_numeric (&Numeric, filename) ;

status = umfpack_di_save_numeric (Numeric, filename) ;

status = umfpack_di_load_symbolic (&Symbolic, filename) ;

status = umfpack_di_save_symbolic (Symbolic, filename) ;

status = umfapck_di_get_determinant (Mx, Ex, Numeric, Info) ;

6.5 Reporting routines: real/int

umfpack_di_report_status (Control, status) ;

umfpack_di_report_control (Control) ;

umfpack_di_report_info (Control, Info) ;

status = umfpack_di_report_matrix (m, n, Ap, Ai, Ax, 1, Control) ;

status = umfpack_di_report_matrix (m, n, Rp, Ri, Rx, 0, Control) ;

status = umfpack_di_report_numeric (Numeric, Control) ;

status = umfpack_di_report_perm (m, P, Control) ;

status = umfpack_di_report_perm (n, Q, Control) ;

status = umfpack_di_report_symbolic (Symbolic, Control) ;

status = umfpack_di_report_triplet (m, n, nz, Ti, Tj, Tx, Control) ;

status = umfpack_di_report_vector (n, X, Control) ;

6.6 Primary routines: complex/int

double Az [nz], Xx [n], Xz [n], Bx [n], Bz [n] ;

status = umfpack_zi_symbolic (m, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ;

status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ;

status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ;

umfpack_zi_free_symbolic (&Symbolic) ;

umfpack_zi_free_numeric (&Numeric) ;

The arrays Ax, Bx, and Xx double in size if any imaginary argument (Az, Xz, or Bz) is NULL.

6.7 Alternative routines: complex/int

double Wz [10*n] ;

25

umfpack_zi_defaults (Control) ;

status = umfpack_zi_qsymbolic (m, n, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ;

status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info, Wi, Wz) ;

6.8 Matrix manipulation routines: complex/int

double Tz [nz], Rz [nz], Yx [m], Yz [m], Zx [m], Zz [m] ;

status = umfpack_zi_col_to_triplet (n, Ap, Tj) ;

status = umfpack_zi_triplet_to_col (m, n, nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, Map) ;

status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 1) ;

status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 0) ;

status = umfpack_zi_scale (Yx, Yz, Zx, Zz, Numeric) ;

The arrays Tx, Rx, Yx, and Zx double in size if any imaginary argument (Tz, Rz, Yz, or Zz) is
NULL.

6.9 Getting the contents of opaque objects: complex/int

double Lz [lnz], Uz [unz], Dx [min (m,n)], Dz [min (m,n)], Mz [1] ;

status = umfpack_zi_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ;

status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz,

&do_recip, Rs, Numeric) ;

status = umfpack_zi_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1,

Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,

Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;

status = umfpack_zi_load_numeric (&Numeric, filename) ;

status = umfpack_zi_save_numeric (Numeric, filename) ;

status = umfpack_zi_load_symbolic (&Symbolic, filename) ;

status = umfpack_zi_save_symbolic (Symbolic, filename) ;

status = umfapck_zi_get_determinant (Mx, Mz, Ex, Numeric, Info) ;

The arrays Lx, Ux, Dx, and Mx double in size if any imaginary argument (Lz, Uz, Dz, or Mz) is
NULL.

6.10 Reporting routines: complex/int

umfpack_zi_report_status (Control, status) ;

umfpack_zi_report_control (Control) ;

umfpack_zi_report_info (Control, Info) ;

status = umfpack_zi_report_matrix (m, n, Ap, Ai, Ax, Az, 1, Control) ;

status = umfpack_zi_report_matrix (m, n, Rp, Ri, Rx, Rz, 0, Control) ;

status = umfpack_zi_report_numeric (Numeric, Control) ;

status = umfpack_zi_report_perm (m, P, Control) ;

status = umfpack_zi_report_perm (n, Q, Control) ;

status = umfpack_zi_report_symbolic (Symbolic, Control) ;

status = umfpack_zi_report_triplet (m, n, nz, Ti, Tj, Tx, Tz, Control) ;

status = umfpack_zi_report_vector (n, Xx, Xz, Control) ;

The arrays Ax, Rx, Tx, and Xx double in size if any imaginary argument (Az, Rz, Tz, or Xz) is
NULL.

26

6.11 Utility routines

These routines are the same in all four versions of UMFPACK.

double t, s [2] ;

t = umfpack_timer () ;

umfpack_tic (s) ;

umfpack_toc (s) ;

6.12 AMD ordering routines

UMFPACK makes use of the AMD ordering package for its symmetric ordering strategy. You may
also use these four user-callable routines in your own C programs. You need to include the amd.h
file only if you make direct calls to the AMD routines themselves. The int versions are summarized
below; UF long versions are also available. Refer to the AMD User Guide for more information, or
to the file amd.h which documents these routines.

#include "amd.h"

double amd_control [AMD_CONTROL], amd_info [AMD_INFO] ;

amd_defaults (amd_control) ;

status = amd_order (n, Ap, Ai, P, amd_control, amd_info) ;

amd_control (amd_control) ;

amd_info (amd_info) ;

7 Using UMFPACK in a Fortran program

UMFPACK includes a basic Fortran 77 interface to some of the C-callable UMFPACK routines.
Since interfacing C and Fortran programs is not portable, this interface might not work with all
C and Fortran compilers. Refer to Section 8 for more details. The following Fortran routines are
provided. The list includes the C-callable routines that the Fortran interface routine calls. Refer
to the corresponding C routines in Section 5 for more details on what the Fortran routine does.

• umf4def: sets the default control parameters (umfpack di defaults).

• umf4sym: pre-ordering and symbolic factorization (umfpack di symbolic).

• umf4num: numeric factorization (umfpack di numeric).

• umf4solr: solve a linear system with iterative refinement (umfpack di solve).

• umf4sol: solve a linear system without iterative refinement (umfpack di solve). Sets Control
[UMFPACK IRSTEP] to zero, and does not require the matrix A.

• umf4scal: scales a vector using UMFPACK’s scale factors (umfpack di scale).

• umf4fnum: free the Numeric object (umfpack di free numeric).

• umf4fsym: free the Symbolic object (umfpack di free symbolic).

• umf4pcon: prints the control parameters (umfpack di report control).

27

• umf4pinf: print statistics (umfpack di report info).

• umf4snum: save the Numeric object to a file (umfpack di save numeric).

• umf4ssym: save the Symbolic object to a file (umfpack di save symbolic).

• umf4lnum: load the Numeric object from a file (umfpack di load numeric).

• umf4lsym: load the Symbolic object from a file (umfpack di load symbolic).

The matrix A is passed to UMFPACK in compressed column form, with 0-based indices. In
Fortran, for an m-by-n matrix A with nz entries, the row indices of the first column (column 1) are
in Ai (Ap(1)+1 . . . Ap(2)), with values in Ax (Ap(1)+1 . . . Ap(2)). The last column (column n) is
in Ai (Ap(n)+1 . . . Ap(n+1)) and Ax (Ap(n)+1 . . . Ap(n+1)). The number of entries in the matrix
is thus nz = Ap (n+1). The row indices in Ai are in the range 0 to m-1. They must be sorted, with
no duplicate entries allowed. None of the UMFPACK routines modify the input matrix A. The
following definitions apply for the Fortran routines:

integer m, n, Ap (n+1), Ai (nz), symbolic, numeric, filenum, status

double precision Ax (nz), control (20), info (90), x (n), b (n)

UMFPACK’s status is returned in either a status argument, or in info (1). It is zero if
UMFPACK was successful, 1 if the matrix is singular (this is a warning, not an error), and negative
if an error occurred. Section 5.11 summarizes the possible values of status and info (1). See
Table 3 for a list of the values of the sys argument. See Table 2 for a list of the control parameters
(the Fortran usage is the same as the MATLAB usage for this array).

For the Numeric and Symbolic handles, it is probably safe to assume that a Fortran integer
is sufficient to store a C pointer. If that does not work, try defining numeric and symbolic in
your Fortran program as integer arrays of size 2. You will need to define them as integer*8 if you
compile UMFPACK in the 64-bit mode.

To avoid passing strings between C and Fortran in the load/save routines, a file number is
passed instead, and the C interface constructs a file name (if filenum is 42, the Numeric file name
is n42.umf, and the Symbolic file name is s42.umf).

The following is a summary of the calling sequence of each Fortran interface routine. An example
of their use is in the Demo/umf4hb.f file. That routine also includes an example of how to convert a
1-based sparse matrix into 0-based form. For more details on the arguments of each routine, refer to
the arguments of the same name in the corresponding C-callable routine, in Sections 10 through 15.
The only exception is the control argument of umf4sol, which sets control (8) to zero to disable
iterative refinement. Note that the solve routines do not overwrite b with the solution, but return
their solution in a different array, x.

call umf4def (control)

call umf4sym (m, n, Ap, Ai, Ax, symbolic, control, info)

call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info)

call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info)

call umf4sol (sys, x, b, numeric, control, info)

call umf4scal (x, b, numeric, status)

call umf4fnum (numeric)

call umf4fsym (symbolic)

call umf4pcon (control)

call umf4pinf (control)

call umf4snum (numeric, filenum, status)

28

call umf4ssym (symbolic, filenum, status)

call umf4lnum (numeric, filenum, status)

call umf4lsym (symbolic, filenum, status)

Access to the complex routines in UMFPACK is provided by the interface routines in umf4 f77zwrapper.c.
The following is a synopsis of each routine. All the arguments are the same as the real versions,
except Az, xz, and bz are the imaginary parts of the matrix, solution, and right-hand side, respec-
tively. The Ax, x, and b are the real parts.

call umf4zdef (control)

call umf4zsym (m, n, Ap, Ai, Ax, Az, symbolic, control, info)

call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info)

call umf4zsolr (sys, Ap, Ai, Ax, Az, x, xz, b, bz, numeric, control, info)

call umf4zsol (sys, x, xz, b, bz, numeric, control, info)

call umf4zscal (x, xz, b, bz, numeric, status)

call umf4zfnum (numeric)

call umf4zfsym (symbolic)

call umf4zpcon (control)

call umf4zpinf (control)

call umf4zsnum (numeric, filenum, status)

call umf4zssym (symbolic, filenum, status)

call umf4zlnum (numeric, filenum, status)

call umf4zlsym (symbolic, filenum, status)

The Fortran interface does not support the packed complex case.

8 Installation

8.1 Installing the C library

The following discussion assumes you have the make program, either in Unix, or in Windows with
Cygwin5. You can skip this section and go to next one if all you want to use is the UMFPACK
and AMD mexFunctions in MATLAB.

You will need to install both UMFPACK v5.0 and AMD v2.0 to use UMFPACK. The UMFPACK
and AMD subdirectories must be placed side-by-side within the same directory. AMD is a stand-
alone package that is required by UMFPACK. UMFPACK can be compiled without the BLAS
[11, 12, 28, 25], but your performance will be much less than what it should be.

System-dependent configurations are in the UFconfig/UFconfig.mk file. The default settings
will work on most systems, except that UMFPACK will be compiled so that it does not use the
BLAS. Sample configurations are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the
DEC/Compaq Alpha.

To compile and install both packages, go to the UMFPACK directory and type make. This will
compile the libraries (AMD/Lib/libamd.a and UMFPACK/Lib/libumfpack.a). A demo of the AMD
ordering routine will be compiled and tested in the AMD/Demo directory, and five demo programs will
then be compiled and tested in the UMFPACK/Demo directory. The outputs of these demo programs
will then be compared with output files in the distribution. Expect to see a few differences, such
as residual norms, compile-time control settings, and perhaps memory usage differences.

To use make to compile the MATLAB mexFunctions for MATLAB and AMD, you can either
type make mex in the UMFPACK directory. You may first need to edit the UFconfig/UFconfig.mk
file to modify the definition of the MEX, if you have a version of MATLAB older than Version 7.2.

5www.cygwin.com

29

Remove the -largeArrayDims definition. If you use the MATLAB command umfpack make in the
MATLAB directory, then this case is handled for you automatically.

If you have the GNU version of make, the Lib/GNUmakefile and MATLAB/GNUmakefile files are
used. These are much more concise than what the “old” version of make can handle. If you do not
have GNU make, the Lib/Makefile and MATLAB/Makefile files are used instead. Each UMFPACK
source file is compiled into four versions (double / complex, and int / UF long). A proper old-
style Makefile is cumbersome in this case, so these two Makefile’s have been constructed by brute
force. They ignore dependencies, and simply compile everything. I highly recommend using GNU
make if you wish to modify UMFPACK.

If you compile UMFPACK and AMD and then later change the UFconfig/UFconfig.mk file
then you should type make purge and then make to recompile.

Here are the various parameters that you can control in your UFconfig/UFconfig.mk file:

• CC = your C compiler, such as cc.

• RANLIB = your system’s ranlib program, if needed.

• CFLAGS = optimization flags, such as -O.

• UMFPACK CONFIG = configuration settings for the BLAS, memory allocation routines, and
timing routines.

• LIB = your libraries, such as -lm or -lblas.

• RM = the command to delete a file.

• MV = the command to rename a file.

• MEX = the command to compile a MATLAB mexFunction. If you are using MATLAB 5, you
need to add -DNBLAS and -DNUTIL to this command.

• F77 = the command to compile a Fortran program (optional).

• F77FLAGS = the Fortran compiler flags (optional).

• F77LIB = the Fortran libraries (optional).

The UMFPACK CONFIG string can include combinations of the following; most deal with how the
BLAS are called:

• -DNBLAS if you do not have any BLAS at all.

• -DNSUNPERF if you are on Solaris but do not have the Sun Performance Library (for the
BLAS).

• -DLONGBLAS if your BLAS takes non-int integer arguments.

• -DBLAS INT = the integer used by the BLAS.

• -DBLAS NO UNDERSCORE for controlling how C calls the Fortran BLAS. This is set automati-
cally for Windows, Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and AIX (the IBM
RS 6000).

• -DGETRUSAGE if you have the getrusage function.

30

• -DNPOSIX if you do not have the POSIX-compliant sysconf and times routines used by
umfpack tic and umfpack toc.

• -DNRECIPROCAL controls a trade-off between speed and accuracy. If defined (or if the pivot
value itself is less than 10−12), then the pivot column is divided by the pivot value during
numeric factorization. Otherwise, it is multiplied by the reciprocal of the pivot, which is faster
but can be less accurate. The default is to multiply by the reciprocal unless the pivot value is
small. This option also modifies how the rows of the matrix A are scaled. If -DNRECIPROCAL
is defined (or if any scale factor is less than 10−12), entries in the rows of A are divided by the
scale factors. Otherwise, they are multiplied by the reciprocal. When compiling the complex
routines with the GNU gcc compiler, the pivot column is always divided by the pivot entry,
because of a numerical accuracy issue encountered with gcc version 3.2 with a few complex
matrices on a Pentium 4M (running Linux). You can still use -DNRECIPROCAL to control how
the scale factors for the rows of A are applied.

• -DNO DIVIDE BY ZERO controls how UMFPACK treats zeros on the diagonal of U, for a singu-
lar matrix A. If defined, then no division by zero is performed (a zero entry on the diagonal
of U is treated as if it were equal to one). By default, UMFPACK will divide by zero.

• -DNO TIMER controls whether or not timing routines are to be called. If defined, no timers are
used. Timers are included by default.

If a Fortran BLAS package is used you may see compiler warnings. The BLAS routines dgemm,
dgemv, dger, dtrsm, dtrsv, dscal and their corresponding complex versions are used. Header files
are not provided for the Fortran BLAS. You may safely ignore all of these warnings.

I highly recommend the recent BLAS by Goto and van de Geijn [25]. Using this BLAS increased
the performance of UMFPACK by up to 50% on a Dell Latitude C840 laptop (2GHz Pentium 4M,
512K L2 cache, 1GB main memory). The peak performance of umfpack di numeric with Goto
and van de Geijn’s BLAS is 1.6 Gflops on this computer. In MATLAB, the peak performance of
UMFPACK on a dense matrix (stored in sparse format) is 900 Mflops, as compared to 1 Gflop for
x = A\b when A is stored as a regular full matrix.

When you compile your program that uses the C-callable UMFPACK library, you need to link
your program with both libraries (UMFPACK/Lib/libumfpack.a and AMD/Lib/libamd.a) and you
need to tell your compiler to look in the directories UMFPACK/Include and AMD/Include for include
files. See UMFPACK/Demo/Makefile for an example. You do not need to directly include any AMD
include files in your program, unless you directly call AMD routines. You only need the

#include "umfpack.h"

statement, as described in Section 6.
If you would like to compile both 32-bit and 64-bit versions of the libraries, you will need to do

it in two steps. Modify your UFconfig/UFconfig.mk file, and select the 32-bit option. Type make
in the UMFPACK directory, which creates the UMFPACK/Lib/libumfpack.a and AMD/Lib/libamd.a
libraries. Rename those two files. Edit your UFconfig/UFconfig.mk file and select the 64-bit
option. Type make purge, and then make, and you will create the 64-bit libraries. You can use the
same umfpack.h include file for both 32-bit and 64-bit versions. Simply link your program with
the appropriate 32-bit or 64-bit compiled version of the UMFPACK and AMD libraries.

Type make hb in the UMFPACK/Demo/HB directory to compile and run a C program that reads
in and factorizes Harwell/Boeing matrices. Note that this uses a stand-alone Fortran program to

31

read in the Fortran-formatted Harwell/Boeing matrices and write them to a file which can be read
by a C program.

The umf multicompile.c file has been added to assist in the compilation of UMFPACK in
Microsoft Visual Studio, for Windows.

8.2 Installing the MATLAB interface

If all you want to do is use the UMFPACK mexFunction in MATLAB, you can skip the use
of the make command described above. Simply type umfpack make in MATLAB while in the
UMFPACK/MATLAB directory. You can also type amd make in the AMD/MATLAB directory to compile
the stand-alone AMD mexFunction (this is not required to compile the UMFPACK mexFunction).
This works on any computer with MATLAB, including Windows.

If you are using Windows and the lcc compiler bundled with MATLAB 6.1, then you may need
to copy the UMFPACK\MATLAB\lcc lib\libmwlapack.lib file into the <matlab>\extern\lib\win32\lcc\
directory. Next, type mex -setup at the MATLAB prompt, and ask MATLAB to select the lcc
compiler. MATLAB 6.1 has built-in BLAS, but in that version of MATLAB the BLAS cannot be
accessed by a mexFunction compiled by lcc without first copying this file to the location listed
above. If you have MATLAB 6.5 or later, you can probably skip this step.

8.3 Installing the Fortran interface

Once the 32-bit C-callable UMFPACK library is compiled, you can also compile the Fortran in-
terface, by typing make fortran. This will create the umf4hb program, test it, and compare the
output with the file umf4hb.out in the distribution. If you compiled UMFPACK in 64-bit mode,
you need to use make fortran64 instead, which compiles the umf4hb64 program and compares its
output with the file umf4hb64.out. Refer to the comments in the Demo/umf4 f77wrapper.c file
for more details.

