
FVN Documentation

William Daniau

September 14, 2007

Contents

1 Whatis fvn,licence,disclaimer etc 2
1.1 Whatis fvn . 2
1.2 Licence . 2
1.3 Disclaimer . 2

2 Naming scheme and convention 2

3 Linear algebra 2
3.1 Matrix inversion . 3
3.2 Matrix determinants . 3
3.3 Matrix condition . 4
3.4 Eigenvalues/Eigenvectors . 4
3.5 Sparse solving . 5

3.5.1 Example . 6

4 Interpolation 7
4.1 Interpolation . 7
4.2 Evaluation . 7
4.3 Example . 7

5 Least square polynomial 9

6 Zero finding 10

7 Trigonometry 12
7.1 Complex Sine Arc . 12
7.2 Complex Cosine Arc . 12
7.3 Real Sine Hyperbolic Arc . 12
7.4 Real Cosine Hyperbolic Arc . 12

8 Numerical integration 12
8.1 Gauss Legendre Abscissas and Weigth . 13
8.2 Gauss Legendre Numerical Integration . 13
8.3 Gauss Kronrod Adaptative Integration . 13

8.3.1 Numerical integration of a one variable function 13
8.3.2 Numerical integration of a two variable function 14

1

1 Whatis fvn,licence,disclaimer etc

1.1 Whatis fvn

fvn is a Fortran95 mathematical module. It provides various usefull subroutine covering linear
algebra, numerical integration, least square polynomial, spline interpolation, zero finding, complex
trigonometry etc.

Most of the work is done by interfacing Lapack http://www.netlib.org/lapack which means
that Lapack and Blas http://www.netlib.org/blas must be available on your system for linking
fvn. If you use an AMD microprocessor, the good idea is to use ACML (AMD Core Math Library
http://developer.amd.com/acml.jsp which contains an optimized Blas/Lapack. Fvn also con-
tains a slightly modified version of Quadpack http://www.netlib.org/quadpack for performing
the numerical integration tasks.

This module has been initially written for the use of the “Acoustic and microsonic” group
leaded by Sylvain Ballandras in institute Femto-ST http://www.femto-st.fr/.

1.2 Licence

The licence of fvn is free. You can do whatever you want with this code as far as you credit the
authors.

Authors

As of the day this manuel is written there’s only one author of fvn :
William Daniau
william.daniau@femto-st.fr

1.3 Disclaimer

The usual disclaimer applied : This software is provided AS IS in the hope it will be usefull. Use
it at your own risks. The authors should not be taken responsible of anything that may result by
the use of this software.

2 Naming scheme and convention

The naming scheme of the routines is as follow :

fvn_x_name()

where x can be s,d,c or z.

• s is for single precision real (real,real*4,real(4),real(kind=4))

• d for double precision real (double precision,real*8,real(8),real(kind=8))

• c for single precision complex (complex,complex*8,complex(4),complex(kind=4))

• z for double precision complex (double complex,complex*16,complex(8),complex(kind=8))

In the following description of subroutines parameters, input parameters are followed by (in),
output parameters by (out) and parameters which are used as input and modified by the subroutine
are followed by (inout).

3 Linear algebra

The linear algebra routines of fvn are an interface to lapack, which make it easier to use.

2

3.1 Matrix inversion

call fvn_x_matinv(d,a,inva,status)

• d (in) is an integer equal to the matrix rank

• a (in) is a matrix of type x. It will remain untouched.

• inva (out) is a matrix of type x which contain the inverse of a at the end of the routine

• status (out) is an integer equal to zero if something went wrong

Example

program inv
use fvn
implicit none

real(8),dimension(3,3) :: a,inva
integer :: status

call random_number(a)
a=a*100

call fvn_d_matinv(3,a,inva,status)
write (*,*) a
write (*,*)
write (*,*) inva
write (*,*)
write (*,*) matmul(a,inva)
end program

3.2 Matrix determinants

det=fvn_x_det(d,a,status)

• d (in) is an integer equal to the matrix rank

• a (in) is a matrix of type x. It will remain untouched.

