subroutine r9knus (xnu, x, bknu, bknu1, iswtch) c june 1977 edition. w. fullerton, c3, los alamos scientific lab. c c compute bessel functions exp(x) * k-sub-xnu (x) and c exp(x) * k-sub-xnu+1 (x) for 0.0 .le. xnu .lt. 1.0 . c dimension alpha(15), beta(15), a(15), c0kcs(16), znu1cs(12) external csevl,gamma, inits, r1mach c c series for c0k on the interval 0. to 2.50000d-01 c with weighted error 1.60e-17 c log weighted error 16.79 c significant figures required 15.99 c decimal places required 17.40 c data c0k cs( 1) / .0601830572 42626108e0 / data c0k cs( 2) / -.1536487143 3017286e0 / data c0k cs( 3) / -.0117511760 08210492e0 / data c0k cs( 4) / -.0008524878 88919795e0 / data c0k cs( 5) / -.0000613298 38767496e0 / data c0k cs( 6) / -.0000044052 28124551e0 / data c0k cs( 7) / -.0000003163 12467283e0 / data c0k cs( 8) / -.0000000227 10719382e0 / data c0k cs( 9) / -.0000000016 30564460e0 / data c0k cs(10) / -.0000000001 17069392e0 / data c0k cs(11) / -.0000000000 08405206e0 / data c0k cs(12) / -.0000000000 00603466e0 / data c0k cs(13) / -.0000000000 00043326e0 / data c0k cs(14) / -.0000000000 00003110e0 / data c0k cs(15) / -.0000000000 00000223e0 / data c0k cs(16) / -.0000000000 00000016e0 / c c series for znu1 on the interval -7.00000d-01 to 0. c with weighted error 1.43e-17 c log weighted error 16.85 c significant figures required 16.08 c decimal places required 17.38 c data znu1cs( 1) / .2033067569 9419173e0 / data znu1cs( 2) / .1400779334 1321977e0 / data znu1cs( 3) / .0079167969 61001613e0 / data znu1cs( 4) / .0003398011 82532104e0 / data znu1cs( 5) / .0000117419 75688989e0 / data znu1cs( 6) / .0000003393 57570612e0 / data znu1cs( 7) / .0000000084 25941769e0 / data znu1cs( 8) / .0000000001 83336677e0 / data znu1cs( 9) / .0000000000 03549698e0 / data znu1cs(10) / .0000000000 00061903e0 / data znu1cs(11) / .0000000000 00000981e0 / data znu1cs(12) / .0000000000 00000014e0 / c data euler / 0.5772156649 0153286e0 / data sqpi2 / 1.253314137 3155003e0 / data aln2 / 0.693147180 55994531e0 / data ntc0k, ntznu1 / 2*0 / data xnusml, xsml, alnsml, alnbig, alneps / 5*0.0 / c if (ntc0k.ne.0) go to 10 ntc0k = inits (c0kcs, 16, 0.1*r1mach(3)) ntznu1 = inits (znu1cs, 12, 0.1*r1mach(3)) c xnusml = sqrt (r1mach(3)/8.0) xsml = 0.1*r1mach(3) alnsml = alog (r1mach(1)) alnbig = alog (r1mach(2)) alneps = alog (0.1*r1mach(3)) c 10 if (xnu.lt.0. .or. xnu.ge.1.0) call seteru ( 1 33hr9knus xnu must be ge 0 and lt 1, 33, 1, 2) if (x.le.0.) call seteru (22hr9knus x must be gt 0, 22, 2, 2) c iswtch = 0 if (x.gt.2.0) go to 50 c c x is small. compute k-sub-xnu (x) and the derivative of k-sub-xnu (x) c then find k-sub-xnu+1 (x). xnu is reduced to the interval (-.5,+.5) c then to (0., .5), because