This interface is highly non-portable, since it depends on how C and Fortran are inter-
faced. Because of this issue, the interface is included in the Demo directory, and not as a pri-
mary part of the UMFPACK library. The interface routines are not included in the compiled
UMFPACK/Lib/libumfpack.a library, but left as stand-alone compiled files (umf4 f77wrapper.o
and umf4 f77wrapper64.o in the Demo directory). You may need to modify the interface routines
in the file umf4 f77wrapper.c if you are using compilers for which this interface has not been
tested.

8.4 Known Issues

The Microsoft C or C++ compilers on a Pentium badly break the IEEE 754 standard, and do not
treat NaN’s properly. According to IEEE 754, the expression (x != x) is supposed to be true if
and only if x is NaN. For non-compliant compilers in Windows that expression is always false, and
another test must be used: (x < x) is true if and only if x is NaN. For compliant compilers, (x
< x) is always false, for any value of x (including NaN). To cover both cases, UMFPACK when
running under Microsoft Windows defines the following macro, which is true if and only if x is NaN,
regardless of whether your compiler is compliant or not:

#define SCALAR_IS_NAN(x) (((x) != (x)) || ((x) < (x)))

If your compiler breaks this test, then UMFPACK will fail catastrophically if it encounters a
NaN. You will not just see NaN’s in your output; UMFPACK will probably crash with a segmen-
tation fault. In that case, you might try to see if the common (but non-ANSI C) routine isnan is

32

available, and modify the macro SCALAR IS NAN in umf version.h accordingly. The simpler (and
IEEE 754-compliant) test (x != x) is always true with Linux on a PC, and on every Unix compiler
I have tested.

Some compilers will complain about the Fortran BLAS being defined implicitly. C prototypes
for the BLAS are not used, except the C-BLAS. Some compilers will complain about unrecognized
#pragma’s. You may safely ignore all of these warnings.

9 Future work

Here are a few features that are not in the current version of UMFPACK, in no particular order.
They may appear in a future release of UMFPACK. If you are interested, let me know and I could
consider including them:

1. Remove the restriction that the column-oriented form be given with sorted columns. This
has already been done in AMD Version 2.0.

2. Future versions may have different default Control parameters. Future versions may return
more statistics in the Info array, and they may use more entries in the Control array.
These two arrays will probably become larger, since there are very few unused entries. If
they change in size, the constants UMFPACK CONTROL and UMFPACK INFO defined in umfpack.h
will be changed to reflect their new size. Your C program should use these constants when
declaring the size of these two arrays. Do not define them as Control [20] and Info [90].

3. Forward/back solvers for the conventional row or column-form data structure for L and U
(the output of umfpack * di get numeric). This would enable a separate solver that could be
used to write a MATLAB mexFunction x = lu refine (A, b, L, U, P, Q, R) that gives
MATLAB access to the iterative refinement algorithm with sparse backward error analysis. It
would also be easier to handle sparse right-hand sides in this data structure, and end up with
good asymptotic run-time in this case (particularly for Lx = b; see [24]). See also CSparse
and CXSparse for software for handling sparse right-hand sides.

4. Complex absolute value computations could be based on FDLIBM (see
http://www.netlib.org/fdlibm), using the hypot(x,y) routine.

5. When using iterative refinement, the residual Ax− b could be returned by umfpack solve.

6. The solve routines could handle multiple right-hand sides, and sparse right-hand sides. See
umfpack solve for the MATLAB version of this feature. See also CSparse and CXSparse for
software for handling sparse right-hand sides.

7. An option to redirect the error and diagnostic output.

8. Permutation to block-triangular-form [17] for the C-callable interface. There are two routines
in the ACM Collected Algorithms (529 and 575) [14, 16] that could be translated from Fortran
to C and included in UMFPACK. This would result in better performance for matrices from
circuit simulation and chemical process engineering. See umfpack btf.m for the MATLAB
version of this feature. KLU includes this feature. See also cs dmperm in CSparse and
CXSparse.

9. The ability to use user-provided work arrays, so that malloc, free, and realloc realloc are
not called. The umfpack * wsolve routine is one example.

33

10. A method that takes time proportional to the number of nonzeros in A to compute the
symbolic factorization [23]. This would improve the performance of the symmetric and 2-by-
2 strategies, and the unsymmetric strategy when dense rows are present. The current method
takes time proportional to the number of nonzeros in the upper bound of U. The method
used in UMFPACK exploits super-columns, however, so this bound is rarely reached. See
cs counts in CSparse and CXSparse, and cholmod analyze in CHOLMOD.

11. Other basic sparse matrix operations, such as sparse matrix multiplication, could be included.

12. A more complete Fortran interface.

13. A C++ interface.

14. A parallel version using MPI. This would require a large amount of effort.

34

10 The primary UMFPACK routines

The include files are the same for all four versions of UMFPACK. The generic integer type is Int,
which is an int or UF long, depending on which version of UMFPACK you are using.

10.1 umfpack * symbolic

int umfpack_di_symbolic

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_dl_symbolic

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_symbolic

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_zl_symbolic

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

double int Syntax:

35

#include "umfpack.h"

void *Symbolic ;

int n_row, n_col, *Ap, *Ai, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ;

status = umfpack_di_symbolic (n_row, n_col, Ap, Ai, Ax,

&Symbolic, Control, Info) ;

double UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

UF_long n_row, n_col, *Ap, *Ai, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ;

status = umfpack_dl_symbolic (n_row, n_col, Ap, Ai, Ax,

&Symbolic, Control, Info) ;

complex int Syntax:

#include "umfpack.h"

void *Symbolic ;

int n_row, n_col, *Ap, *Ai, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ;

status = umfpack_zi_symbolic (n_row, n_col, Ap, Ai, Ax, Az,

&Symbolic, Control, Info) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

UF_long n_row, n_col, *Ap, *Ai, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ;

status = umfpack_zl_symbolic (n_row, n_col, Ap, Ai, Ax, Az,

&Symbolic, Control, Info) ;

packed complex Syntax:

Same as above, except Az is NULL.

Purpose:

Given nonzero pattern of a sparse matrix A in column-oriented form,

umfpack_*_symbolic performs a column pre-ordering to reduce fill-in

(using COLAMD or AMD) and a symbolic factorization. This is required

before the matrix can be numerically factorized with umfpack_*_numeric.

If you wish to bypass the COLAMD or AMD pre-ordering and provide your own

ordering, use umfpack_*_qsymbolic instead.

Since umfpack_*_symbolic and umfpack_*_qsymbolic are very similar, options

for both routines are discussed below.

For the following discussion, let S be the submatrix of A obtained after

eliminating all pivots of zero Markowitz cost. S has dimension

(n_row-n1-nempty_row) -by- (n_col-n1-nempty_col), where

n1 = Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS],

nempty_row = Info [UMFPACK_NEMPTY_ROW] and

nempty_col = Info [UMFPACK_NEMPTY_COL].

Returns:

36

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int n_row ; Input argument, not modified.

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n_col+1] ; Input argument, not modified.

Ap is an integer array of size n_col+1. On input, it holds the

"pointers" for the column form of the sparse matrix A. Column j of

the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first

entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all

j in the range 0 to n_col-1. The value nz = Ap [n_col] is thus the

total number of entries in the pattern of the matrix A. nz must be

greater than or equal to zero.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The nonzero pattern (row indices) for column j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j

must be in ascending order, and no duplicate row indices may be present.

Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).

See umfpack_*_triplet_to_col for how to sort the columns of a matrix

and sum up the duplicate entries. See umfpack_*_report_matrix for how

to print the matrix A.

double Ax [nz] ; Optional input argument, not modified.

Size 2*nz for packed complex case.

The numerical values of the sparse matrix A. The nonzero pattern (row

indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and

the corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)]. Used only by the 2-by-2 strategy to

determine whether entries are "large" or "small". You do not have to

pass the same numerical values to umfpack_*_numeric. If Ax is not

present (a (double *) NULL pointer), then any entry in A is assumed to

be "large".

double Az [nz] ; Optional input argument, not modified, for complex

versions.

For the complex versions, this holds the imaginary part of A. The

imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)].

If Az is NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

Used by the 2-by-2 strategy only. See the description of Ax, above.

void **Symbolic ; Output argument.

**Symbolic is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

37

pointer to the Symbolic object (if successful), or (void *) NULL if

a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used (the defaults are suitable for all matrices,

ranging from those with highly unsymmetric nonzero pattern, to

symmetric matrices). Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_STRATEGY]: This is the most important control

parameter. It determines what kind of ordering and pivoting

strategy that UMFPACK should use. There are 4 options:

UMFPACK_STRATEGY_AUTO: This is the default. The input matrix is

analyzed to determine how symmetric the nonzero pattern is, and

how many entries there are on the diagonal. It then selects one

of the following strategies. Refer to the User Guide for a

description of how the strategy is automatically selected.

UMFPACK_STRATEGY_UNSYMMETRIC: Use the unsymmetric strategy. COLAMD

is used to order the columns of A, followed by a postorder of

the column elimination tree. No attempt is made to perform

diagonal pivoting. The column ordering is refined during

factorization.

In the numerical factorization, the

Control [UMFPACK_SYM_PIVOT_TOLERANCE] parameter is ignored. A

pivot is selected if its magnitude is >=

Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the

largest entry in its column.

UMFPACK_STRATEGY_SYMMETRIC: Use the symmetric strategy

In this method, the approximate minimum degree

ordering (AMD) is applied to A+A’, followed by a postorder of

the elimination tree of A+A’. UMFPACK attempts to perform

diagonal pivoting during numerical factorization. No refinement

of the column pre-ordering is performed during factorization.

In the numerical factorization, a nonzero entry on the diagonal

is selected as the pivot if its magnitude is >= Control

[UMFPACK_SYM_PIVOT_TOLERANCE] (default 0.001) times the largest

entry in its column. If this is not acceptable, then an

off-diagonal pivot is selected with magnitude >= Control

[UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry

in its column.

UMFPACK_STRATEGY_2BY2: a row permutation P2 is found that places

large entries on the diagonal. The matrix P2*A is then

factorized using the symmetric strategy, described above.

Refer to the User Guide for more information.

Control [UMFPACK_DENSE_COL]:

If COLAMD is used, columns with more than

max (16, Control [UMFPACK_DENSE_COL] * 16 * sqrt (n_row)) entries

are placed placed last in the column pre-ordering. Default: 0.2.

38

Control [UMFPACK_DENSE_ROW]:

Rows with more than max (16, Control [UMFPACK_DENSE_ROW] * 16 *

sqrt (n_col)) entries are treated differently in the COLAMD

pre-ordering, and in the internal data structures during the

subsequent numeric factorization. Default: 0.2.

Control [UMFPACK_AMD_DENSE]: rows/columns in A+A’ with more than

max (16, Control [UMFPACK_AMD_DENSE] * sqrt (n)) entries

(where n = n_row = n_col) are ignored in the AMD pre-ordering.

Default: 10.

Control [UMFPACK_BLOCK_SIZE]: the block size to use for Level-3 BLAS

in the subsequent numerical factorization (umfpack_*_numeric).

A value less than 1 is treated as 1. Default: 32. Modifying this

parameter affects when updates are applied to the working frontal

matrix, and can indirectly affect fill-in and operation count.

Assuming the block size is large enough (8 or so), this parameter

has a modest effect on performance.

Control [UMFPACK_2BY2_TOLERANCE]: a diagonal entry S (k,k) is

considered "small" if it is < tol * max (abs (S (:,k))), where S a

submatrix of the scaled input matrix, with pivots of zero Markowitz

cost removed.

Control [UMFPACK_SCALE]: See umfpack_numeric.h for a description.

Only affects the 2-by-2 strategy. Default: UMFPACK_SCALE_SUM.

Control [UMFPACK_FIXQ]: If > 0, then the pre-ordering Q is not modified

during numeric factorization. If < 0, then Q may be modified. If

zero, then this is controlled automatically (the unsymmetric

strategy modifies Q, the others do not). Default: 0.

Control [UMFPACK_AGGRESSIVE]: If nonzero, aggressive absorption is used

in COLAMD and AMD. Default: 1.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Contains statistics about the symbolic analysis. If a (double *) NULL

pointer is passed, then no statistics are returned in Info (this is not

an error condition). The entire Info array is cleared (all entries set

to -1) and then the following statistics are computed:

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

Each column of the input matrix contained row indices

in increasing order, with no duplicates. Only in this case

does umfpack_*_symbolic compute a valid symbolic factorization.

For the other cases below, no Symbolic object is created

(*Symbolic is (void *) NULL).

UMFPACK_ERROR_n_nonpositive

n is less than or equal to zero.

UMFPACK_ERROR_invalid_matrix

39

Number of entries in the matrix is negative, Ap [0] is nonzero,

a column has a negative number of entries, a row index is out of

bounds, or the columns of input matrix were jumbled (unsorted

columns or duplicate entries).

UMFPACK_ERROR_out_of_memory

Insufficient memory to perform the symbolic analysis. If the

analysis requires more than 2GB of memory and you are using

the 32-bit ("int") version of UMFPACK, then you are guaranteed

to run out of memory. Try using the 64-bit version of UMFPACK.

UMFPACK_ERROR_argument_missing

One or more required arguments is missing.

UMFPACK_ERROR_internal_error

Something very serious went wrong. This is a bug.

Please contact the author (davis@cise.ufl.edu).

Info [UMFPACK_NROW]: the value of the input argument n_row.

Info [UMFPACK_NCOL]: the value of the input argument n_col.

Info [UMFPACK_NZ]: the number of entries in the input matrix

(Ap [n_col]).

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit,

for memory usage statistics below.

Info [UMFPACK_SIZE_OF_INT]: the number of bytes in an int.

Info [UMFPACK_SIZE_OF_LONG]: the number of bytes in a UF_long.

Info [UMFPACK_SIZE_OF_POINTER]: the number of bytes in a void *

pointer.

Info [UMFPACK_SIZE_OF_ENTRY]: the number of bytes in a numerical entry.

Info [UMFPACK_NDENSE_ROW]: number of "dense" rows in A. These rows are

ignored when the column pre-ordering is computed in COLAMD. They

are also treated differently during numeric factorization. If > 0,

then the matrix had to be re-analyzed by UMF_analyze, which does

not ignore these rows.

Info [UMFPACK_NEMPTY_ROW]: number of "empty" rows in A, as determined

These are rows that either have no entries, or whose entries are

all in pivot columns of zero-Markowitz-cost pivots.

Info [UMFPACK_NDENSE_COL]: number of "dense" columns in A. COLAMD

orders these columns are ordered last in the factorization, but

before "empty" columns.

Info [UMFPACK_NEMPTY_COL]: number of "empty" columns in A. These are

columns that either have no entries, or whose entries are all in

pivot rows of zero-Markowitz-cost pivots. These columns are

ordered last in the factorization, to the right of "dense" columns.

40

Info [UMFPACK_SYMBOLIC_DEFRAG]: number of garbage collections

performed during ordering and symbolic pre-analysis.

Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units)

required for umfpack_*_symbolic to complete. This count includes

the size of the Symbolic object itself, which is also reported in

Info [UMFPACK_SYMBOLIC_SIZE].

Info [UMFPACK_SYMBOLIC_SIZE]: the final size of the Symbolic object (in

Units). This is fairly small, roughly 2*n to 13*n integers,

depending on the matrix.

Info [UMFPACK_VARIABLE_INIT_ESTIMATE]: the Numeric object contains two

parts. The first is fixed in size (O (n_row+n_col)). The

second part holds the sparse LU factors and the contribution blocks

from factorized frontal matrices. This part changes in size during

factorization. Info [UMFPACK_VARIABLE_INIT_ESTIMATE] is the exact

size (in Units) required for this second variable-sized part in

order for the numerical factorization to start.

Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]: the estimated peak size (in

Units) of the variable-sized part of the Numeric object. This is

usually an upper bound, but that is not guaranteed.

Info [UMFPACK_VARIABLE_FINAL_ESTIMATE]: the estimated final size (in

Units) of the variable-sized part of the Numeric object. This is

usually an upper bound, but that is not guaranteed. It holds just

the sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in

Units) of the entire Numeric object (both fixed-size and variable-

sized parts), which holds the LU factorization (including the L, U,

P and Q matrices).

Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of

memory (in Units) required by umfpack_*_symbolic and

umfpack_*_numeric to perform both the symbolic and numeric

factorization. This is the larger of the amount of memory needed

in umfpack_*_numeric itself, and the amount of memory needed in

umfpack_*_symbolic (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The

count includes the size of both the Symbolic and Numeric objects

themselves. It can be a very loose upper bound, particularly when

the symmetric or 2-by-2 strategies are used.

Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point

operations required to factorize the matrix. This is a "true"

theoretical estimate of the number of flops that would be performed

by a flop-parsimonious sparse LU algorithm. It assumes that no

extra flops are performed except for what is strictly required to

compute the LU factorization. It ignores, for example, the flops

performed by umfpack_di_numeric to add contribution blocks of

frontal matrices together. If L and U are the upper bound on the

pattern of the factors, then this flop count estimate can be

represented in MATLAB (for real matrices, not complex) as:

Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L

Unz = full (sum (spones (U’)))’ - 1 ; % nz in each row of U

flops = 2*Lnz*Unz + sum (Lnz) ;

41

The actual "true flop" count found by umfpack_*_numeric will be

less than this estimate.

For the real version, only (+ - * /) are counted. For the complex

version, the following counts are used:

operation flops

c = 1/b 6

c = a*b 6

c -= a*b 8

Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in

L, including the diagonal. Since L is unit-diagonal, the diagonal

of L is not stored. This estimate is a strict upper bound on the

actual nonzeros in L to be computed by umfpack_*_numeric.

Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in

U, including the diagonal. This estimate is a strict upper bound on

the actual nonzeros in U to be computed by umfpack_*_numeric.

Info [UMFPACK_MAX_FRONT_SIZE_ESTIMATE]: estimate of the size of the

largest frontal matrix (# of entries), for arbitrary partial

pivoting during numerical factorization.

Info [UMFPACK_SYMBOLIC_TIME]: The CPU time taken, in seconds.

Info [UMFPACK_SYMBOLIC_WALLTIME]: The wallclock time taken, in seconds.

Info [UMFPACK_STRATEGY_USED]: The ordering strategy used:

UMFPACK_STRATEGY_SYMMETRIC, UMFPACK_STRATEGY_UNSYMMETRIC, or

UMFPACK_STRATEGY_2BY2.

Info [UMFPACK_ORDERING_USED]: The ordering method used:

UMFPACK_ORDERING_COLAMD or UMFPACK_ORDERING_AMD. It can be

UMFPACK_ORDERING_GIVEN for umfpack_*_qsymbolic.

Info [UMFPACK_QFIXED]: 1 if the column pre-ordering will be refined

during numerical factorization, 0 if not.

Info [UMFPACK_DIAG_PREFERED]: 1 if diagonal pivoting will be attempted,

0 if not.

Info [UMFPACK_COL_SINGLETONS]: the matrix A is analyzed by first

eliminating all pivots with zero Markowitz cost. This count is the

number of these pivots with exactly one nonzero in their pivot

column.

Info [UMFPACK_ROW_SINGLETONS]: the number of zero-Markowitz-cost

pivots with exactly one nonzero in their pivot row.