• status (out) is an integer equal to zero if something went wrong

Example

program det
use fvn
implicit none

real(8),dimension(3,3) :: a
real(8) :: deta
integer :: status

call random_number(a)
a=a*100

deta=fvn_d_det(3,a,status)
write (*,*) a

3

write (*,*)
write (*,*) "Det = ",deta
end program

3.3 Matrix condition

call fvn_x_matcon(d,a,rcond,status)

• d (in) is an integer equal to the matrix rank

• a (in) is a matrix of type x. It will remain untouched.

• rcond (out) is a real of same kind as matrix a, it will contain the reciprocal condition number
of the matrix

• status (out) is an integer equal to zero if something went wrong

The reciprocal condition number is evaluated using the 1-norm and is define as in equation 1

R =
1

norm(A) ∗ norm(invA)
(1)

The 1-norm itself is defined as the maximum value of the columns absolute values (modulus
for complex) sum as in equation 2

L1 = maxj(
∑

i

| A(i, j) |) (2)

Example

program cond
use fvn
implicit none

real(8),dimension(3,3) :: a
real(8) :: rcond
integer :: status

call random_number(a)
a=a*100

call fvn_d_matcon(3,a,rcond,status)
write (*,*) a
write (*,*)
write (*,*) "Cond = ",rcond
end program

3.4 Eigenvalues/Eigenvectors

call fvn_x_matev(d,a,evala,eveca,status)

• d (in) is an integer equal to the matrix rank

• a (in) is a matrix of type x. It will remain untouched.

• evala (out) is a complex array of same kind as a. It contains the eigenvalues of matrix a

4

• eveca (out) is a complex matrix of same kind as a. Its columns are the eigenvectors of matrix
a : eveca(:,j)=jth eigenvector associated with eigenvalue evala(j).

• status (out) is an integer equal to zero if something went wrong

Example

program eigen
use fvn
implicit none

real(8),dimension(3,3) :: a
complex(8),dimension(3) :: evala
complex(8),dimension(3,3) :: eveca
integer :: status,i,j

call random_number(a)
a=a*100

call fvn_d_matev(3,a,evala,eveca,status)
write (*,*) a
write (*,*)
do i=1,3

write(*,*) "Eigenvalue ",i,evala(i)
write(*,*) "Associated Eigenvector :"
do j=1,3

write(*,*) eveca(j,i)
end do
write(*,*)

end do

end program

3.5 Sparse solving

By interfacing Tim Davis’s SuiteSparse from university of Florida http://www.cise.ufl.edu/
research/sparse/SuiteSparse/ which is a reference for this kind of problems, fvn provides
simple subroutines for solving linear sparse systems.

The provided routines solves the equation Ax = B where A is sparse and given in its triplet
form. Only complex is coded at this time.

call fvn_*_sparse_solve(n,nz,T,Ti,Tj,B,x,status) where * is either zl or zi

• in the following description if * is zl then all complexes are complex(8) and all integers are
integer(8). If * is zi all complexes are complex(8) and all integers are integer(4).

• n (in) is an integer equal to the matrix rank

• nz (in) is an integer equal to the number of non-zero elements

• T(nz) (in) is a complex array containing the non-zero elements

• Ti(nz),Tj(nz) (in) are the indexes of the corresponding element of T in the original matrix.

• B(n) (in) is a complex array containing the second member of the equation.

5

• x(n) (out) is a complex array containing the solution

• status (out) is an integer which contain non-zero is something went wrong

3.5.1 Example

program test_sparse

use fvn
implicit none

integer(8), parameter :: nz=12
integer(8), parameter :: n=5
complex(8),dimension(nz) :: A
integer(8),dimension(nz) :: Ti,Tj
complex(8),dimension(n) :: B,x
integer(8) :: status

A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
(1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)

B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)

call fvn_zl_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x

end program

program test_sparse_i

use fvn
implicit none

integer(4), parameter :: nz=12
integer(4), parameter :: n=5
complex(8),dimension(nz) :: A
integer(4),dimension(nz) :: Ti,Tj
complex(8),dimension(n) :: B,x
integer(4) :: status

A = (/ (2.,0.),(3.,0.),(3.,0.),(-1.,0.),(4.,0.),(4.,0.),(-3.,0.),&
(1.,0.),(2.,0.),(2.,0.),(6.,0.),(1.,0.) /)

B = (/ (8.,0.), (45.,0.), (-3.,0.), (3.,0.), (19.,0.)/)
Ti = (/ 1,2,1,3,5,2,3,4,5,3,2,5 /)
Tj = (/ 1,1,2,2,2,3,3,3,3,4,5,5 /)

call fvn_zi_sparse_solve(n,nz,A,Ti,Tj,B,x,status)
write(*,*) x

end program

6

4 Interpolation

fvn provide Akima spline interpolation and evaluation for both single and double precision real.