k of negative order (-nu) = k of positive c order (+nu). c v = xnu if (xnu.gt.0.5) v = 1.0 - xnu c c carefully find (x/2)**xnu and z**xnu where z = x*x/4. alnz = 2.0 * (alog(x) - aln2) c if (x.gt.xnu) go to 20 if (-0.5*xnu*alnz-aln2-alog(xnu).gt.alnbig) call seteru ( 1 45hr9knus x so small bessel k-sub-xnu overflows, 45, 3, 2) c 20 vlnz = v*alnz x2tov = exp (0.5*vlnz) ztov = 0.0 if (vlnz.gt.alnsml) ztov = x2tov**2 c a0 = 0.5*gamma(1.0+v) b0 = 0.5*gamma(1.0-v) c0 = -euler if (ztov.gt.0.5 .and. v.gt.xnusml) c0 = -0.75 + 1 csevl ((8.0*v)*v-1., c0kcs, ntc0k) c if (ztov.le.0.5) alpha(1) = (a0-ztov*b0)/v if (ztov.gt.0.5) alpha(1) = c0 - alnz*(0.75 + 1 csevl (vlnz/0.35+1.0, znu1cs, ntznu1))*b0 beta(1) = -0.5*(a0+ztov*b0) c z = 0.0 if (x.gt.xsml) z = 0.25*x*x nterms = max1 (2.0, 11.0+(8.*alnz-25.19-alneps)/(4.28-alnz)) do 30 i=2,nterms xi = i - 1 a0 = a0/(xi*(xi-v)) b0 = b0/(xi*(xi+v)) alpha(i) = (alpha(i-1)+2.0*xi*a0)/(xi*(xi+v)) beta(i) = (xi-0.5*v)*alpha(i) - ztov*b0 30 continue c bknu = alpha(nterms) bknud = beta(nterms) do 40 ii=2,nterms i = nterms + 1 - ii bknu = alpha(i) + bknu*z bknud = beta(i) + bknud*z 40 continue c expx = exp(x) bknu = expx*bknu/x2tov c if (-0.5*(xnu+1.)*alnz-2.0*aln2.gt.alnbig) iswtch = 1 if (iswtch.eq.1) return bknud = expx*bknud*2.0/(x2tov*x) c if (xnu.le.0.5) bknu1 = v*bknu/x - bknud if (xnu.le.0.5) return c bknu0 = bknu bknu = -v*bknu/x - bknud bknu1 = 2.0*xnu*bknu/x + bknu0 return c c x is large. find k-sub-xnu (x) and k-sub-xnu+1 (x) with y. l. luke-s c rational expansion. c 50 sqrtx = sqrt(x) if (x.gt.1.0/xsml) go to 90 an = -1.56 + 4.0/x bn = -0.29 - 0.22/x nterms = min0 (15, max1 (3., an+bn*alneps)) c do 80 inu=1,2 xmu = 0. if (inu.eq.1 .and. xnu.gt.xnusml) xmu = (4.0*xnu)*xnu if (inu.eq.2) xmu = 4.0*(abs(xnu)+1.)**2 c a(1) = 1.0 - xmu a(2) = 9.0 - xmu a(3) = 25.0 - xmu if (a(2).eq.0.) result = sqpi2*(16.*x+xmu+7.)/(16.*x*sqrtx) if (a(2).eq.0.) go to 70 c alpha(1) = 1.0 alpha(2) = (16.*x+a(2))/a(2) alpha(3) = ((768.*x+48.*a(3))*x + a(2)*a(3))/(a(2)*a(3)) c beta(1) = 1.0 beta(2) = (16.*x+(xmu+7.))/a(2) beta(3) = ((768.*x+48.*(xmu+23.))*x + ((xmu+62.)*xmu+129.)) 1 / (a(2)*a(3)) c if (nterms.lt.4) go to 65 do 60 i=4,nterms n = i - 1 x2n = 2*n - 1 c a(i) = (x2n+2.)**2 - xmu qq = 16.*x2n/a(i) p1 = -x2n*(float(12*n*n-20*n)-a(1))/((x2n-2.)*a(i)) - qq*x p2 = (float(12*n*n-28*n+8)-a(1))/a(i) - qq*x p3 = -x2n*a(i-3)/((x2n-2.)*a(i)) c alpha(i) = -p1*alpha(i-1) - p2*alpha(i-2) - p3*alpha(i-3) beta(i) = -p1*beta(i-1) - p2*beta(i-2) - p3*beta(i-3) 60 continue c 65 result = sqpi2*beta(nterms)/(sqrtx*alpha(nterms)) c 70 if (inu.eq.1) bknu = result if (inu.eq.2) bknu1 = result 80 continue return c 90 bknu = sqpi2/sqrtx bknu1 = bknu return c end