Info [UMFPACK_PATTERN_SYMMETRY]: the symmetry of the pattern of S.

Info [UMFPACK_NZ_A_PLUS_AT]: the number of off-diagonal entries in S+S’.

Info [UMFPACK_NZDIAG]: the number of entries on the diagonal of S.

Info [UMFPACK_N2]: if S is square, and nempty_row = nempty_col, this

is equal to n_row - n1 - nempty_row.

42

Info [UMFPACK_S_SYMMETRIC]: 1 if S is square and its diagonal has been

preserved, 0 otherwise.

Info [UMFPACK_MAX_FRONT_NROWS_ESTIMATE]: estimate of the max number of

rows in any frontal matrix, for arbitrary partial pivoting.

Info [UMFPACK_MAX_FRONT_NCOLS_ESTIMATE]: estimate of the max number of

columns in any frontal matrix, for arbitrary partial pivoting.

--

The next four statistics are computed only if AMD is used:

--

Info [UMFPACK_SYMMETRIC_LUNZ]: The number of nonzeros in L and U,

assuming no pivoting during numerical factorization, and assuming a

zero-free diagonal of U. Excludes the entries on the diagonal of

L. If the matrix has a purely symmetric nonzero pattern, this is

often a lower bound on the nonzeros in the actual L and U computed

in the numerical factorization, for matrices that fit the criteria

for the "symmetric" strategy.

Info [UMFPACK_SYMMETRIC_FLOPS]: The floating-point operation count in

the numerical factorization phase, assuming no pivoting. If the

pattern of the matrix is symmetric, this is normally a lower bound

on the floating-point operation count in the actual numerical

factorization, for matrices that fit the criteria for the symmetric

or 2-by-2 strategies

Info [UMFPACK_SYMMETRIC_NDENSE]: The number of "dense" rows/columns of

S+S’ that were ignored during the AMD ordering. These are placed

last in the output order. If > 0, then the

Info [UMFPACK_SYMMETRIC_*] statistics, above are rough upper bounds.

Info [UMFPACK_SYMMETRIC_DMAX]: The maximum number of nonzeros in any

column of L, if no pivoting is performed during numerical

factorization. Excludes the part of the LU factorization for

pivots with zero Markowitz cost.

--

The following statistics are computed only if the 2-by-2 strategy is

used or attempted:

--

Info [UMFPACK_2BY2_NWEAK]: the number of small diagonal entries in S.

Info [UMFPACK_2BY2_UNMATCHED]: the number of small diagonal entries

in P2*S.

Info [UMFPACK_2BY2_PATTERN_SYMMETRY]: the symmetry of P2*S.

Info [UMFPACK_2BY2_NZ_PA_PLUS_AT]: the number of off-diagonal entries

in (P2*S)+(P2*S)’.

Info [UMFPACK_2BY2_NZDIAG]: the number of nonzero entries on the

diagonal of P2*S.

43

At the start of umfpack_*_symbolic, all of Info is set of -1, and then

after that only the above listed Info [...] entries are accessed.

Future versions might modify different parts of Info.

44

10.2 umfpack * numeric

int umfpack_di_numeric

(

const int Ap [],

const int Ai [],

const double Ax [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_dl_numeric

(

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_numeric

(

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_zl_numeric

(

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

int *Ap, *Ai, status ;

double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info);

double UF_long Syntax:

#include "umfpack.h"

45

void *Symbolic, *Numeric ;

UF_long *Ap, *Ai, status ;

double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info);

complex int Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

int *Ap, *Ai, status ;

double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric,

Control, Info) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

UF_long *Ap, *Ai, status ;

double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric,

Control, Info) ;

packed complex Syntax:

Same as above, except that Az is NULL.

Purpose:

Given a sparse matrix A in column-oriented form, and a symbolic analysis

computed by umfpack_*_*symbolic, the umfpack_*_numeric routine performs the

numerical factorization, PAQ=LU, PRAQ=LU, or P(R\A)Q=LU, where P and Q are

permutation matrices (represented as permutation vectors), R is the row

scaling, L is unit-lower triangular, and U is upper triangular. This is

required before the system Ax=b (or other related linear systems) can be

solved. umfpack_*_numeric can be called multiple times for each call to

umfpack_*_*symbolic, to factorize a sequence of matrices with identical

nonzero pattern. Simply compute the Symbolic object once, with

umfpack_*_*symbolic, and reuse it for subsequent matrices. This routine

safely detects if the pattern changes, and sets an appropriate error code.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int Ap [n_col+1] ; Input argument, not modified.

This must be identical to the Ap array passed to umfpack_*_*symbolic.

The value of n_col is what was passed to umfpack_*_*symbolic (this is

held in the Symbolic object).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

This must be identical to the Ai array passed to umfpack_*_*symbolic.

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].

Size 2*nz for packed complex case.

46

The numerical values of the sparse matrix A. The nonzero pattern (row

indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and

the corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)].

double Az [nz] ; Input argument, not modified, for complex versions.

For the complex versions, this holds the imaginary part of A. The

imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)].

If Az is NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by

umfpack_*_*symbolic. The Symbolic object is not modified by

umfpack_*_numeric.

void **Numeric ; Output argument.

**Numeric is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Numeric object (if successful), or (void *) NULL if

a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for

threshold partial pivoting with row interchanges. In any given

column, an entry is numerically acceptable if its absolute value is

greater than or equal to Control [UMFPACK_PIVOT_TOLERANCE] times

the largest absolute value in the column. A value of 1.0 gives true

partial pivoting. If less than or equal to zero, then any nonzero

entry is numerically acceptable as a pivot. Default: 0.1.

Smaller values tend to lead to sparser LU factors, but the solution

to the linear system can become inaccurate. Larger values can lead

to a more accurate solution (but not always), and usually an

increase in the total work.

For complex matrices, a cheap approximate of the absolute value

is used for the threshold partial pivoting test (|a_real| + |a_imag|

instead of the more expensive-to-compute exact absolute value

sqrt (a_real^2 + a_imag^2)).

Control [UMFPACK_SYM_PIVOT_TOLERANCE]:

If diagonal pivoting is attempted (the symmetric or symmetric-2by2

strategies are used) then this parameter is used to control when the

diagonal entry is selected in a given pivot column. The absolute

47

value of the entry must be >= Control [UMFPACK_SYM_PIVOT_TOLERANCE]

times the largest absolute value in the column. A value of zero

will ensure that no off-diagonal pivoting is performed, except that

zero diagonal entries are not selected if there are any off-diagonal

nonzero entries.

If an off-diagonal pivot is selected, an attempt is made to restore

symmetry later on. Suppose A (i,j) is selected, where i != j.

If column i has not yet been selected as a pivot column, then

the entry A (j,i) is redefined as a "diagonal" entry, except that

the tighter tolerance (Control [UMFPACK_PIVOT_TOLERANCE]) is

applied. This strategy has an effect similar to 2-by-2 pivoting

for symmetric indefinite matrices. If a 2-by-2 block pivot with

nonzero structure

i j

i: 0 x

j: x 0

is selected in a symmetric indefinite factorization method, the

2-by-2 block is inverted and a rank-2 update is applied. In

UMFPACK, this 2-by-2 block would be reordered as

j i

i: x 0

j: 0 x

In both cases, the symmetry of the Schur complement is preserved.

Control [UMFPACK_SCALE]: Note that the user’s input matrix is

never modified, only an internal copy is scaled.

There are three valid settings for this parameter. If any other

value is provided, the default is used.

UMFPACK_SCALE_NONE: no scaling is performed.

UMFPACK_SCALE_SUM: each row of the input matrix A is divided by

the sum of the absolute values of the entries in that row.

The scaled matrix has an infinity norm of 1.

UMFPACK_SCALE_MAX: each row of the input matrix A is divided by

the maximum the absolute values of the entries in that row.

In the scaled matrix the largest entry in each row has

a magnitude exactly equal to 1.

Note that for complex matrices, a cheap approximate absolute value

is used, |a_real| + |a_imag|, instead of the exact absolute value

sqrt ((a_real)^2 + (a_imag)^2).

Scaling is very important for the "symmetric" strategy when

diagonal pivoting is attempted. It also improves the performance

of the "unsymmetric" strategy.

Default: UMFPACK_SCALE_SUM.

Control [UMFPACK_ALLOC_INIT]:

When umfpack_*_numeric starts, it allocates memory for the Numeric

48

object. Part of this is of fixed size (approximately n double’s +

12*n integers). The remainder is of variable size, which grows to

hold the LU factors and the frontal matrices created during

factorization. A estimate of the upper bound is computed by

umfpack_*_*symbolic, and returned by umfpack_*_*symbolic in

Info [UMFPACK_VARIABLE_PEAK_ESTIMATE] (in Units).

If Control [UMFPACK_ALLOC_INIT] is >= 0, umfpack_*_numeric initially

allocates space for the variable-sized part equal to this estimate

times Control [UMFPACK_ALLOC_INIT]. Typically, for matrices for

which the "unsymmetric" strategy applies, umfpack_*_numeric needs

only about half the estimated memory space, so a setting of 0.5 or

0.6 often provides enough memory for umfpack_*_numeric to factorize

the matrix with no subsequent increases in the size of this block.

If the matrix is ordered via AMD, then this non-negative parameter

is ignored. The initial allocation ratio computed automatically,

as 1.2 * (nz + Info [UMFPACK_SYMMETRIC_LUNZ]) /

(Info [UMFPACK_LNZ_ESTIMATE] + Info [UMFPACK_UNZ_ESTIMATE] -

min (n_row, n_col)).

If Control [UMFPACK_ALLOC_INIT] is negative, then umfpack_*_numeric

allocates a space with initial size (in Units) equal to

(-Control [UMFPACK_ALLOC_INIT]).

Regardless of the value of this parameter, a space equal to or

greater than the the bare minimum amount of memory needed to start

the factorization is always initially allocated. The bare initial

memory required is returned by umfpack_*_*symbolic in

Info [UMFPACK_VARIABLE_INIT_ESTIMATE] (an exact value, not an

estimate).

If the variable-size part of the Numeric object is found to be too

small sometime after numerical factorization has started, the memory

is increased in size by a factor of 1.2. If this fails, the

request is reduced by a factor of 0.95 until it succeeds, or until

it determines that no increase in size is possible. Garbage

collection then occurs.

The strategy of attempting to "malloc" a working space, and

re-trying with a smaller space, may not work when UMFPACK is used

as a mexFunction MATLAB, since mxMalloc aborts the mexFunction if it

fails. This issue does not affect the use of UMFPACK as a part of

the built-in x=A\b in MATLAB 6.5 and later.

If you are using the umfpack mexFunction, decrease the magnitude of

Control [UMFPACK_ALLOC_INIT] if you run out of memory in MATLAB.

Default initial allocation size: 0.7. Thus, with the default

control settings and the "unsymmetric" strategy, the upper-bound is

reached after two reallocations (0.7 * 1.2 * 1.2 = 1.008).

Changing this parameter has little effect on fill-in or operation

count. It has a small impact on run-time (the extra time required

to do the garbage collection and memory reallocation).

Control [UMFPACK_FRONT_ALLOC_INIT]:

When UMFPACK starts the factorization of each "chain" of frontal

49

matrices, it allocates a working array to hold the frontal matrices

as they are factorized. The symbolic factorization computes the

size of the largest possible frontal matrix that could occur during

the factorization of each chain.

If Control [UMFPACK_FRONT_ALLOC_INIT] is >= 0, the following

strategy is used. If the AMD ordering was used, this non-negative

parameter is ignored. A front of size (d+2)*(d+2) is allocated,

where d = Info [UMFPACK_SYMMETRIC_DMAX]. Otherwise, a front of

size Control [UMFPACK_FRONT_ALLOC_INIT] times the largest front

possible for this chain is allocated.

If Control [UMFPACK_FRONT_ALLOC_INIT] is negative, then a front of

size (-Control [UMFPACK_FRONT_ALLOC_INIT]) is allocated (where the

size is in terms of the number of numerical entries). This is done

regardless of the ordering method or ordering strategy used.

Default: 0.5.

Control [UMFPACK_DROPTOL]:

Entries in L and U with absolute value less than or equal to the

drop tolerance are removed from the data structures (unless leaving

them there reduces memory usage by reducing the space required

for the nonzero pattern of L and U).

Default: 0.0.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the numeric factorization. If a

(double *) NULL pointer is passed, then no statistics are returned in

Info (this is not an error condition). The following statistics are

computed in umfpack_*_numeric:

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

Numeric factorization was successful. umfpack_*_numeric

computed a valid numeric factorization.

UMFPACK_WARNING_singular_matrix

Numeric factorization was successful, but the matrix is

singular. umfpack_*_numeric computed a valid numeric

factorization, but you will get a divide by zero in

umfpack_*_*solve. For the other cases below, no Numeric object

is created (*Numeric is (void *) NULL).

UMFPACK_ERROR_out_of_memory

Insufficient memory to complete the numeric factorization.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing.

50

UMFPACK_ERROR_invalid_Symbolic_object

Symbolic object provided as input is invalid.

UMFPACK_ERROR_different_pattern

The pattern (Ap and/or Ai) has changed since the call to

umfpack_*_*symbolic which produced the Symbolic object.

Info [UMFPACK_NROW]: the value of n_row stored in the Symbolic object.

Info [UMFPACK_NCOL]: the value of n_col stored in the Symbolic object.

Info [UMFPACK_NZ]: the number of entries in the input matrix.

This value is obtained from the Symbolic object.

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory

usage statistics below.

Info [UMFPACK_VARIABLE_INIT]: the initial size (in Units) of the

variable-sized part of the Numeric object. If this differs from

Info [UMFPACK_VARIABLE_INIT_ESTIMATE], then the pattern (Ap and/or

Ai) has changed since the last call to umfpack_*_*symbolic, which is

an error condition.

Info [UMFPACK_VARIABLE_PEAK]: the peak size (in Units) of the

variable-sized part of the Numeric object. This size is the amount

of space actually used inside the block of memory, not the space

allocated via UMF_malloc. You can reduce UMFPACK’s memory

requirements by setting Control [UMFPACK_ALLOC_INIT] to the ratio

Info [UMFPACK_VARIABLE_PEAK] / Info[UMFPACK_VARIABLE_PEAK_ESTIMATE].

This will ensure that no memory reallocations occur (you may want to

add 0.001 to make sure that integer roundoff does not lead to a

memory size that is 1 Unit too small; otherwise, garbage collection

and reallocation will occur).

Info [UMFPACK_VARIABLE_FINAL]: the final size (in Units) of the

variable-sized part of the Numeric object. It holds just the

sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the

entire Numeric object, including the final size of the variable

part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE],

an estimate, was computed by umfpack_*_*symbolic. The estimate is

normally an upper bound on the actual final size, but this is not

guaranteed.

Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of

both umfpack_*_*symbolic and umfpack_*_numeric. An estimate,

Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by

umfpack_*_*symbolic. The estimate is normally an upper bound on the

actual peak usage, but this is not guaranteed. With testing on

hundreds of matrix arising in real applications, I have never

observed a matrix where this estimate or the Numeric size estimate

was less than the actual result, but this is theoretically possible.

Please send me one if you find such a matrix.

Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point

operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE],

51

was computed by umfpack_*_*symbolic. The estimate is guaranteed to

be an upper bound on this flop count. The flop count excludes

"useless" flops on zero values, flops performed during the pivot

search (for tentative updates and assembly of candidate columns),

and flops performed to add frontal matrices together.

For the real version, only (+ - * /) are counted. For the complex

version, the following counts are used:

operation flops

c = 1/b 6

c = a*b 6

c -= a*b 8

Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L,

including the diagonal. This excludes any zero entries in L,

although some of these are stored in the Numeric object. The

Info [UMFPACK_LU_ENTRIES] statistic does account for all

explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE],

an estimate, was computed by umfpack_*_*symbolic. The estimate is

guaranteed to be an upper bound on Info [UMFPACK_LNZ].

Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U,

including the diagonal. This excludes any zero entries in U,

although some of these are stored in the Numeric object. The

Info [UMFPACK_LU_ENTRIES] statistic does account for all

explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE],

an estimate, was computed by umfpack_*_*symbolic. The estimate is

guaranteed to be an upper bound on Info [UMFPACK_UNZ].

Info [UMFPACK_NUMERIC_DEFRAG]: The number of garbage collections

performed during umfpack_*_numeric, to compact the contents of the

variable-sized workspace used by umfpack_*_numeric. No estimate was

computed by umfpack_*_*symbolic. In the current version of UMFPACK,

garbage collection is performed and then the memory is reallocated,

so this statistic is the same as Info [UMFPACK_NUMERIC_REALLOC],

below. It may differ in future releases.

Info [UMFPACK_NUMERIC_REALLOC]: The number of times that the Numeric

object was increased in size from its initial size. A rough upper

bound on the peak size of the Numeric object was computed by

umfpack_*_*symbolic, so reallocations should be rare. However, if

umfpack_*_numeric is unable to allocate that much storage, it

reduces its request until either the allocation succeeds, or until

it gets too small to do anything with. If the memory that it

finally got was small, but usable, then the reallocation count

could be high. No estimate of this count was computed by

umfpack_*_*symbolic.

Info [UMFPACK_NUMERIC_COSTLY_REALLOC]: The number of times that the

system realloc library routine (or mxRealloc for the mexFunction)

had to move the workspace. Realloc can sometimes increase the size

of a block of memory without moving it, which is much faster. This

statistic will always be <= Info [UMFPACK_NUMERIC_REALLOC]. If your

memory space is fragmented, then the number of "costly" realloc’s

will be equal to Info [UMFPACK_NUMERIC_REALLOC].

Info [UMFPACK_COMPRESSED_PATTERN]: The number of integers used to

represent the pattern of L and U.

52

Info [UMFPACK_LU_ENTRIES]: The total number of numerical values that

are stored for the LU factors. Some of the values may be explicitly

zero in order to save space (allowing for a smaller compressed

pattern).

Info [UMFPACK_NUMERIC_TIME]: The CPU time taken, in seconds.

Info [UMFPACK_RCOND]: A rough estimate of the condition number, equal

to min (abs (diag (U))) / max (abs (diag (U))), or zero if the

diagonal of U is all zero.

Info [UMFPACK_UDIAG_NZ]: The number of numerically nonzero values on

the diagonal of U.

Info [UMFPACK_UMIN]: the smallest absolute value on the diagonal of U.

Info [UMFPACK_UMAX]: the smallest absolute value on the diagonal of U.

Info [UMFPACK_MAX_FRONT_SIZE]: the size of the

largest frontal matrix (number of entries).

Info [UMFPACK_NUMERIC_WALLTIME]: The wallclock time taken, in seconds.

Info [UMFPACK_MAX_FRONT_NROWS]: the max number of

rows in any frontal matrix.

Info [UMFPACK_MAX_FRONT_NCOLS]: the max number of

columns in any frontal matrix.

Info [UMFPACK_WAS_SCALED]: the scaling used, either UMFPACK_SCALE_NONE,

UMFPACK_SCALE_SUM, or UMFPACK_SCALE_MAX.