4.1 Interpolation

call fvn_x_akima(n,x,y,br,co)

• n (in) is an integer equal to the number of points

• x(n) (in) ,y(n) (in) are the known couples of coordinates

• br (out) on output contains a copy of x

• co(4,n) (out) is a real matrix containing the 4 coefficients of the Akima interpolation spline
for a given interval.

4.2 Evaluation

y=fvn_x_spline_eval(x,n,br,co)

• x (in) is the point where we want to evaluate

• n (in) is the number of known points and br(n) (in), co(4,n) (in)
are the outputs of fvn x akima(n,x,y,br,co)

4.3 Example

In the following example we will use Akima splines to interpolate a sinus function with 30 points
between -10 and 10. We then use the evaluation function to calculate the coordinates of 1000 points
between -11 and 11, and write a 3 columns file containing : x, calculated sin(x), interpolation
evaluation of sin(x).

One can see that the interpolation is very efficient even with only 30 points. Of course as soon
as we leave the -10 to 10 interval, the values are extrapolated and thus can lead to very inacurrate
values.

program akima
use fvn
implicit none

integer :: nbpoints,nppoints,i
real(8),dimension(:),allocatable :: x_d,y_d,breakpoints_d
real(8),dimension(:,:),allocatable :: coeff_fvn_d
real(8) :: xstep_d,xp_d,ty_d,fvn_y_d

open(2,file=’fvn_akima_double.dat’)
open(3,file=’fvn_akima_breakpoints_double.dat’)
nbpoints=30
allocate(x_d(nbpoints))
allocate(y_d(nbpoints))
allocate(breakpoints_d(nbpoints))
allocate(coeff_fvn_d(4,nbpoints))

xstep_d=20./dfloat(nbpoints)

7

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-15 -10 -5 0 5 10 15

’fvn_akima_double.dat’ u 1:2
’’ u 1:3

’fvn_akima_breakpoints_double.dat’ u 1:2

Figure 1: Akima Spline Interpolation

do i=1,nbpoints
x_d(i)=-10.+dfloat(i)*xstep_d
y_d(i)=dsin(x_d(i))
write(3,44) (x_d(i),y_d(i))

end do
close(3)

call fvn_d_akima(nbpoints,x_d,y_d,breakpoints_d,coeff_fvn_d)

nppoints=1000
xstep_d=22./dfloat(nppoints)
do i=1,nppoints

xp_d=-11.+dfloat(i)*xstep_d
ty_d=dsin(xp_d)
fvn_y_d=fvn_d_spline_eval(xp_d,nbpoints-1,breakpoints_d,coeff_fvn_d)
write(2,44) (xp_d,ty_d,fvn_y_d)

end do

close(2)

44 FORMAT(4(1X,1PE22.14))

end program

Results are plotted on figure 1

8

5 Least square polynomial

fvn provide a function to find a least square polynomial of a given degree, for real in single or
double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem
using singular value decomposition.

call fvn_x_lspoly(np,x,y,deg,coeff,status)

• np (in) is an integer equal to the number of points

• x(np) (in),y(np) (in) are the known coordinates

• deg (in) is an integer equal to the degree of the desired polynomial, it must be lower than
np.

• coeff(deg+1) (out) on output contains the polynomial coefficients

• status (out) is an integer containing 0 if a problem occured.