Info [UMFPACK_RSMIN]: if scaling is performed, the smallest scale factor

for any row (either the smallest sum of absolute entries, or the

smallest maximum of absolute entries).

Info [UMFPACK_RSMAX]: if scaling is performed, the largest scale factor

for any row (either the largest sum of absolute entries, or the

largest maximum of absolute entries).

Info [UMFPACK_ALLOC_INIT_USED]: the initial allocation parameter used.

Info [UMFPACK_FORCED_UPDATES]: the number of BLAS-3 updates to the

frontal matrices that were required because the frontal matrix

grew larger than its current working array.

Info [UMFPACK_NOFF_DIAG]: number of off-diagonal pivots selected, if the

symmetric or 2-by-2 strategies are used.

Info [UMFPACK_NZDROPPED]: the number of entries smaller in absolute

value than Control [UMFPACK_DROPTOL] that were dropped from L and U.

Note that entries on the diagonal of U are never dropped.

Info [UMFPACK_ALL_LNZ]: the number of entries in L, including the

diagonal, if no small entries are dropped.

Info [UMFPACK_ALL_UNZ]: the number of entries in U, including the

diagonal, if no small entries are dropped.

53

Only the above listed Info [...] entries are accessed. The remaining

entries of Info are not accessed or modified by umfpack_*_numeric.

Future versions might modify different parts of Info.

54

10.3 umfpack * solve

int umfpack_di_solve

(

int sys,

const int Ap [],

const int Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_dl_solve

(

UF_long sys,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_solve

(

int sys,

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_zl_solve

(

UF_long sys,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"

55

void *Numeric ;

int status, *Ap, *Ai, sys ;

double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status, *Ap, *Ai, sys ;

double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

status = umfpack_dl_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

int status, *Ap, *Ai, sys ;

double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],

Control [UMFPACK_CONTROL] ;

status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status, *Ap, *Ai, sys ;

double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],

Control [UMFPACK_CONTROL] ;

status = umfpack_zl_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info) ;

packed complex Syntax:

Same as above, Xz, Bz, and Az are NULL.

Purpose:

Given LU factors computed by umfpack_*_numeric (PAQ=LU, PRAQ=LU, or

P(R\A)Q=LU) and the right-hand-side, B, solve a linear system for the

solution X. Iterative refinement is optionally performed. Only square

systems are handled. Singular matrices result in a divide-by-zero for all

systems except those involving just the matrix L. Iterative refinement is

not performed for singular matrices. In the discussion below, n is equal

to n_row and n_col, because only square systems are handled.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int sys ; Input argument, not modified.

Defines which system to solve. (’) is the linear algebraic transpose

(complex conjugate if A is complex), and (.’) is the array transpose.

sys value system solved

56

UMFPACK_A Ax=b

UMFPACK_At A’x=b

UMFPACK_Aat A.’x=b

UMFPACK_Pt_L P’Lx=b

UMFPACK_L Lx=b

UMFPACK_Lt_P L’Px=b

UMFPACK_Lat_P L.’Px=b

UMFPACK_Lt L’x=b

UMFPACK_U_Qt UQ’x=b

UMFPACK_U Ux=b

UMFPACK_Q_Ut QU’x=b

UMFPACK_Q_Uat QU.’x=b

UMFPACK_Ut U’x=b

UMFPACK_Uat U.’x=b

Iterative refinement can be optionally performed when sys is any of

the following:

UMFPACK_A Ax=b

UMFPACK_At A’x=b

UMFPACK_Aat A.’x=b

For the other values of the sys argument, iterative refinement is not

performed (Control [UMFPACK_IRSTEP], Ap, Ai, Ax, and Az are ignored).

Int Ap [n+1] ; Input argument, not modified.

Int Ai [nz] ; Input argument, not modified.

double Ax [nz] ; Input argument, not modified.

Size 2*nz for packed complex case.

double Az [nz] ; Input argument, not modified, for complex versions.

If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1,

Ax=b, A’x=b, or A.’x=b is being solved, and A is nonsingular), then

these arrays must be identical to the same ones passed to

umfpack_*_numeric. The umfpack_*_solve routine does not check the

contents of these arguments, so the results are undefined if Ap, Ai, Ax,

and/or Az are modified between the calls the umfpack_*_numeric and

umfpack_*_solve. These three arrays do not need to be present (NULL

pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a

system other than Ax=b, A’x=b, or A.’x=b is being solved, or if A is

singular, since in each of these cases A is not accessed.

If Az, Xz, or Bz are NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

double X [n] ; Output argument.

or:

double Xx [n] ; Output argument, real part

Size 2*n for packed complex case.

double Xz [n] ; Output argument, imaginary part.

The solution to the linear system, where n = n_row = n_col is the

dimension of the matrices A, L, and U.

If Az, Xz, or Bz are NULL, then both real

and imaginary parts are returned in Xx[0..2*n-1], with Xx[2*k] and

Xx[2*k+1] being the real and imaginary part of the kth entry.

57

double B [n] ; Input argument, not modified.

or:

double Bx [n] ; Input argument, not modified, real part.

Size 2*n for packed complex case.

double Bz [n] ; Input argument, not modified, imaginary part.

The right-hand side vector, b, stored as a conventional array of size n

(or two arrays of size n for complex versions). This routine does not

solve for multiple right-hand-sides, nor does it allow b to be stored in

a sparse-column form.

If Az, Xz, or Bz are NULL, then both real

and imaginary parts are contained in Bx[0..2*n-1], with Bx[2*k]

and Bx[2*k+1] being the real and imaginary part of the kth entry.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement

steps to attempt. A value less than zero is treated as zero. If

less than 1, or if Ax=b, A’x=b, or A.’x=b is not being solved, or

if A is singular, then the Ap, Ai, Ax, and Az arguments are not

accessed. Default: 2.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the solution factorization. If a

(double *) NULL pointer is passed, then no statistics are returned in

Info (this is not an error condition). The following statistics are

computed in umfpack_*_solve:

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

The linear system was successfully solved.

UMFPACK_WARNING_singular_matrix

A divide-by-zero occurred. Your solution will contain Inf’s

and/or NaN’s. Some parts of the solution may be valid. For

example, solving Ax=b with

A = [2 0] b = [1] returns x = [0.5]

[0 0] [0] [Inf]

UMFPACK_ERROR_out_of_memory

58

Insufficient memory to solve the linear system.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing. The B, X, (or

Bx and Xx for the complex versions) arguments

are always required. Info and Control are not required. Ap,

Ai, Ax are required if Ax=b,

A’x=b, A.’x=b is to be solved, the (default) iterative

refinement is requested, and the matrix A is nonsingular.

UMFPACK_ERROR_invalid_system

The sys argument is not valid, or the matrix A is not square.

UMFPACK_ERROR_invalid_Numeric_object

The Numeric object is not valid.

Info [UMFPACK_NROW], Info [UMFPACK_NCOL]:

The dimensions of the matrix A (L is n_row-by-n_inner and

U is n_inner-by-n_col, with n_inner = min(n_row,n_col)).

Info [UMFPACK_NZ]: the number of entries in the input matrix, Ap [n],

if iterative refinement is requested (Ax=b, A’x=b, or A.’x=b is

being solved, Control [UMFPACK_IRSTEP] >= 1, and A is nonsingular).

Info [UMFPACK_IR_TAKEN]: The number of iterative refinement steps

effectively taken. The number of steps attempted may be one more

than this; the refinement algorithm backtracks if the last

refinement step worsens the solution.

Info [UMFPACK_IR_ATTEMPTED]: The number of iterative refinement steps

attempted. The number of times a linear system was solved is one

more than this (once for the initial Ax=b, and once for each Ay=r

solved for each iterative refinement step attempted).

Info [UMFPACK_OMEGA1]: sparse backward error estimate, omega1, if

iterative refinement was performed, or -1 if iterative refinement

not performed.

Info [UMFPACK_OMEGA2]: sparse backward error estimate, omega2, if

iterative refinement was performed, or -1 if iterative refinement

not performed.

Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations

performed to solve the linear system. This includes the work

taken for all iterative refinement steps, including the backtrack

(if any).

Info [UMFPACK_SOLVE_TIME]: The time taken, in seconds.

Info [UMFPACK_SOLVE_WALLTIME]: The wallclock time taken, in seconds.

Only the above listed Info [...] entries are accessed. The remaining

entries of Info are not accessed or modified by umfpack_*_solve.

Future versions might modify different parts of Info.

59

10.4 umfpack * free symbolic

void umfpack_di_free_symbolic

(

void **Symbolic

) ;

void umfpack_dl_free_symbolic

(

void **Symbolic

) ;

void umfpack_zi_free_symbolic

(

void **Symbolic

) ;

void umfpack_zl_free_symbolic

(

void **Symbolic

) ;

double int Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_di_free_symbolic (&Symbolic) ;

double UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_dl_free_symbolic (&Symbolic) ;

complex int Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_zi_free_symbolic (&Symbolic) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_zl_free_symbolic (&Symbolic) ;

Purpose:

Deallocates the Symbolic object and sets the Symbolic handle to NULL. This

routine is the only valid way of destroying the Symbolic object.

Arguments:

void **Symbolic ; Input argument, set to (void *) NULL on output.

Points to a valid Symbolic object computed by umfpack_*_symbolic.

No action is taken if Symbolic is a (void *) NULL pointer.

60

10.5 umfpack * free numeric

void umfpack_di_free_numeric

(

void **Numeric

) ;

void umfpack_dl_free_numeric

(

void **Numeric

) ;

void umfpack_zi_free_numeric

(

void **Numeric

) ;

void umfpack_zl_free_numeric

(

void **Numeric

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_di_free_numeric (&Numeric) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_dl_free_numeric (&Numeric) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_zi_free_numeric (&Numeric) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_zl_free_numeric (&Numeric) ;

Purpose:

Deallocates the Numeric object and sets the Numeric handle to NULL. This

routine is the only valid way of destroying the Numeric object.

Arguments:

void **Numeric ; Input argument, set to (void *) NULL on output.

Numeric points to a valid Numeric object, computed by umfpack_*_numeric.

No action is taken if Numeric is a (void *) NULL pointer.

61

11 Alternative routines

11.1 umfpack * defaults

void umfpack_di_defaults

(

double Control [UMFPACK_CONTROL]

) ;

void umfpack_dl_defaults

(

double Control [UMFPACK_CONTROL]

) ;

void umfpack_zi_defaults

(

double Control [UMFPACK_CONTROL]

) ;

void umfpack_zl_defaults

(

double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_di_defaults (Control) ;

double UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_dl_defaults (Control) ;

complex int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_zi_defaults (Control) ;

complex UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_zl_defaults (Control) ;

Purpose:

Sets the default control parameter settings.

Arguments:

double Control [UMFPACK_CONTROL] ; Output argument.

Control is set to the default control parameter settings. You can

62

then modify individual settings by changing specific entries in the

Control array. If Control is a (double *) NULL pointer, then

umfpack_*_defaults returns silently (no error is generated, since

passing a NULL pointer for Control to any UMFPACK routine is valid).

63

11.2 umfpack * qsymbolic

int umfpack_di_qsymbolic

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [],

const int Qinit [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_dl_qsymbolic

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

const UF_long Qinit [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_qsymbolic

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

const int Qinit [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

UF_long umfpack_zl_qsymbolic

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

const UF_long Qinit [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"

64

void *Symbolic ;

int n_row, n_col, *Ap, *Ai, *Qinit, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ;

status = umfpack_di_qsymbolic (n_row, n_col, Ap, Ai, Ax, Qinit,

&Symbolic, Control, Info) ;

double UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

UF_long n_row, n_col, *Ap, *Ai, *Qinit, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ;

status = umfpack_dl_qsymbolic (n_row, n_col, Ap, Ai, Ax, Qinit,

&Symbolic, Control, Info) ;

complex int Syntax:

#include "umfpack.h"

void *Symbolic ;

int n_row, n_col, *Ap, *Ai, *Qinit, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ;

status = umfpack_zi_qsymbolic (n_row, n_col, Ap, Ai, Ax, Az, Qinit,

&Symbolic, Control, Info) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

UF_long n_row, n_col, *Ap, *Ai, *Qinit, status ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ;

status = umfpack_zl_qsymbolic (n_row, n_col, Ap, Ai, Ax, Az, Qinit,

&Symbolic, Control, Info) ;

packed complex Syntax:

Same as above, except Az is NULL.

Purpose:

Given the nonzero pattern of a sparse matrix A in column-oriented form, and

a sparsity preserving column pre-ordering Qinit, umfpack_*_qsymbolic

performs the symbolic factorization of A*Qinit (or A (:,Qinit) in MATLAB

notation). This is identical to umfpack_*_symbolic, except that neither

COLAMD nor AMD are called and the user input column order Qinit is used

instead. Note that in general, the Qinit passed to umfpack_*_qsymbolic

can differ from the final Q found in umfpack_*_numeric. The unsymmetric

strategy will perform a column etree postordering done in

umfpack_*_qsymbolic and sparsity-preserving modifications are made within

each frontal matrix during umfpack_*_numeric. The symmetric and 2-by-2

strategies will preserve Qinit, unless the matrix is structurally singular.

See umfpack_*_symbolic for more information.

*** WARNING *** A poor choice of Qinit can easily cause umfpack_*_numeric

to use a huge amount of memory and do a lot of work. The "default" symbolic

analysis method is umfpack_*_symbolic, not this routine. If you use this

routine, the performance of UMFPACK is your responsibility; UMFPACK will

not try to second-guess a poor choice of Qinit.

65

Returns:

The value of Info [UMFPACK_STATUS]; see umfpack_*_symbolic.

Also returns UMFPACK_ERROR_invalid_permuation if Qinit is not a valid

permutation vector.

Arguments:

All arguments are the same as umfpack_*_symbolic, except for the following:

Int Qinit [n_col] ; Input argument, not modified.

The user’s fill-reducing initial column pre-ordering. This must be a

permutation of 0..n_col-1. If Qinit [k] = j, then column j is the kth

column of the matrix A (:,Qinit) to be factorized. If Qinit is an

(Int *) NULL pointer, then COLAMD or AMD are called instead.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If Qinit is not NULL, then only two strategies are recognized:

the unsymmetric strategy and the symmetric strategy.

If Control [UMFPACK_STRATEGY] is UMFPACK_STRATEGY_SYMMETRIC,

then the symmetric strategy is used. Otherwise the unsymmetric

strategy is used.

66

11.3 umfpack * wsolve

int umfpack_di_wsolve

(

int sys,

const int Ap [],

const int Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO],

int Wi [],

double W []

) ;

UF_long umfpack_dl_wsolve

(

UF_long sys,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO],

UF_long Wi [],

double W []

) ;

int umfpack_zi_wsolve

(

int sys,

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO],

int Wi [],

double W []

) ;

UF_long umfpack_zl_wsolve

(

UF_long sys,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

67

double Info [UMFPACK_INFO],

UF_long Wi [],

double W []

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

int status, *Ap, *Ai, *Wi, sys ;

double *B, *X, *Ax, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric,

Control, Info, Wi, W) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status, *Ap, *Ai, *Wi, sys ;

double *B, *X, *Ax, *W, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

status = umfpack_dl_wsolve (sys, Ap, Ai, Ax, X, B, Numeric,

Control, Info, Wi, W) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

int status, *Ap, *Ai, *Wi, sys ;

double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, *W,

Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info, Wi, W) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status, *Ap, *Ai, *Wi, sys ;

double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, *W,

Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

status = umfpack_zl_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric,

Control, Info, Wi, W) ;

packed complex Syntax:

Same as above, except Az, Xz, and Bz are NULL.

Purpose:

Given LU factors computed by umfpack_*_numeric (PAQ=LU) and the

right-hand-side, B, solve a linear system for the solution X. Iterative

refinement is optionally performed. This routine is identical to

umfpack_*_solve, except that it does not dynamically allocate any workspace.

When you have many linear systems to solve, this routine is faster than

umfpack_*_solve, since the workspace (Wi, W) needs to be allocated only

once, prior to calling umfpack_*_wsolve.

Returns:

68

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int sys ; Input argument, not modified.

Int Ap [n+1] ; Input argument, not modified.

Int Ai [nz] ; Input argument, not modified.

double Ax [nz] ; Input argument, not modified.

Size 2*nz in packed complex case.

double X [n] ; Output argument.

double B [n] ; Input argument, not modified.

void *Numeric ; Input argument, not modified.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

double Info [UMFPACK_INFO] ; Output argument.

for complex versions:

double Az [nz] ; Input argument, not modified, imaginary part

double Xx [n] ; Output argument, real part.

Size 2*n in packed complex case.

double Xz [n] ; Output argument, imaginary part

double Bx [n] ; Input argument, not modified, real part.

Size 2*n in packed complex case.

double Bz [n] ; Input argument, not modified, imaginary part

The above arguments are identical to umfpack_*_solve, except that the

error code UMFPACK_ERROR_out_of_memory will not be returned in

Info [UMFPACK_STATUS], since umfpack_*_wsolve does not allocate any

memory.

Int Wi [n] ; Workspace.

double W [c*n] ; Workspace, where c is defined below.

The Wi and W arguments are workspace used by umfpack_*_wsolve. They

need not be initialized on input, and their contents are undefined on

output. The size of W depends on whether or not iterative refinement is

used, and which version (real or complex) is called. Iterative

refinement is performed if Ax=b, A’x=b, or A.’x=b is being solved,

Control [UMFPACK_IRSTEP] > 0, and A is nonsingular. The size of W is

given below:

no iter. with iter.

refinement refinement

umfpack_di_wsolve n 5*n

umfpack_dl_wsolve n 5*n

umfpack_zi_wsolve 4*n 10*n

umfpack_zl_wsolve 4*n 10*n

69

12 Matrix manipulation routines

12.1 umfpack * col to triplet

int umfpack_di_col_to_triplet

(

int n_col,

const int Ap [],

int Tj []

) ;

UF_long umfpack_dl_col_to_triplet

(

UF_long n_col,

const UF_long Ap [],

UF_long Tj []

) ;

int umfpack_zi_col_to_triplet

(

int n_col,

const int Ap [],

int Tj []

) ;

UF_long umfpack_zl_col_to_triplet

(

UF_long n_col,

const UF_long Ap [],

UF_long Tj []

) ;

double int Syntax:

#include "umfpack.h"

int n_col, *Tj, *Ap, status ;

status = umfpack_di_col_to_triplet (n_col, Ap, Tj) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long n_col, *Tj, *Ap, status ;

status = umfpack_dl_col_to_triplet (n_col, Ap, Tj) ;

complex int Syntax:

#include "umfpack.h"

int n_col, *Tj, *Ap, status ;

status = umfpack_zi_col_to_triplet (n_col, Ap, Tj) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long n_col, *Tj, *Ap, status ;

status = umfpack_zl_col_to_triplet (n_col, Ap, Tj) ;

Purpose:

70

Converts a column-oriented matrix to a triplet form. Only the column

pointers, Ap, are required, and only the column indices of the triplet form

are constructed. This routine is the opposite of umfpack_*_triplet_to_col.

The matrix may be singular and/or rectangular. Analogous to [i, Tj, x] =

find (A) in MATLAB, except that zero entries present in the column-form of

A are present in the output, and i and x are not created (those are just Ai

and Ax+Az*1i, respectively, for a column-form matrix A).

Returns:

UMFPACK_OK if successful

UMFPACK_ERROR_argument_missing if Ap or Tj is missing

UMFPACK_ERROR_n_nonpositive if n_col <= 0

UMFPACK_ERROR_invalid_matrix if Ap [n_col] < 0, Ap [0] != 0, or

Ap [j] > Ap [j+1] for any j in the range 0 to n-1.

Unsorted columns and duplicate entries do not cause an error (these would

only be evident by examining Ai). Empty rows and columns are OK.

Arguments:

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_col > 0.

(n_row is not required)

Int Ap [n_col+1] ; Input argument, not modified.

The column pointers of the column-oriented form of the matrix. See

umfpack_*_*symbolic for a description. The number of entries in

the matrix is nz = Ap [n_col]. Restrictions on Ap are the same as those

for umfpack_*_transpose. Ap [0] must be zero, nz must be >= 0, and

Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for all j in

the range 0 to n_col-1. Empty columns are OK (that is, Ap [j] may equal

Ap [j+1] for any j in the range 0 to n_col-1).

Int Tj [nz] ; Output argument.

Tj is an integer array of size nz on input, where nz = Ap [n_col].

Suppose the column-form of the matrix is held in Ap, Ai, Ax, and Az

(see umfpack_*_*symbolic for a description). Then on output, the

triplet form of the same matrix is held in Ai (row indices), Tj (column

indices), and Ax (numerical values). Note, however, that this routine

does not require Ai and Ax (or Az for the complex version) in order to

do the conversion.

71

12.2 umfpack * triplet to col

int umfpack_di_triplet_to_col

(

int n_row,

int n_col,

int nz,

const int Ti [],

const int Tj [],

const double Tx [],

int Ap [],

int Ai [],

double Ax [],

int Map []

) ;

UF_long umfpack_dl_triplet_to_col

(

UF_long n_row,

UF_long n_col,

UF_long nz,

const UF_long Ti [],

const UF_long Tj [],

const double Tx [],

UF_long Ap [],

UF_long Ai [],

double Ax [],

UF_long Map []

) ;

int umfpack_zi_triplet_to_col

(

int n_row,

int n_col,

int nz,

const int Ti [],

const int Tj [],

const double Tx [], const double Tz [],

int Ap [],

int Ai [],

double Ax [], double Az [],

int Map []

) ;

UF_long umfpack_zl_triplet_to_col

(

UF_long n_row,

UF_long n_col,

UF_long nz,

const UF_long Ti [],

const UF_long Tj [],

const double Tx [], const double Tz [],

UF_long Ap [],

UF_long Ai [],

double Ax [], double Az [],

UF_long Map []

) ;

72

double int Syntax:

#include "umfpack.h"

int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;

double *Tx, *Ax ;

status = umfpack_di_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx,

Ap, Ai, Ax, Map) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;

double *Tx, *Ax ;

status = umfpack_dl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx,

Ap, Ai, Ax, Map) ;

complex int Syntax:

#include "umfpack.h"

int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;

double *Tx, *Tz, *Ax, *Az ;

status = umfpack_zi_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Ap, Ai, Ax, Az, Map) ;

UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;

double *Tx, *Tz, *Ax, *Az ;

status = umfpack_zl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Ap, Ai, Ax, Az, Map) ;

packed complex Syntax:

Same as above, except Tz and Az are NULL.

Purpose:

Converts a sparse matrix from "triplet" form to compressed-column form.

Analogous to A = spconvert (Ti, Tj, Tx + Tz*1i) in MATLAB, except that

zero entries present in the triplet form are present in A.

The triplet form of a matrix is a very simple data structure for basic

sparse matrix operations. For example, suppose you wish to factorize a

matrix A coming from a finite element method, in which A is a sum of

dense submatrices, A = E1 + E2 + E3 + The entries in each element

matrix Ei can be concatenated together in the three triplet arrays, and

any overlap between the elements will be correctly summed by

umfpack_*_triplet_to_col.

Transposing a matrix in triplet form is simple; just interchange the

use of Ti and Tj. You can construct the complex conjugate transpose by

negating Tz, for the complex versions.

Permuting a matrix in triplet form is also simple. If you want the matrix

PAQ, or A (P,Q) in MATLAB notation, where P [k] = i means that row i of

A is the kth row of PAQ and Q [k] = j means that column j of A is the kth

column of PAQ, then do the following. First, create inverse permutations

73

Pinv and Qinv such that Pinv [i] = k if P [k] = i and Qinv [j] = k if

Q [k] = j. Next, for the mth triplet (Ti [m], Tj [m], Tx [m], Tz [m]),

replace Ti [m] with Pinv [Ti [m]] and replace Tj [m] with Qinv [Tj [m]].

If you have a column-form matrix with duplicate entries or unsorted

columns, you can sort it and sum up the duplicates by first converting it

to triplet form with umfpack_*_col_to_triplet, and then converting it back

with umfpack_*_triplet_to_col.

Constructing a submatrix is also easy. Just scan the triplets and remove

those entries outside the desired subset of 0...n_row-1 and 0...n_col-1,

and renumber the indices according to their position in the subset.

You can do all these operations on a column-form matrix by first

converting it to triplet form with umfpack_*_col_to_triplet, doing the

operation on the triplet form, and then converting it back with

umfpack_*_triplet_to_col.

The only operation not supported easily in the triplet form is the

multiplication of two sparse matrices (UMFPACK does not provide this

operation).

You can print the input triplet form with umfpack_*_report_triplet, and

the output matrix with umfpack_*_report_matrix.

The matrix may be singular (nz can be zero, and empty rows and/or columns

may exist). It may also be rectangular and/or complex.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_argument_missing if Ap, Ai, Ti, and/or Tj are missing.

UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.

UMFPACK_ERROR_invalid_matrix if nz < 0, or if for any k, Ti [k] and/or

Tj [k] are not in the range 0 to n_row-1 or 0 to n_col-1, respectively.

UMFPACK_ERROR_out_of_memory if unable to allocate sufficient workspace.

Arguments:

Int n_row ; Input argument, not modified.

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

All row and column indices in the triplet form must be in the range

0 to n_row-1 and 0 to n_col-1, respectively.

Int nz ; Input argument, not modified.

The number of entries in the triplet form of the matrix. Restriction:

nz >= 0.

Int Ti [nz] ; Input argument, not modified.

Int Tj [nz] ; Input argument, not modified.

double Tx [nz] ; Input argument, not modified.

Size 2*nz if Tz or Az are NULL.

double Tz [nz] ; Input argument, not modified, for complex versions.

Ti, Tj, Tx, and Tz hold the "triplet" form of a sparse matrix. The kth

nonzero entry is in row i = Ti [k], column j = Tj [k], and the real part

74

of a_ij is Tx [k]. The imaginary part of a_ij is Tz [k], for complex

versions. The row and column indices i and j must be in the range 0 to

n_row-1 and 0 to n_col-1, respectively. Duplicate entries may be

present; they are summed in the output matrix. This is not an error

condition. The "triplets" may be in any order. Tx, Tz, Ax, and Az

are optional. Ax is computed only if both Ax and Tx are present

(not (double *) NULL). This is not error condition; the routine can

create just the pattern of the output matrix from the pattern of the

triplets.

If Az or Tz are NULL, then both real

and imaginary parts are contained in Tx[0..2*nz-1], with Tx[2*k]

and Tx[2*k+1] being the real and imaginary part of the kth entry.

Int Ap [n_col+1] ; Output argument.

Ap is an integer array of size n_col+1 on input. On output, Ap holds

the "pointers" for the column form of the sparse matrix A. Column j of

the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first

entry, Ap [0], is zero, and Ap [j] <= Ap [j+1] holds for all j in the

range 0 to n_col-1. The value nz2 = Ap [n_col] is thus the total

number of entries in the pattern of the matrix A. Equivalently, the

number of duplicate triplets is nz - Ap [n_col].

Int Ai [nz] ; Output argument.

Ai is an integer array of size nz on input. Note that only the first

Ap [n_col] entries are used.

The nonzero pattern (row indices) for column j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j

are in ascending order, and no duplicate row indices are present.

Row indices are in the range 0 to n_col-1 (the matrix is 0-based).

double Ax [nz] ; Output argument. Size 2*nz if Tz or Az are NULL.

double Az [nz] ; Output argument for complex versions.

Ax and Az (for the complex versions) are double arrays of size nz on

input. Note that only the first Ap [n_col] entries are used

in both arrays.

Ax is optional; if Tx and/or Ax are not present (a (double *) NULL

pointer), then Ax is not computed. If present, Ax holds the

numerical values of the the real part of the sparse matrix A and Az

holds the imaginary parts. The nonzero pattern (row indices) for

column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the

corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in

Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions.

If Az or Tz are NULL, then both real

and imaginary parts are returned in Ax[0..2*nz2-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

int Map [nz] ; Optional output argument.

If Map is present (a non-NULL pointer to an Int array of size nz), then

on output it holds the position of the triplets in the column-form

matrix. That is, suppose p = Map [k], and the k-th triplet is i=Ti[k],

75

j=Tj[k], and aij=Tx[k]. Then i=Ai[p], and aij will have been summed

into Ax[p] (or simply aij=Ax[p] if there were no duplicate entries also

in row i and column j). Also, Ap[j] <= p < Ap[j+1]. The Map array is

not computed if it is (Int *) NULL. The Map array is useful for

converting a subsequent triplet form matrix with the same pattern as the

first one, without calling this routine. If Ti and Tj do not change,

then Ap, and Ai can be reused from the prior call to

umfpack_*_triplet_to_col. You only need to recompute Ax (and Az for the

split complex version). This code excerpt properly sums up all

duplicate values (for the real version):

for (p = 0 ; p < Ap [n_col] ; p++) Ax [p] = 0 ;

for (k = 0 ; k < nz ; k++) Ax [Map [k]] += Tx [k] ;

This feature is useful (along with the reuse of the Symbolic object) if

you need to factorize a sequence of triplet matrices with identical

nonzero pattern (the order of the triplets in the Ti,Tj,Tx arrays must

also remain unchanged). It is faster than calling this routine for

each matrix, and requires no workspace.

76

12.3 umfpack * transpose

int umfpack_di_transpose

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [],

const int P [],

const int Q [],

int Rp [],

int Ri [],

double Rx []

) ;

UF_long umfpack_dl_transpose

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

const UF_long P [],

const UF_long Q [],

UF_long Rp [],

UF_long Ri [],

double Rx []

) ;

int umfpack_zi_transpose

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

const int P [],

const int Q [],

int Rp [],

int Ri [],

double Rx [], double Rz [],

int do_conjugate

) ;

UF_long umfpack_zl_transpose

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

const UF_long P [],

const UF_long Q [],

UF_long Rp [],

UF_long Ri [],

double Rx [], double Rz [],

77

UF_long do_conjugate

) ;

double int Syntax:

#include "umfpack.h"

int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ;

double *Ax, *Rx ;

status = umfpack_di_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri ;

double *Ax, *Rx ;

status = umfpack_dl_transpose (n_row, n_col, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;

complex int Syntax:

#include "umfpack.h"

int n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ;

double *Ax, *Az, *Rx, *Rz ;

status = umfpack_zi_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,

Rp, Ri, Rx, Rz, do_conjugate) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, status, *Ap, *Ai, *P, *Q, *Rp, *Ri, do_conjugate ;

double *Ax, *Az, *Rx, *Rz ;

status = umfpack_zl_transpose (n_row, n_col, Ap, Ai, Ax, Az, P, Q,

Rp, Ri, Rx, Rz, do_conjugate) ;

packed complex Syntax:

Same as above, except Az are Rz are NULL.

Purpose:

Transposes and optionally permutes a sparse matrix in row or column-form,

R = (PAQ)’. In MATLAB notation, R = (A (P,Q))’ or R = (A (P,Q)).’ doing

either the linear algebraic transpose or the array transpose. Alternatively,

this routine can be viewed as converting A (P,Q) from column-form to

row-form, or visa versa (for the array transpose). Empty rows and columns

may exist. The matrix A may be singular and/or rectangular.

umfpack_*_transpose is useful if you want to factorize A’ or A.’ instead of

A. Factorizing A’ or A.’ instead of A can be much better, particularly if

AA’ is much sparser than A’A. You can still solve Ax=b if you factorize

A’ or A.’, by solving with the sys argument UMFPACK_At or UMFPACK_Aat,

respectively, in umfpack_*_*solve.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_out_of_memory if umfpack_*_transpose fails to allocate a

size-max (n_row,n_col) workspace.

UMFPACK_ERROR_argument_missing if Ai, Ap, Ri, and/or Rp are missing.

UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0

78

UMFPACK_ERROR_invalid_permutation if P and/or Q are invalid.

UMFPACK_ERROR_invalid_matrix if Ap [n_col] < 0, if Ap [0] != 0,

if Ap [j] > Ap [j+1] for any j in the range 0 to n_col-1,

if any row index i is < 0 or >= n_row, or if the row indices

in any column are not in ascending order.

Arguments:

Int n_row ; Input argument, not modified.

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n_col+1] ; Input argument, not modified.

The column pointers of the column-oriented form of the matrix A. See

umfpack_*_symbolic for a description. The number of entries in

the matrix is nz = Ap [n_col]. Ap [0] must be zero, Ap [n_col] must be

=> 0, and Ap [j] <= Ap [j+1] and Ap [j] <= Ap [n_col] must be true for

all j in the range 0 to n_col-1. Empty columns are OK (that is, Ap [j]

may equal Ap [j+1] for any j in the range 0 to n_col-1).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The nonzero pattern (row indices) for column j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j

must be in ascending order, and no duplicate row indices may be present.

Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].

Size 2*nz if Az or Rz are NULL.

double Az [nz] ; Input argument, not modified, for complex versions.

If present, these are the numerical values of the sparse matrix A.

The nonzero pattern (row indices) for column j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding real numerical

values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary

values are stored in Az [(Ap [j]) ... (Ap [j+1]-1)]. The values are

transposed only if Ax and Rx are present.

This is not an error conditions; you are able to transpose

and permute just the pattern of a matrix.

If Az or Rz are NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

Int P [n_row] ; Input argument, not modified.

The permutation vector P is defined as P [k] = i, where the original

row i of A is the kth row of PAQ. If you want to use the identity

permutation for P, simply pass (Int *) NULL for P. This is not an error

condition. P is a complete permutation of all the rows of A; this

routine does not support the creation of a transposed submatrix of A

(R = A (1:3,:)’ where A has more than 3 rows, for example, cannot be

done; a future version might support this operation).

Int Q [n_col] ; Input argument, not modified.

The permutation vector Q is defined as Q [k] = j, where the original

79

column j of A is the kth column of PAQ. If you want to use the identity

permutation for Q, simply pass (Int *) NULL for Q. This is not an error

condition. Q is a complete permutation of all the columns of A; this

routine does not support the creation of a transposed submatrix of A.

Int Rp [n_row+1] ; Output argument.

The column pointers of the matrix R = (A (P,Q))’ or (A (P,Q)).’, in the

same form as the column pointers Ap for the matrix A.

Int Ri [nz] ; Output argument.

The row indices of the matrix R = (A (P,Q))’ or (A (P,Q)).’ , in the

same form as the row indices Ai for the matrix A.

double Rx [nz] ; Output argument.

Size 2*nz if Az or Rz are NULL.

double Rz [nz] ; Output argument, imaginary part for complex versions.

If present, these are the numerical values of the sparse matrix R,

in the same form as the values Ax and Az of the matrix A.

If Az or Rz are NULL, then both real

and imaginary parts are contained in Rx[0..2*nz-1], with Rx[2*k]

and Rx[2*k+1] being the real and imaginary part of the kth entry.

Int do_conjugate ; Input argument for complex versions only.

If true, and if Ax and Rx are present, then the linear

algebraic transpose is computed (complex conjugate). If false, the

array transpose is computed instead.

80

12.4 umfpack * scale

int umfpack_di_scale

(

double X [],

const double B [],

void *Numeric

) ;

UF_long umfpack_dl_scale

(

double X [],

const double B [],

void *Numeric

) ;

int umfpack_zi_scale

(

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric

) ;

UF_long umfpack_zl_scale

(

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

double *B, *X ;

status = umfpack_di_scale (X, B, Numeric) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

double *B, *X ;

status = umfpack_dl_scale (X, B, Numeric) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

double *Bx, *Bz, *Xx, *Xz ;

status = umfpack_zi_scale (Xx, Xz, Bx, Bz, Numeric) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

double *Bx, *Bz, *Xx, *Xz ;

status = umfpack_zl_scale (Xx, Xz, Bx, Bz, Numeric) ;

81

packed complex Syntax:

Same as above, except both Xz and Bz are NULL.

Purpose:

Given LU factors computed by umfpack_*_numeric (PAQ=LU, PRAQ=LU, or

P(R\A)Q=LU), and a vector B, this routine computes X = B, X = R*B, or

X = R\B, as appropriate. X and B must be vectors equal in length to the

number of rows of A.

Returns:

The status code is returned. UMFPACK_OK is returned if successful.

UMFPACK_ERROR_invalid_Numeric_object is returned in the Numeric

object is invalid. UMFPACK_ERROR_argument_missing is returned if

any of the input vectors are missing (X and B for the real version,

and Xx and Bx for the complex version).

Arguments:

double X [n_row] ; Output argument.

or:

double Xx [n_row] ; Output argument, real part.

Size 2*n_row for packed complex case.

double Xz [n_row] ; Output argument, imaginary part.

The output vector X. If either Xz or Bz are NULL, the vector

X is in packed complex form, with the kth entry in Xx [2*k] and

Xx [2*k+1], and likewise for B.

double B [n_row] ; Input argument, not modified.

or:

double Bx [n_row] ; Input argument, not modified, real part.

Size 2*n_row for packed complex case.

double Bz [n_row] ; Input argument, not modified, imaginary part.

The input vector B. See above if either Xz or Bz are NULL.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric.

82

13 Getting the contents of opaque objects

13.1 umfpack * get lunz

int umfpack_di_get_lunz

(

int *lnz,

int *unz,

int *n_row,

int *n_col,

int *nz_udiag,

void *Numeric

) ;

UF_long umfpack_dl_get_lunz

(

UF_long *lnz,

UF_long *unz,

UF_long *n_row,

UF_long *n_col,

UF_long *nz_udiag,

void *Numeric

) ;

int umfpack_zi_get_lunz

(

int *lnz,

int *unz,

int *n_row,

int *n_col,

int *nz_udiag,

void *Numeric

) ;

UF_long umfpack_zl_get_lunz

(

UF_long *lnz,

UF_long *unz,

UF_long *n_row,

UF_long *n_col,

UF_long *nz_udiag,

void *Numeric

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

int status, lnz, unz, n_row, n_col, nz_udiag ;

status = umfpack_di_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag,

Numeric) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status, lnz, unz, n_row, n_col, nz_udiag ;

83

status = umfpack_dl_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag,

Numeric) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

int status, lnz, unz, n_row, n_col, nz_udiag ;

status = umfpack_zi_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag,

Numeric) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status, lnz, unz, n_row, n_col, nz_udiag ;

status = umfpack_zl_get_lunz (&lnz, &unz, &n_row, &n_col, &nz_udiag,

Numeric) ;

Purpose:

Determines the size and number of nonzeros in the LU factors held by the

Numeric object. These are also the sizes of the output arrays required

by umfpack_*_get_numeric.