Example

Here’s a simple example : we’ve got 13 measurement points and we want to find the least square
degree 3 polynomial for these points :

program lsp
use fvn
implicit none

integer,parameter :: npoints=13,deg=3
integer :: status,i
real(kind=8) :: xm(npoints),ym(npoints),xstep,xc,yc
real(kind=8) :: coeff(deg+1)

xm = (/ -3.8,-2.7,-2.2,-1.9,-1.1,-0.7,0.5,1.7,2.,2.8,3.2,3.8,4. /)
ym = (/ -3.1,-2.,-0.9,0.8,1.8,0.4,2.1,1.8,3.2,2.8,3.9,5.2,7.5 /)

open(2,file=’fvn_lsp_double_mesure.dat’)
open(3,file=’fvn_lsp_double_poly.dat’)

do i=1,npoints
write(2,44) xm(i),ym(i)

end do
close(2)

call fvn_d_lspoly(npoints,xm,ym,deg,coeff,status)

xstep=(xm(npoints)-xm(1))/1000.
do i=1,1000

xc=xm(1)+(i-1)*xstep
yc=poly(xc,coeff)
write(3,44) xc,yc

end do
close(3)

44 FORMAT(4(1X,1PE22.14))

9

-4

-2

 0

 2

 4

 6

 8

-4 -3 -2 -1 0 1 2 3 4

’fvn_lsp_double_mesure.dat’ u 1:2
’fvn_lsp_double_poly.dat’ u 1:2

Figure 2: Least Square Polynomial

contains
function poly(x,coeff)

implicit none
real(8) :: x
real(8) :: coeff(deg+1)
real(8) :: poly
integer :: i

poly=0.

do i=1,deg+1
poly=poly+coeff(i)*x**(i-1)

end do

end function
end program

The results are plotted on figure 2 .

6 Zero finding

fvn provide a routine for finding zeros of a complex function using Muller algorithm (only for
double complex type). It is based on a version provided on the web by Hans D Mittelmann
http://plato.asu.edu/ftp/other_software/muller.f.

call fvn_z_muller(f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)

10

• f (in) is the complex function (kind=8) for which we search zeros

• eps (in) is a real(8) corresponding to the first stopping criterion : let fp(z)=f(z)/p where
p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) and z(1),...,z(k-1) are previously found roots. if ((cd-
abs(f(z)).le.eps) .and. (cdabs(fp(z)).le.eps)), then z is accepted as a root.

• eps1 (in) is a real(8) corresponding to the second stopping criterion : a root is accepted if
two successive approximations to a given root agree within eps1. Note that if either or both
of the stopping criteria are fulfilled, the root is accepted.

• kn (in) is an integer equal to the number of known roots, which must be stored in x(1),...,x(kn),
prior to entry in the subroutine.

• nguess (in) is the number of initial guesses provided. These guesses must be stored in
x(kn+1),...,x(kn+nguess). nguess must be set equal to zero if no guesses are provided.

• n (in) is an integer equal to the number of new roots to be found.

• x (inout) is a complex(8) vector of length kn+n. x(1),...,x(kn) on input must contain any
known roots. x(kn+1),..., x(kn+n) on input may, on user option, contain initial guesses for
the n new roots which are to be computed. If the user does not provide an initial guess,
zero is used. On output, x(kn+1),...,x(kn+n) contain the approximate roots found by the
subroutine.

• itmax (in) is an integer equal to the maximum allowable number of iterations per root.

• infer (out) is an integer vector of size kn+n. On output infer(j) contains the number of
iterations used in finding the j-th root when convergence was achieved. If convergence was
not obtained in itmax iterations, infer(j) will be greater than itmax

• ier (out) is an integer used as an error parameter. ier = 33 indicates failure to converge
within itmax iterations for at least one of the (n) new roots.

This subroutine always returns the last approximation for root j in x(j). if the convergence criterion
is satisfied, then infer(j) is less than or equal to itmax. if the convergence criterion is not satisified,
then infer(j) is set to either itmax+1 or itmax+k, with k greater than 1. infer(j) = itmax+1
indicates that muller did not obtain convergence in the allowed number of iterations. in this case,
the user may wish to set itmax to a larger value. infer(j) = itmax+k means that convergence was
obtained (on iteration k) for the deflated function fp(z) = f(z)/((z-z(1)...(z-z(j-1))) but failed for
f(z). in this case, better initial guesses might help or, it might be necessary to relax the convergence
criterion.