The matrix L is n_row -by- min(n_row,n_col), with lnz nonzeros, including

the entries on the unit diagonal of L.

The matrix U is min(n_row,n_col) -by- n_col, with unz nonzeros, including

nonzeros on the diagonal of U.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_invalid_Numeric_object if Numeric is not a valid object.

UMFPACK_ERROR_argument_missing if any other argument is (Int *) NULL.

Arguments:

Int *lnz ; Output argument.

The number of nonzeros in L, including the diagonal (which is all

one’s). This value is the required size of the Lj and Lx arrays as

computed by umfpack_*_get_numeric. The value of lnz is identical to

Info [UMFPACK_LNZ], if that value was returned by umfpack_*_numeric.

Int *unz ; Output argument.

The number of nonzeros in U, including the diagonal. This value is the

required size of the Ui and Ux arrays as computed by

umfpack_*_get_numeric. The value of unz is identical to

Info [UMFPACK_UNZ], if that value was returned by umfpack_*_numeric.

Int *n_row ; Output argument.

Int *n_col ; Output argument.

The order of the L and U matrices. L is n_row -by- min(n_row,n_col)

and U is min(n_row,n_col) -by- n_col.

84

Int *nz_udiag ; Output argument.

The number of numerically nonzero values on the diagonal of U. The

matrix is singular if nz_diag < min(n_row,n_col). A divide-by-zero

will occur if nz_diag < n_row == n_col when solving a sparse system

involving the matrix U in umfpack_*_*solve. The value of nz_udiag is

identical to Info [UMFPACK_UDIAG_NZ] if that value was returned by

umfpack_*_numeric.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric.

85

13.2 umfpack * get numeric

int umfpack_di_get_numeric

(

int Lp [],

int Lj [],

double Lx [],

int Up [],

int Ui [],

double Ux [],

int P [],

int Q [],

double Dx [],

int *do_recip,

double Rs [],

void *Numeric

) ;

UF_long umfpack_dl_get_numeric

(

UF_long Lp [],

UF_long Lj [],

double Lx [],

UF_long Up [],

UF_long Ui [],

double Ux [],

UF_long P [],

UF_long Q [],

double Dx [],

UF_long *do_recip,

double Rs [],

void *Numeric

) ;

int umfpack_zi_get_numeric

(

int Lp [],

int Lj [],

double Lx [], double Lz [],

int Up [],

int Ui [],

double Ux [], double Uz [],

int P [],

int Q [],

double Dx [], double Dz [],

int *do_recip,

double Rs [],

void *Numeric

) ;

UF_long umfpack_zl_get_numeric

(

UF_long Lp [],

UF_long Lj [],

double Lx [], double Lz [],

UF_long Up [],

UF_long Ui [],

86

double Ux [], double Uz [],

UF_long P [],

UF_long Q [],

double Dx [], double Dz [],

UF_long *do_recip,

double Rs [],

void *Numeric

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

int *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ;

double *Lx, *Ux, *Dx, *Rs ;

status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx,

&do_recip, Rs, Numeric) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ;

double *Lx, *Ux, *Dx, *Rs ;

status = umfpack_dl_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx,

&do_recip, Rs, Numeric) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

int *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ;

double *Lx, *Lz, *Ux, *Uz, *Dx, *Dz, *Rs ;

status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q,

Dx, Dz, &do_recip, Rs, Numeric) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long *Lp, *Lj, *Up, *Ui, *P, *Q, status, do_recip ;

double *Lx, *Lz, *Ux, *Uz, *Dx, *Dz, *Rs ;

status = umfpack_zl_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q,

Dx, Dz, &do_recip, Rs, Numeric) ;

packed complex int/UF_long Syntax:

Same as above, except Lz, Uz, and Dz are all NULL.

Purpose:

This routine copies the LU factors and permutation vectors from the Numeric

object into user-accessible arrays. This routine is not needed to solve a

linear system. Note that the output arrays Lp, Lj, Lx, Up, Ui, Ux, P, Q,

Dx, and Rs are not allocated by umfpack_*_get_numeric; they must exist on

input.

All output arguments are optional. If any of them are NULL

on input, then that part of the LU factorization is not copied. You can

87

use this routine to extract just the parts of the LU factorization that

you want. For example, to retrieve just the column permutation Q, use:

#define noD (double *) NULL

#define noI (int *) NULL

status = umfpack_di_get_numeric (noI, noI, noD, noI, noI, noD, noI,

Q, noD, noI, noD, Numeric) ;

Returns:

Returns UMFPACK_OK if successful. Returns UMFPACK_ERROR_out_of_memory

if insufficient memory is available for the 2*max(n_row,n_col) integer

workspace that umfpack_*_get_numeric allocates to construct L and/or U.

Returns UMFPACK_ERROR_invalid_Numeric_object if the Numeric object provided

as input is invalid.

Arguments:

Int Lp [n_row+1] ; Output argument.

Int Lj [lnz] ; Output argument.

double Lx [lnz] ; Output argument. Size 2*lnz for packed complex case.

double Lz [lnz] ; Output argument for complex versions.

The n_row-by-min(n_row,n_col) matrix L is returned in compressed-row

form. The column indices of row i and corresponding numerical values

are in:

Lj [Lp [i] ... Lp [i+1]-1]

Lx [Lp [i] ... Lp [i+1]-1] real part

Lz [Lp [i] ... Lp [i+1]-1] imaginary part (complex versions)

respectively. Each row is stored in sorted order, from low column

indices to higher. The last entry in each row is the diagonal, which

is numerically equal to one. The sizes of Lp, Lj, Lx, and Lz are

returned by umfpack_*_get_lunz. If Lp, Lj, or Lx are not present,

then the matrix L is not returned. This is not an error condition.

The L matrix can be printed if n_row, Lp, Lj, Lx (and Lz for the split

complex case) are passed to umfpack_*_report_matrix (using the

"row" form).

If Lx is present and Lz is NULL, then both real

and imaginary parts are returned in Lx[0..2*lnz-1], with Lx[2*k]

and Lx[2*k+1] being the real and imaginary part of the kth entry.

Int Up [n_col+1] ; Output argument.

Int Ui [unz] ; Output argument.

double Ux [unz] ; Output argument. Size 2*unz for packed complex case.

double Uz [unz] ; Output argument for complex versions.

The min(n_row,n_col)-by-n_col matrix U is returned in compressed-column

form. The row indices of column j and corresponding numerical values

are in

Ui [Up [j] ... Up [j+1]-1]

Ux [Up [j] ... Up [j+1]-1] real part

Uz [Up [j] ... Up [j+1]-1] imaginary part (complex versions)

respectively. Each column is stored in sorted order, from low row

indices to higher. The last entry in each column is the diagonal

88

(assuming that it is nonzero). The sizes of Up, Ui, Ux, and Uz are

returned by umfpack_*_get_lunz. If Up, Ui, or Ux are not present,

then the matrix U is not returned. This is not an error condition.

The U matrix can be printed if n_col, Up, Ui, Ux (and Uz for the

split complex case) are passed to umfpack_*_report_matrix (using the

"column" form).

If Ux is present and Uz is NULL, then both real

and imaginary parts are returned in Ux[0..2*unz-1], with Ux[2*k]

and Ux[2*k+1] being the real and imaginary part of the kth entry.

Int P [n_row] ; Output argument.

The permutation vector P is defined as P [k] = i, where the original

row i of A is the kth pivot row in PAQ. If you do not want the P vector

to be returned, simply pass (Int *) NULL for P. This is not an error

condition. You can print P and Q with umfpack_*_report_perm.

Int Q [n_col] ; Output argument.

The permutation vector Q is defined as Q [k] = j, where the original

column j of A is the kth pivot column in PAQ. If you not want the Q

vector to be returned, simply pass (Int *) NULL for Q. This is not

an error condition. Note that Q is not necessarily identical to

Qtree, the column pre-ordering held in the Symbolic object. Refer to

the description of Qtree and Front_npivcol in umfpack_*_get_symbolic for

details.

double Dx [min(n_row,n_col)] ; Output argument. Size 2*n for

the packed complex case.

double Dz [min(n_row,n_col)] ; Output argument for complex versions.

The diagonal of U is also returned in Dx and Dz. You can extract the

diagonal of U without getting all of U by passing a non-NULL Dx (and

Dz for the complex version) and passing Up, Ui, and Ux as NULL. Dx is

the real part of the diagonal, and Dz is the imaginary part.

If Dx is present and Dz is NULL, then both real

and imaginary parts are returned in Dx[0..2*min(n_row,n_col)-1],

with Dx[2*k] and Dx[2*k+1] being the real and imaginary part of the kth

entry.

Int *do_recip ; Output argument.

This argument defines how the scale factors Rs are to be interpretted.

If do_recip is TRUE (one), then the scale factors Rs [i] are to be used

by multiplying row i by Rs [i]. Otherwise, the entries in row i are to

be divided by Rs [i].

If UMFPACK has been compiled with gcc, or for MATLAB as either a

built-in routine or as a mexFunction, then the NRECIPROCAL flag is

set, and do_recip will always be FALSE (zero).

double Rs [n_row] ; Output argument.

The row scale factors are returned in Rs [0..n_row-1]. Row i of A is

scaled by dividing or multiplying its values by Rs [i]. If default

scaling is in use, Rs [i] is the sum of the absolute values of row i

89

(or its reciprocal). If max row scaling is in use, then Rs [i] is the

maximum absolute value in row i (or its reciprocal).

Otherwise, Rs [i] = 1. If row i is all zero, Rs [i] = 1 as well. For

the complex version, an approximate absolute value is used

(|x_real|+|x_imag|).

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric.

90

13.3 umfpack * get symbolic

int umfpack_di_get_symbolic

(

int *n_row,

int *n_col,

int *n1,

int *nz,

int *nfr,

int *nchains,

int P [],

int Q [],

int Front_npivcol [],

int Front_parent [],

int Front_1strow [],

int Front_leftmostdesc [],

int Chain_start [],

int Chain_maxrows [],

int Chain_maxcols [],

void *Symbolic

) ;

UF_long umfpack_dl_get_symbolic

(

UF_long *n_row,

UF_long *n_col,

UF_long *n1,

UF_long *nz,

UF_long *nfr,

UF_long *nchains,

UF_long P [],

UF_long Q [],

UF_long Front_npivcol [],

UF_long Front_parent [],

UF_long Front_1strow [],

UF_long Front_leftmostdesc [],

UF_long Chain_start [],

UF_long Chain_maxrows [],

UF_long Chain_maxcols [],

void *Symbolic

) ;

int umfpack_zi_get_symbolic

(

int *n_row,

int *n_col,

int *n1,

int *nz,

int *nfr,

int *nchains,

int P [],

int Q [],

int Front_npivcol [],

int Front_parent [],

int Front_1strow [],

int Front_leftmostdesc [],

int Chain_start [],

91

int Chain_maxrows [],

int Chain_maxcols [],

void *Symbolic

) ;

UF_long umfpack_zl_get_symbolic

(

UF_long *n_row,

UF_long *n_col,

UF_long *n1,

UF_long *nz,

UF_long *nfr,

UF_long *nchains,

UF_long P [],

UF_long Q [],

UF_long Front_npivcol [],

UF_long Front_parent [],

UF_long Front_1strow [],

UF_long Front_leftmostdesc [],

UF_long Chain_start [],

UF_long Chain_maxrows [],

UF_long Chain_maxcols [],

void *Symbolic

) ;

double int Syntax:

#include "umfpack.h"

int status, n_row, n_col, nz, nfr, nchains, *P, *Q,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,

*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;

status = umfpack_di_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

P, Q, Front_npivcol, Front_parent, Front_1strow,

Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,

Symbolic) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long status, n_row, n_col, nz, nfr, nchains, *P, *Q,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,

*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;

status = umfpack_dl_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

P, Q, Front_npivcol, Front_parent, Front_1strow,

Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,

Symbolic) ;

complex int Syntax:

#include "umfpack.h"

int status, n_row, n_col, nz, nfr, nchains, *P, *Q,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,

*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;

status = umfpack_zi_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

P, Q, Front_npivcol, Front_parent, Front_1strow,

92

Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,

Symbolic) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long status, n_row, n_col, nz, nfr, nchains, *P, *Q,

*Front_npivcol, *Front_parent, *Front_1strow, *Front_leftmostdesc,

*Chain_start, *Chain_maxrows, *Chain_maxcols ;

void *Symbolic ;

status = umfpack_zl_get_symbolic (&n_row, &n_col, &nz, &nfr, &nchains,

P, Q, Front_npivcol, Front_parent, Front_1strow,

Front_leftmostdesc, Chain_start, Chain_maxrows, Chain_maxcols,

Symbolic) ;

Purpose:

Copies the contents of the Symbolic object into simple integer arrays

accessible to the user. This routine is not needed to factorize and/or

solve a sparse linear system using UMFPACK. Note that the output arrays

P, Q, Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,

Chain_start, Chain_maxrows, and Chain_maxcols are not allocated by

umfpack_*_get_symbolic; they must exist on input.

All output arguments are optional. If any of them are NULL

on input, then that part of the symbolic analysis is not copied. You can

use this routine to extract just the parts of the symbolic analysis that

you want. For example, to retrieve just the column permutation Q, use:

#define noI (int *) NULL

status = umfpack_di_get_symbolic (noI, noI, noI, noI, noI, noI, noI,

Q, noI, noI, noI, noI, noI, noI, noI, Symbolic) ;

The only required argument the last one, the pointer to the Symbolic object.

The Symbolic object is small. Its size for an n-by-n square matrix varies

from 4*n to 13*n, depending on the matrix. The object holds the initial

column permutation, the supernodal column elimination tree, and information

about each frontal matrix. You can print it with umfpack_*_report_symbolic.

Returns:

Returns UMFPACK_OK if successful, UMFPACK_ERROR_invalid_Symbolic_object

if Symbolic is an invalid object.

Arguments:

Int *n_row ; Output argument.

Int *n_col ; Output argument.

The dimensions of the matrix A analyzed by the call to

umfpack_*_symbolic that generated the Symbolic object.

Int *n1 ; Output argument.

The number of pivots with zero Markowitz cost (they have just one entry

in the pivot row, or the pivot column, or both). These appear first in

the output permutations P and Q.

93

Int *nz ; Output argument.

The number of nonzeros in A.

Int *nfr ; Output argument.

The number of frontal matrices that will be used by umfpack_*_numeric

to factorize the matrix A. It is in the range 0 to n_col.

Int *nchains ; Output argument.

The frontal matrices are related to one another by the supernodal

column elimination tree. Each node in this tree is one frontal matrix.

The tree is partitioned into a set of disjoint paths, and a frontal

matrix chain is one path in this tree. Each chain is factorized using

a unifrontal technique, with a single working array that holds each

frontal matrix in the chain, one at a time. nchains is in the range

0 to nfr.

Int P [n_row] ; Output argument.

The initial row permutation. If P [k] = i, then this means that

row i is the kth row in the pre-ordered matrix. In general, this P is

not the same as the final row permutation computed by umfpack_*_numeric.

For the unsymmetric strategy, P defines the row-merge order. Let j be

the column index of the leftmost nonzero entry in row i of A*Q. Then

P defines a sort of the rows according to this value. A row can appear

earlier in this ordering if it is aggressively absorbed before it can

become a pivot row. If P [k] = i, row i typically will not be the kth

pivot row.

For the symmetric strategy, P = Q. For the 2-by-2 strategy, P is the

row permutation that places large entries on the diagonal of P*A*Q.

If no pivoting occurs during numerical factorization, P [k] = i also

defines the final permutation of umfpack_*_numeric, for either the

symmetric or 2-by-2 strategies.

Int Q [n_col] ; Output argument.

The initial column permutation. If Q [k] = j, then this means that

column j is the kth pivot column in the pre-ordered matrix. Q is

not necessarily the same as the final column permutation Q, computed by

umfpack_*_numeric. The numeric factorization may reorder the pivot

columns within each frontal matrix to reduce fill-in. If the matrix is

structurally singular, and if the symmetric or 2-by-2 strategies or

used (or if Control [UMFPACK_FIXQ] > 0), then this Q will be the same

as the final column permutation computed in umfpack_*_numeric.

Int Front_npivcol [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee

that it will be large enough to hold the output. Only the first nfr+1

entries are used, however.

The kth frontal matrix holds Front_npivcol [k] pivot columns. Thus, the

first frontal matrix, front 0, is used to factorize the first

Front_npivcol [0] columns; these correspond to the original columns

Q [0] through Q [Front_npivcol [0]-1]. The next frontal matrix

94

is used to factorize the next Front_npivcol [1] columns, which are thus

the original columns Q [Front_npivcol [0]] through

Q [Front_npivcol [0] + Front_npivcol [1] - 1], and so on. Columns

with no entries at all are put in a placeholder "front",

Front_npivcol [nfr]. The sum of Front_npivcol [0..nfr] is equal to

n_col.

Any modifications that umfpack_*_numeric makes to the initial column

permutation are constrained to within each frontal matrix. Thus, for

the first frontal matrix, Q [0] through Q [Front_npivcol [0]-1] is some

permutation of the columns Q [0] through

Q [Front_npivcol [0]-1]. For second frontal matrix,

Q [Front_npivcol [0]] through Q [Front_npivcol [0] + Front_npivcol[1]-1]

is some permutation of the same portion of Q, and so on. All pivot

columns are numerically factorized within the frontal matrix originally

determined by the symbolic factorization; there is no delayed pivoting

across frontal matrices.

Int Front_parent [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee

that it will be large enough to hold the output. Only the first nfr+1

entries are used, however.

Front_parent [0..nfr] holds the supernodal column elimination tree

(including the placeholder front nfr, which may be empty). Each node in

the tree corresponds to a single frontal matrix. The parent of node f

is Front_parent [f].

Int Front_1strow [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee

that it will be large enough to hold the output. Only the first nfr+1

entries are used, however.

Front_1strow [k] is the row index of the first row in A (P,Q)

whose leftmost entry is in a pivot column for the kth front. This is

necessary only to properly factorize singular matrices. Rows in the

range Front_1strow [k] to Front_1strow [k+1]-1 first become pivot row

candidates at the kth front. Any rows not eliminated in the kth front

may be selected as pivot rows in the parent of k (Front_parent [k])

and so on up the tree.

Int Front_leftmostdesc [n_col+1] ; Output argument.

This array should be of size at least n_col+1, in order to guarantee

that it will be large enough to hold the output. Only the first nfr+1

entries are used, however.

Front_leftmostdesc [k] is the leftmost descendant of front k, or k

if the front has no children in the tree. Since the rows and columns

(P and Q) have been post-ordered via a depth-first-search of

the tree, rows in the range Front_1strow [Front_leftmostdesc [k]] to

Front_1strow [k+1]-1 form the entire set of candidate pivot rows for

the kth front (some of these will typically have already been selected

by fronts in the range Front_leftmostdesc [k] to front k-1, before

the factorization reaches front k).

Chain_start [n_col+1] ; Output argument.

95

This array should be of size at least n_col+1, in order to guarantee

that it will be large enough to hold the output. Only the first

nchains+1 entries are used, however.

The kth frontal matrix chain consists of frontal matrices Chain_start[k]

through Chain_start [k+1]-1. Thus, Chain_start [0] is always 0, and

Chain_start [nchains] is the total number of frontal matrices, nfr. For

two adjacent fronts f and f+1 within a single chain, f+1 is always the

parent of f (that is, Front_parent [f] = f+1).

Int Chain_maxrows [n_col+1] ; Output argument.

Int Chain_maxcols [n_col+1] ; Output argument.

These arrays should be of size at least n_col+1, in order to guarantee

that they will be large enough to hold the output. Only the first

nchains entries are used, however.

The kth frontal matrix chain requires a single working array of

dimension Chain_maxrows [k] by Chain_maxcols [k], for the unifrontal

technique that factorizes the frontal matrix chain. Since the symbolic

factorization only provides an upper bound on the size of each frontal

matrix, not all of the working array is necessarily used during the

numerical factorization.

Note that the upper bound on the number of rows and columns of each

frontal matrix is computed by umfpack_*_symbolic, but all that is

required by umfpack_*_numeric is the maximum of these two sets of

values for each frontal matrix chain. Thus, the size of each

individual frontal matrix is not preserved in the Symbolic object.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by

umfpack_*_symbolic. The Symbolic object is not modified by

umfpack_*_get_symbolic.

96

13.4 umfpack * save numeric

int umfpack_di_save_numeric

(

void *Numeric,

char *filename

) ;

UF_long umfpack_dl_save_numeric

(

void *Numeric,

char *filename

) ;

int umfpack_zi_save_numeric

(

void *Numeric,

char *filename

) ;

UF_long umfpack_zl_save_numeric

(

void *Numeric,

char *filename

) ;

double int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Numeric ;

status = umfpack_di_save_numeric (Numeric, filename) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Numeric ;

status = umfpack_dl_save_numeric (Numeric, filename) ;

complex int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Numeric ;

status = umfpack_zi_save_numeric (Numeric, filename) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Numeric ;

status = umfpack_zl_save_numeric (Numeric, filename) ;

97

Purpose:

Saves a Numeric object to a file, which can later be read by

umfpack_*_load_numeric. The Numeric object is not modified.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_invalid_Numeric_object if Numeric is not valid.

UMFPACK_ERROR_file_IO if an I/O error occurred.

Arguments:

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric or loaded by umfpack_*_load_numeric.

char *filename ; Input argument, not modified.

A string that contains the filename to which the Numeric

object is written.

98

13.5 umfpack * load numeric

int umfpack_di_load_numeric

(

void **Numeric,

char *filename

) ;

UF_long umfpack_dl_load_numeric

(

void **Numeric,

char *filename

) ;

int umfpack_zi_load_numeric

(

void **Numeric,

char *filename

) ;

UF_long umfpack_zl_load_numeric

(

void **Numeric,

char *filename

) ;

double int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Numeric ;

status = umfpack_di_load_numeric (&Numeric, filename) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Numeric ;

status = umfpack_dl_load_numeric (&Numeric, filename) ;

complex int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Numeric ;

status = umfpack_zi_load_numeric (&Numeric, filename) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Numeric ;

status = umfpack_zl_load_numeric (&Numeric, filename) ;

99

Purpose:

Loads a Numeric object from a file created by umfpack_*_save_numeric. The

Numeric handle passed to this routine is overwritten with the new object.

If that object exists prior to calling this routine, a memory leak will

occur. The contents of Numeric are ignored on input.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_out_of_memory if not enough memory is available.

UMFPACK_ERROR_file_IO if an I/O error occurred.

Arguments:

void **Numeric ; Output argument.

**Numeric is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Numeric object (if successful), or (void *) NULL if

a failure occurred.

char *filename ; Input argument, not modified.

A string that contains the filename from which to read the Numeric

object.

100

13.6 umfpack * save symbolic

int umfpack_di_save_symbolic

(

void *Symbolic,

char *filename

) ;

UF_long umfpack_dl_save_symbolic

(

void *Symbolic,

char *filename

) ;

int umfpack_zi_save_symbolic

(

void *Symbolic,

char *filename

) ;

UF_long umfpack_zl_save_symbolic

(

void *Symbolic,

char *filename

) ;

double int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Symbolic ;

status = umfpack_di_save_symbolic (Symbolic, filename) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Symbolic ;

status = umfpack_dl_save_symbolic (Symbolic, filename) ;

complex int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Symbolic ;

status = umfpack_zi_save_symbolic (Symbolic, filename) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Symbolic ;

status = umfpack_zl_save_symbolic (Symbolic, filename) ;

101

Purpose:

Saves a Symbolic object to a file, which can later be read by

umfpack_*_load_symbolic. The Symbolic object is not modified.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_invalid_Symbolic_object if Symbolic is not valid.

UMFPACK_ERROR_file_IO if an I/O error occurred.

Arguments:

void *Symbolic ; Input argument, not modified.

Symbolic must point to a valid Symbolic object, computed by

umfpack_*_symbolic or loaded by umfpack_*_load_symbolic.

char *filename ; Input argument, not modified.

A string that contains the filename to which the Symbolic

object is written.

102

13.7 umfpack * load symbolic

int umfpack_di_load_symbolic

(

void **Symbolic,

char *filename

) ;

UF_long umfpack_dl_load_symbolic

(

void **Symbolic,

char *filename

) ;

int umfpack_zi_load_symbolic

(

void **Symbolic,

char *filename

) ;

UF_long umfpack_zl_load_symbolic

(

void **Symbolic,

char *filename

) ;

double int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Symbolic ;

status = umfpack_di_load_symbolic (&Symbolic, filename) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Symbolic ;

status = umfpack_dl_load_symbolic (&Symbolic, filename) ;

complex int Syntax:

#include "umfpack.h"

int status ;

char *filename ;

void *Symbolic ;

status = umfpack_zi_load_symbolic (&Symbolic, filename) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long status ;

char *filename ;

void *Symbolic ;

status = umfpack_zl_load_symbolic (&Symbolic, filename) ;

103

Purpose:

Loads a Symbolic object from a file created by umfpack_*_save_symbolic. The

Symbolic handle passed to this routine is overwritten with the new object.

If that object exists prior to calling this routine, a memory leak will

occur. The contents of Symbolic are ignored on input.

Returns:

UMFPACK_OK if successful.

UMFPACK_ERROR_out_of_memory if not enough memory is available.

UMFPACK_ERROR_file_IO if an I/O error occurred.

Arguments:

void **Symbolic ; Output argument.

**Symbolic is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Symbolic object (if successful), or (void *) NULL if

a failure occurred.

char *filename ; Input argument, not modified.

A string that contains the filename from which to read the Symbolic

object.

104

13.8 umfpack * get determinant

int umfpack_di_get_determinant

(

double *Mx,

double *Ex,

void *NumericHandle,

double User_Info [UMFPACK_INFO]

) ;

UF_long umfpack_dl_get_determinant

(

double *Mx,

double *Ex,

void *NumericHandle,

double User_Info [UMFPACK_INFO]

) ;

int umfpack_zi_get_determinant

(

double *Mx,

double *Mz,

double *Ex,

void *NumericHandle,

double User_Info [UMFPACK_INFO]

) ;

UF_long umfpack_zl_get_determinant

(

double *Mx,

double *Mz,

double *Ex,

void *NumericHandle,

double User_Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

int status ;

double Mx, Ex, Info [UMFPACK_INFO] ;

status = umfpack_di_get_determinant (&Mx, &Ex, Numeric, Info) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status ;

double Mx, Ex, Info [UMFPACK_INFO] ;

status = umfpack_dl_get_determinant (&Mx, &Ex, Numeric, Info) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

int status ;

105

double Mx, Mz, Ex, Info [UMFPACK_INFO] ;

status = umfpack_zi_get_determinant (&Mx, &Mz, &Ex, Numeric, Info) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

UF_long status ;

double *Mx, *Mz, *Ex, Info [UMFPACK_INFO] ;

status = umfpack_zl_get_determinant (&Mx, &Mz, &Ex, Numeric, Info) ;

packed complex int Syntax:

Same as above, except Mz is NULL.

Author: Contributed by David Bateman, Motorola, Paris

Purpose:

Using the LU factors and the permutation vectors contained in the Numeric

object, calculate the determinant of the matrix A.

The value of the determinant can be returned in two forms, depending on

whether Ex is NULL or not. If Ex is NULL then the value of the determinant

is returned on Mx and Mz for the real and imaginary parts. However, to

avoid over- or underflows, the determinant can be split into a mantissa

and exponent, and the parts returned separately, in which case Ex is not

NULL. The actual determinant is then given by

double det ;

det = Mx * pow (10.0, Ex) ;

for the double case, or

double det [2] ;

det [0] = Mx * pow (10.0, Ex) ; // real part

det [1] = Mz * pow (10.0, Ex) ; // imaginary part

for the complex case. Information on if the determinant will or has

over or under-flowed is given by Info [UMFPACK_STATUS].

In the "packed complex" syntax, Mx [0] holds the real part and Mx [1]

holds the imaginary part. Mz is not used (it is NULL).

Returns:

Returns UMFPACK_OK if sucessful. Returns UMFPACK_ERROR_out_of_memory if

insufficient memory is available for the n_row integer workspace that

umfpack_*_get_determinant allocates to construct pivots from the

permutation vectors. Returns UMFPACK_ERROR_invalid_Numeric_object if the

Numeric object provided as input is invalid. Returns

UMFPACK_WARNING_singular_matrix if the determinant is zero. Returns

UMFPACK_WARNING_determinant_underflow or

UMFPACK_WARNING_determinant_overflow if the determinant has underflowed

overflowed (for the case when Ex is NULL), or will overflow if Ex is not

NULL and det is computed (see above) in the user program.

Arguments:

106

double *Mx ; Output argument (array of size 1, or size 2 if Mz is NULL)

double *Mz ; Output argument (optional)

double *Ex ; Output argument (optional)

The determinant returned in mantissa/exponent form, as discussed above.

If Mz is NULL, then both the original and imaginary parts will be

returned in Mx. If Ex is NULL then the determinant is returned directly

in Mx and Mz (or Mx [0] and Mx [1] if Mz is NULL), rather than in

mantissa/exponent form.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric.

double Info [UMFPACK_INFO] ; Output argument.

Contains information about the calculation of the determinant. If a

(double *) NULL pointer is passed, then no statistics are returned in

Info (this is not an error condition). The following statistics are

computed in umfpack_*_determinant:

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

The determinant was successfully found.

UMFPACK_ERROR_out_of_memory

Insufficient memory to solve the linear system.

UMFPACK_ERROR_argument_missing

Mx is missing (NULL).

UMFPACK_ERROR_invalid_Numeric_object

The Numeric object is not valid.

UMFPACK_ERROR_invalid_system

The matrix is rectangular. Only square systems can be

handled.

UMFPACK_WARNING_singluar_matrix

The determinant is zero or NaN. The matrix is singular.

UMFPACK_WARNING_determinant_underflow

When passing from mantissa/exponent form to the determinant

an underflow has or will occur. If the mantissa/exponent from

of obtaining the determinant is used, the underflow will occur

in the user program. If the single argument method of

obtaining the determinant is used, the underflow has already

occurred.

107

UMFPACK_WARNING_determinant_overflow

When passing from mantissa/exponent form to the determinant

an overflow has or will occur. If the mantissa/exponent from

of obtaining the determinant is used, the overflow will occur

in the user program. If the single argument method of

obtaining the determinant is used, the overflow has already

occurred.

108

14 Reporting routines

14.1 umfpack * report status

void umfpack_di_report_status

(

const double Control [UMFPACK_CONTROL],

int status

) ;

void umfpack_dl_report_status

(

const double Control [UMFPACK_CONTROL],

UF_long status

) ;

void umfpack_zi_report_status

(

const double Control [UMFPACK_CONTROL],

int status

) ;

void umfpack_zl_report_status

(

const double Control [UMFPACK_CONTROL],

UF_long status

) ;

double int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

int status ;

umfpack_di_report_status (Control, status) ;

double UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

UF_long status ;

umfpack_dl_report_status (Control, status) ;

complex int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

int status ;

umfpack_zi_report_status (Control, status) ;

complex UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

UF_long status ;

umfpack_zl_report_status (Control, status) ;

Purpose:

109

Prints the status (return value) of other umfpack_* routines.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

0 or less: no output, even when an error occurs

1: error messages only

2 or more: print status, whether or not an error occurred

4 or more: also print the UMFPACK Copyright

6 or more: also print the UMFPACK License

Default: 1

Int status ; Input argument, not modified.

The return value from another umfpack_* routine.

110

14.2 umfpack * report control

void umfpack_di_report_control

(

const double Control [UMFPACK_CONTROL]

) ;

void umfpack_dl_report_control

(

const double Control [UMFPACK_CONTROL]

) ;

void umfpack_zi_report_control

(

const double Control [UMFPACK_CONTROL]

) ;

void umfpack_zl_report_control

(

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_di_report_control (Control) ;

double UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_dl_report_control (Control) ;

complex int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_zi_report_control (Control) ;

double UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_zl_report_control (Control) ;

Purpose:

Prints the current control settings. Note that with the default print

level, nothing is printed. Does nothing if Control is (double *) NULL.

Arguments:

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

111

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

1 or less: no output

2 or more: print all of Control

Default: 1

112

14.3 umfpack * report info

void umfpack_di_report_info

(

const double Control [UMFPACK_CONTROL],

const double Info [UMFPACK_INFO]

) ;

void umfpack_dl_report_info

(

const double Control [UMFPACK_CONTROL],

const double Info [UMFPACK_INFO]

) ;

void umfpack_zi_report_info

(

const double Control [UMFPACK_CONTROL],

const double Info [UMFPACK_INFO]

) ;

void umfpack_zl_report_info

(

const double Control [UMFPACK_CONTROL],

const double Info [UMFPACK_INFO]

) ;

double int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

umfpack_di_report_info (Control, Info) ;

double UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

umfpack_dl_report_info (Control, Info) ;

complex int Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

umfpack_zi_report_info (Control, Info) ;

complex UF_long Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

umfpack_zl_report_info (Control, Info) ;

Purpose:

Reports statistics from the umfpack_*_*symbolic, umfpack_*_numeric, and

umfpack_*_*solve routines.

Arguments:

113

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

0 or less: no output, even when an error occurs

1: error messages only

2 or more: error messages, and print all of Info

Default: 1

double Info [UMFPACK_INFO] ; Input argument, not modified.

Info is an output argument of several UMFPACK routines.

The contents of Info are printed on standard output.

114

14.4 umfpack * report matrix

int umfpack_di_report_matrix

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [],

int col_form,

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_dl_report_matrix

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [],

UF_long col_form,

const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_matrix

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [], const double Az [],

int col_form,

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_zl_report_matrix

(

UF_long n_row,

UF_long n_col,

const UF_long Ap [],

const UF_long Ai [],

const double Ax [], const double Az [],

UF_long col_form,

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

int n_row, n_col, *Ap, *Ai, status ;

double *Ax, Control [UMFPACK_CONTROL] ;

status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ;

or:

status = umfpack_di_report_matrix (n_row, n_col, Ap, Ai, Ax, 0, Control) ;

double UF_long Syntax:

115

#include "umfpack.h"

UF_long n_row, n_col, *Ap, *Ai, status ;

double *Ax, Control [UMFPACK_CONTROL] ;

status = umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 1, Control) ;

or:

status = umfpack_dl_report_matrix (n_row, n_col, Ap, Ai, Ax, 0, Control) ;

complex int Syntax:

#include "umfpack.h"

int n_row, n_col, *Ap, *Ai, status ;

double *Ax, *Az, Control [UMFPACK_CONTROL] ;

status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1,

Control) ;

or:

status = umfpack_zi_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 0,

Control) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, *Ap, *Ai, status ;

double *Ax, Control [UMFPACK_CONTROL] ;

status = umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 1,

Control) ;

or:

status = umfpack_zl_report_matrix (n_row, n_col, Ap, Ai, Ax, Az, 0,

Control) ;

packed complex Syntax:

Same as above, except Az is NULL.

Purpose:

Verifies and prints a row or column-oriented sparse matrix.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise (where n is n_col for the column form and n_row for row

and let ni be n_row for the column form and n_col for row):

UMFPACK_OK if the matrix is valid.

UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.

UMFPACK_ERROR_argument_missing if Ap and/or Ai are missing.

UMFPACK_ERROR_invalid_matrix if Ap [n] < 0, if Ap [0] is not zero,

if Ap [j+1] < Ap [j] for any j in the range 0 to n-1,

if any row index in Ai is not in the range 0 to ni-1, or

if the row indices in any column are not in

ascending order, or contain duplicates.

UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

Int n_row ; Input argument, not modified.

Int n_col ; Input argument, not modified.

116

A is an n_row-by-n_row matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n+1] ; Input argument, not modified.

n is n_row for a row-form matrix, and n_col for a column-form matrix.

Ap is an integer array of size n+1. If col_form is true (nonzero),

then on input, it holds the "pointers" for the column form of the

sparse matrix A. The row indices of column j of the matrix A are held

in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Otherwise, Ap holds the

row pointers, and the column indices of row j of the matrix are held

in Ai [(Ap [j]) ... (Ap [j+1]-1)].

The first entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold

for all j in the range 0 to n-1. The value nz = Ap [n] is thus the

total number of entries in the pattern of the matrix A.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n].

If col_form is true (nonzero), then the nonzero pattern (row indices)

for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)]. Row indices

must be in the range 0 to n_row-1 (the matrix is 0-based).

Otherwise, the nonzero pattern (column indices) for row j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)]. Column indices must be in the range 0

to n_col-1 (the matrix is 0-based).

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n].

Size 2*nz for packed complex case.

The numerical values of the sparse matrix A.

If col_form is true (nonzero), then the nonzero pattern (row indices)

for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the

corresponding (real) numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)]. The imaginary parts are stored in

Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions

(see below if Az is NULL).

Otherwise, the nonzero pattern (column indices) for row j

is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the corresponding

(real) numerical values are stored in Ax [(Ap [j]) ... (Ap [j+1]-1)].

The imaginary parts are stored in Az [(Ap [j]) ... (Ap [j+1]-1)],

for the complex versions (see below if Az is NULL).

No numerical values are printed if Ax is NULL.

double Az [nz] ; Input argument, not modified, for complex versions.

The imaginary values of the sparse matrix A. See the description

of Ax, above.

If Az is NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

Int col_form ; Input argument, not modified.

117

The matrix is in row-oriented form if form is col_form is false (0).

Otherwise, the matrix is in column-oriented form.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.

3: fully check input, and print a short summary of its status

4: as 3, but print first few entries of the input

5: as 3, but print all of the input

Default: 1

118

14.5 umfpack * report numeric

int umfpack_di_report_numeric

(

void *Numeric,

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_dl_report_numeric

(

void *Numeric,

const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_numeric

(

void *Numeric,

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_zl_report_numeric

(

void *Numeric,

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

void *Numeric ;

double Control [UMFPACK_CONTROL] ;

int status ;

status = umfpack_di_report_numeric (Numeric, Control) ;

double UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

double Control [UMFPACK_CONTROL] ;

UF_long status ;

status = umfpack_dl_report_numeric (Numeric, Control) ;

complex int Syntax:

#include "umfpack.h"

void *Numeric ;

double Control [UMFPACK_CONTROL] ;

int status ;

status = umfpack_zi_report_numeric (Numeric, Control) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Numeric ;

double Control [UMFPACK_CONTROL] ;

UF_long status ;

status = umfpack_zl_report_numeric (Numeric, Control) ;

119

Purpose:

Verifies and prints a Numeric object (the LU factorization, both its pattern

numerical values, and permutation vectors P and Q). This routine checks the

object more carefully than the computational routines. Normally, this check

is not required, since umfpack_*_numeric either returns (void *) NULL, or a

valid Numeric object. However, if you suspect that your own code has

corrupted the Numeric object (by overruning memory bounds, for example),

then this routine might be able to detect a corrupted Numeric object. Since

this is a complex object, not all such user-generated errors are guaranteed

to be caught by this routine.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the Numeric object is valid.

UMFPACK_ERROR_invalid_Numeric_object if the Numeric object is invalid.

UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

void *Numeric ; Input argument, not modified.

The Numeric object, which holds the numeric factorization computed by

umfpack_*_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.

3: fully check input, and print a short summary of its status

4: as 3, but print first few entries of the input

5: as 3, but print all of the input

Default: 1

120

14.6 umfpack * report perm

int umfpack_di_report_perm

(

int np,

const int Perm [],

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_dl_report_perm

(

UF_long np,

const UF_long Perm [],

const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_perm

(

int np,

const int Perm [],

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_zl_report_perm

(

UF_long np,

const UF_long Perm [],

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

int np, *Perm, status ;

double Control [UMFPACK_CONTROL] ;

status = umfpack_di_report_perm (np, Perm, Control) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long np, *Perm, status ;

double Control [UMFPACK_CONTROL] ;

status = umfpack_dl_report_perm (np, Perm, Control) ;

complex int Syntax:

#include "umfpack.h"

int np, *Perm, status ;

double Control [UMFPACK_CONTROL] ;

status = umfpack_zi_report_perm (np, Perm, Control) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long np, *Perm, status ;

double Control [UMFPACK_CONTROL] ;

status = umfpack_zl_report_perm (np, Perm, Control) ;

121

Purpose:

Verifies and prints a permutation vector.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the permutation vector is valid (this includes that case

when Perm is (Int *) NULL, which is not an error condition).

UMFPACK_ERROR_n_nonpositive if np <= 0.

UMFPACK_ERROR_out_of_memory if out of memory.

UMFPACK_ERROR_invalid_permutation if Perm is not a valid permutation vector.

Arguments:

Int np ; Input argument, not modified.

Perm is an integer vector of size np. Restriction: np > 0.

Int Perm [np] ; Input argument, not modified.

A permutation vector of size np. If Perm is not present (an (Int *)

NULL pointer), then it is assumed to be the identity permutation. This

is consistent with its use as an input argument to umfpack_*_qsymbolic,

and is not an error condition. If Perm is present, the entries in Perm

must range between 0 and np-1, and no duplicates may exist.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.

3: fully check input, and print a short summary of its status

4: as 3, but print first few entries of the input

5: as 3, but print all of the input

Default: 1

122

14.7 umfpack * report symbolic

int umfpack_di_report_symbolic

(

void *Symbolic,

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_dl_report_symbolic

(

void *Symbolic,

const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_symbolic

(

void *Symbolic,

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_zl_report_symbolic

(

void *Symbolic,

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

void *Symbolic ;

double Control [UMFPACK_CONTROL] ;

int status ;

status = umfpack_di_report_symbolic (Symbolic, Control) ;

double UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

double Control [UMFPACK_CONTROL] ;

UF_long status ;

status = umfpack_dl_report_symbolic (Symbolic, Control) ;

complex int Syntax:

#include "umfpack.h"

void *Symbolic ;

double Control [UMFPACK_CONTROL] ;

int status ;

status = umfpack_zi_report_symbolic (Symbolic, Control) ;

complex UF_long Syntax:

#include "umfpack.h"

void *Symbolic ;

double Control [UMFPACK_CONTROL] ;

UF_long status ;

status = umfpack_zl_report_symbolic (Symbolic, Control) ;

123

Purpose:

Verifies and prints a Symbolic object. This routine checks the object more

carefully than the computational routines. Normally, this check is not

required, since umfpack_*_*symbolic either returns (void *) NULL, or a valid

Symbolic object. However, if you suspect that your own code has corrupted

the Symbolic object (by overruning memory bounds, for example), then this

routine might be able to detect a corrupted Symbolic object. Since this is

a complex object, not all such user-generated errors are guaranteed to be

caught by this routine.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] is <= 2 (no inputs are checked).

Otherwise:

UMFPACK_OK if the Symbolic object is valid.

UMFPACK_ERROR_invalid_Symbolic_object if the Symbolic object is invalid.

UMFPACK_ERROR_out_of_memory if out of memory.

Arguments:

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by

umfpack_*_*symbolic.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.

3: fully check input, and print a short summary of its status

4: as 3, but print first few entries of the input

5: as 3, but print all of the input

Default: 1

124

14.8 umfpack * report triplet

int umfpack_di_report_triplet

(

int n_row,

int n_col,

int nz,

const int Ti [],

const int Tj [],

const double Tx [],

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_dl_report_triplet

(

UF_long n_row,

UF_long n_col,

UF_long nz,

const UF_long Ti [],

const UF_long Tj [],

const double Tx [],

const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_triplet

(

int n_row,

int n_col,

int nz,

const int Ti [],

const int Tj [],

const double Tx [], const double Tz [],

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_zl_report_triplet

(

UF_long n_row,

UF_long n_col,

UF_long nz,

const UF_long Ti [],

const UF_long Tj [],

const double Tx [], const double Tz [],

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

int n_row, n_col, nz, *Ti, *Tj, status ;

double *Tx, Control [UMFPACK_CONTROL] ;

status = umfpack_di_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, nz, *Ti, *Tj, status ;

125

double *Tx, Control [UMFPACK_CONTROL] ;

status = umfpack_dl_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Control) ;

complex int Syntax:

#include "umfpack.h"

int n_row, n_col, nz, *Ti, *Tj, status ;

double *Tx, *Tz, Control [UMFPACK_CONTROL] ;

status = umfpack_zi_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Control) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long n_row, n_col, nz, *Ti, *Tj, status ;

double *Tx, *Tz, Control [UMFPACK_CONTROL] ;

status = umfpack_zl_report_triplet (n_row, n_col, nz, Ti, Tj, Tx, Tz,

Control) ;

packed complex Syntax:

Same as above, except Tz is NULL.

Purpose:

Verifies and prints a matrix in triplet form.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the Triplet matrix is OK.

UMFPACK_ERROR_argument_missing if Ti and/or Tj are missing.

UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.

UMFPACK_ERROR_invalid_matrix if nz < 0, or

if any row or column index in Ti and/or Tj

is not in the range 0 to n_row-1 or 0 to n_col-1, respectively.

Arguments:

Int n_row ; Input argument, not modified.

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix.

Int nz ; Input argument, not modified.

The number of entries in the triplet form of the matrix.

Int Ti [nz] ; Input argument, not modified.

Int Tj [nz] ; Input argument, not modified.

double Tx [nz] ; Input argument, not modified.

Size 2*nz for packed complex case.

double Tz [nz] ; Input argument, not modified, for complex versions.

Ti, Tj, Tx (and Tz for complex versions) hold the "triplet" form of a

sparse matrix. The kth nonzero entry is in row i = Ti [k], column

126

j = Tj [k], the real numerical value of a_ij is Tx [k], and the

imaginary part of a_ij is Tz [k] (for complex versions). The row and

column indices i and j must be in the range 0 to n_row-1 or 0 to

n_col-1, respectively. Duplicate entries may be present. The

"triplets" may be in any order. Tx and Tz are optional; if Tx is

not present ((double *) NULL), then the numerical values are

not printed.

If Tx is present and Tz is NULL, then both real

and imaginary parts are contained in Tx[0..2*nz-1], with Tx[2*k]

and Tx[2*k+1] being the real and imaginary part of the kth entry.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.

3: fully check input, and print a short summary of its status

4: as 3, but print first few entries of the input

5: as 3, but print all of the input

Default: 1

127

14.9 umfpack * report vector

int umfpack_di_report_vector

(

int n,

const double X [],

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_dl_report_vector

(

UF_long n,

const double X [],

const double Control [UMFPACK_CONTROL]

) ;

int umfpack_zi_report_vector

(

int n,

const double Xx [], const double Xz [],

const double Control [UMFPACK_CONTROL]

) ;

UF_long umfpack_zl_report_vector

(

UF_long n,

const double Xx [], const double Xz [],

const double Control [UMFPACK_CONTROL]

) ;

double int Syntax:

#include "umfpack.h"

int n, status ;

double *X, Control [UMFPACK_CONTROL] ;

status = umfpack_di_report_vector (n, X, Control) ;

double UF_long Syntax:

#include "umfpack.h"

UF_long n, status ;

double *X, Control [UMFPACK_CONTROL] ;

status = umfpack_dl_report_vector (n, X, Control) ;

complex int Syntax:

#include "umfpack.h"

int n, status ;

double *Xx, *Xz, Control [UMFPACK_CONTROL] ;

status = umfpack_zi_report_vector (n, Xx, Xz, Control) ;

complex UF_long Syntax:

#include "umfpack.h"

UF_long n, status ;

double *Xx, *Xz, Control [UMFPACK_CONTROL] ;

status = umfpack_zl_report_vector (n, Xx, Xz, Control) ;

128

Purpose:

Verifies and prints a dense vector.

Returns:

UMFPACK_OK if Control [UMFPACK_PRL] <= 2 (the input is not checked).

Otherwise:

UMFPACK_OK if the vector is valid.

UMFPACK_ERROR_argument_missing if X or Xx is missing.

UMFPACK_ERROR_n_nonpositive if n <= 0.

Arguments:

Int n ; Input argument, not modified.

X is a real or complex vector of size n. Restriction: n > 0.

double X [n] ; Input argument, not modified. For real versions.

A real vector of size n. X must not be (double *) NULL.

double Xx [n or 2*n] ; Input argument, not modified. For complex versions.

double Xz [n or 0] ; Input argument, not modified. For complex versions.

A complex vector of size n, in one of two storage formats.

Xx must not be (double *) NULL.

If Xz is not (double *) NULL, then Xx [i] is the real part of X (i) and

Xz [i] is the imaginary part of X (i). Both vectors are of length n.

This is the "split" form of the complex vector X.

If Xz is (double *) NULL, then Xx holds both real and imaginary parts,

where Xx [2*i] is the real part of X (i) and Xx [2*i+1] is the imaginary

part of X (i). Xx is of length 2*n doubles. If you have an ANSI C99

compiler with the intrinsic double _Complex type, then Xx can be of

type double _Complex in the calling routine and typecast to (double *)

when passed to umfpack_*_report_vector (this is untested, however).

This is the "merged" form of the complex vector X.

Note that all complex routines in UMFPACK V4.4 and later use this same

strategy for their complex arguments. The split format is useful for

MATLAB, which holds its real and imaginary parts in seperate arrays.

The packed format is compatible with the intrinsic double _Complex

type in ANSI C99, and is also compatible with SuperLU’s method of

storing complex matrices. In Version 4.3, this routine was the only

one that allowed for packed complex arguments.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

129

Control [UMFPACK_PRL]: printing level.

2 or less: no output. returns silently without checking anything.

3: fully check input, and print a short summary of its status

4: as 3, but print first few entries of the input

5: as 3, but print all of the input

Default: 1

130

15 Utility routines

15.1 umfpack timer

double umfpack_timer (void) ;

Syntax (for all versions: di, dl, zi, and zl):

#include "umfpack.h"

double t ;

t = umfpack_timer () ;

Purpose:

Returns the CPU time used by the process. Includes both "user" and "system"

time (the latter is time spent by the system on behalf of the process, and

is thus charged to the process). It does not return the wall clock time.

See umfpack_tic and umfpack_toc (the file umfpack_tictoc.h) for the timer

used internally by UMFPACK.

This routine uses the Unix getrusage routine, if available. It is less

subject to overflow than the ANSI C clock routine. If getrusage is not

available, the portable ANSI C clock routine is used instead.

Unfortunately, clock () overflows if the CPU time exceeds 2147 seconds

(about 36 minutes) when sizeof (clock_t) is 4 bytes. If you have getrusage,

be sure to compile UMFPACK with the -DGETRUSAGE flag set; see umf_config.h

and the User Guide for details. Even the getrusage routine can overlow.

Arguments:

None.

131

15.2 umfpack tic and umfpack toc

void umfpack_tic (double stats [2]) ;

void umfpack_toc (double stats [2]) ;

Syntax (for all versions: di, dl, zi, and zl):

#include "umfpack.h"

double stats [2] ;

umfpack_tic (stats) ;

...

umfpack_toc (stats) ;

Purpose:

umfpack_tic returns the CPU time and wall clock time used by the process.

The CPU time includes both "user" and "system" time (the latter is time

spent by the system on behalf of the process, and is thus charged to the

process). umfpack_toc returns the CPU time and wall clock time since the

last call to umfpack_tic with the same stats array.

Typical usage:

umfpack_tic (stats) ;

... do some work ...

umfpack_toc (stats) ;

then stats [1] contains the time in seconds used by the code between

umfpack_tic and umfpack_toc, and stats [0] contains the wall clock time

elapsed between the umfpack_tic and umfpack_toc. These two routines act

just like tic and toc in MATLAB, except that the both process time and

wall clock time are returned.

This routine normally uses the sysconf and times routines in the POSIX

standard. If -DNPOSIX is defined at compile time, then the ANSI C clock

routine is used instead, and only the CPU time is returned (stats [0]

is set to zero).

umfpack_tic and umfpack_toc are the routines used internally in UMFPACK

to time the symbolic analysis, numerical factorization, and the forward/

backward solve.

Arguments:

double stats [2]:

stats [0]: wall clock time, in seconds

stats [1]: CPU time, in seconds

132

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algo-
rithm. SIAM J. Matrix Anal. Applic., 17(4):886–905, 1996.

[2] P. R. Amestoy, T. A. Davis, and I. S. Duff. Algorithm 837: AMD, an approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30(3):381–388, 2004.

[3] M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward
error. SIAM J. Matrix Anal. Applic., 10:165–190, 1989.

[4] T. A. Davis. Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal method. ACM
Trans. Math. Softw., 30(2):196–199, 2004.

[5] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal method.
ACM Trans. Math. Softw., 30(2):165–195, 2004.

[6] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse LU
factorization. SIAM J. Matrix Anal. Applic., 18(1):140–158, 1997.

[7] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse
matrices. ACM Trans. Math. Softw., 25(1):1–19, 1999.

[8] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. Algorithm 836: COLAMD, a column
approximate minimum degree ordering algorithm. ACM Trans. Math. Softw., 30(3):377–380,
2004.

[9] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. A column approximate minimum
degree ordering algorithm. ACM Trans. Math. Softw., 30(3):353–376, 2004.

[10] T. A. Davis and W. W. Hager. Modifying a sparse Cholesky factorization. SIAM J. Matrix
Anal. Applic., 20(3):606–627, 1999.

[11] M. J. Daydé and I. S. Duff. The RISC BLAS: A blocked implementation of level 3 BLAS for
RISC processors. ACM Trans. Math. Softw., 25(3), Sept. 1999.

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A set of level-3 basic linear algebra
subprograms. ACM Trans. Math. Softw., 16(1):1–17, 1990.

[13] J. J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.
Comm. ACM, 30:403–407, 1987. www.netlib.org.

[14] I. S. Duff. Algorithm 575: Permutations for a zero-free diagonal. ACM Trans. Math. Softw.,
7:387–390, 1981.

[15] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the harwell-boeing sparse matrix
test collection. Technical report, AERE Harwell Laboratory, United Kingdom Atomic Energy
Authority, 1987.

[16] I. S. Duff and J. K. Reid. Algorithm 529: Permutations to block triangular form. ACM Trans.
Math. Softw., 4(2):189–192, 1978.

[17] I. S. Duff and J. K. Reid. An implementation of Tarjan’s algorithm for the block triangular-
ization of a matrix. ACM Trans. Math. Softw., 4(2):137–147, 1978.

133

[18] I. S. Duff and J. A. Scott. The design of a new frontal code for solving sparse unsymmetric
systems. ACM Trans. Math. Softw., 22(1):30–45, 1996.

[19] A. George and E. G. Ng. An implementation of Gaussian elimination with partial pivoting for
sparse systems. SIAM J. Sci. Statist. Comput., 6(2):390–409, 1985.

[20] A. George and E. G. Ng. Symbolic factorization for sparse Gaussian elimination with partial
pivoting. SIAM J. Sci. Statist. Comput., 8(6):877–898, 1987.

[21] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and imple-
mentation. SIAM J. Matrix Anal. Applic., 13(1):333–356, 1992.

[22] J. R. Gilbert and E. G. Ng. Predicting structure in nonsymmetric sparse matrix factorizations.
In A. George, J. R. Gilbert, and J. W.H. Liu, editors, Graph Theory and Sparse Matrix
Computation, Volume 56 of the IMA Volumes in Mathematics and its Applications, pages
107–139. Springer-Verlag, 1993.

[23] J. R. Gilbert, E. G. Ng, and B. W. Peyton. An efficient algorithm to compute row and column
counts for sparse Cholesky factorization. SIAM J. Matrix Anal. Applic., 15(4):1075–1091,
1994.

[24] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic oper-
ations. SIAM J. Sci. Statist. Comput., 9:862–874, 1988.

[25] K. Goto and R. van de Geijn. On reducing TLB misses in matrix multiplication, FLAME
working note 9. Technical Report TR-2002-55, The University of Texas at Austin, Department
of Computer Sciences, Nov. 2002.

[26] F. G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Trans. Math. Softw., 4(3):250–269, 1978.

[27] S. I. Larimore. An approximate minimum degree column ordering algorithm. Technical Report
TR-98-016, Univ. of Florida, CISE Dept., Gainesville, FL, 1998. www.cise.ufl.edu/tech-reports.

[28] R. C Whaley, A. Petitet, and J. J. Dongarra. Automated emperical optimization of software
and the ATLAS project. Technical Report LAPACK Working Note 147, Computer Science
Department, The University of Tennessee, September 2000. www.netlib.org/atlas.

134