Example

Example to find the ten roots of x10 − 1

program muller
use fvn
implicit none

integer :: i,info
complex(8),dimension(10) :: roots
integer,dimension(10) :: infer
complex(8), external :: f

call fvn_z_muller(f,1.d-12,1.d-10,0,0,10,roots,200,infer,info)

write(*,*) "Error code :",info

11

do i=1,10
write(*,*) roots(i),infer(i)

enddo
end program

function f(x)
complex(8) :: x,f
f=x**10-1

end function

7 Trigonometry

7.1 Complex Sine Arc

(only complex(kind=8) version)

y=fvn_z_asin(z)

This function return the complex arc sine of z. It is adapted from he c gsl library http://www.
gnu.org/software/gsl/.

7.2 Complex Cosine Arc

(only complex(kind=8) version)

y=fvn_z_acos(z)

This function return the complex arc cosine of z. It is adapted from he c gsl library http:
//www.gnu.org/software/gsl/.

7.3 Real Sine Hyperbolic Arc

(only real(kind=8) version)

y=fvn_d_asinh(x)

This function return the arc hyperbolic sine of x.

7.4 Real Cosine Hyperbolic Arc

(only real(kind=8) version)

y=fvn_d_acosh(x)

This function return the arc hyperbolic cosine of x. In the current implementation error handling
is ugly... it will stop program execution if argument is lesser than one.

8 Numerical integration

Using an integrated slightly modified version of quadpack http://www.netlib.org/quadpack, fvn
provide adaptative numerical integration (Gauss Kronrod) of real functions of 1 and 2 variables.
fvn also provide a function to calculate Gauss-Legendre abscissas and weight, and a simple non
adaptative integration subroutine. All routines exists only in fvn for double precision real.

12

8.1 Gauss Legendre Abscissas and Weigth

This subroutine was inspired by Numerical Recipes routine gauleg.

call fvn_d_gauss_legendre(n,qx,qw)

• n (in) is an integer equal to the number of Gauss Legendre points

• qx (out) is a real(8) vector of length n containing the abscissas.

• qw (out) is a real(8) vector of length n containing the weigths.

This subroutine computes n Gauss-Legendre abscissas and weigths

8.2 Gauss Legendre Numerical Integration

call fvn_d_gl_integ(f,a,b,n,res)

• f (in) is a real(8) function to integrate

• a (in) and b (in) are real(8) respectively lower and higher bound of integration

• n (in) is an integer equal to the number of Gauss Legendre points to use

• res (out) is a real(8) containing the result

This function is a simple Gauss Legendre integration subroutine, which evaluate the integral of
function f as in equation 3 using n Gauss-Legendre pairs.

8.3 Gauss Kronrod Adaptative Integration

This kind of numerical integration is an iterative procedure which try to achieve a given precision.

8.3.1 Numerical integration of a one variable function

call fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)

This routine evaluate the integral of function f as in equation 3

• f (in) is an external real(8) function of one variable

• a (in) and b (in) are real(8) respectively lower an higher bound of integration

• epsabs (in) and epsrel (in) are real(8) respectively desired absolute and relative error

• key (in) is an integer between 1 and 6 correspondind to the Gauss-Kronrod rule to use :

– 1 : 7 - 15 points

– 2 : 10 - 21 points

– 3 : 15 - 31 points

– 4 : 20 - 41 points

– 5 : 25 - 51 points

– 6 : 30 - 61 points

• res (out) is a real(8) containing the estimation of the integration.

• abserr (out) is a real(8) equal to the estimated absolute error

• ier (out) is an integer used as an error flag

13

– 0 : no error

– 1 : maximum number of subdivisions allowed has been achieved. one can allow more
subdivisions by increasing the value of limit (and taking the according dimension ad-
justments into account). however, if this yield no improvement it is advised to analyze
the integrand in order to determine the integration difficulaties. If the position of a
local difficulty can be determined (i.e.singularity, discontinuity within the interval) one
will probably gain from splitting up the interval at this point and calling the integrator
on the subranges. If possible, an appropriate special-purpose integrator should be used
which is designed for handling the type of difficulty involved.

– 2 : the occurrence of roundoff error is detected, which prevents the requested tolerance
from being achieved.

– 3 : extremely bad integrand behaviour occurs at some points of the integration interval.

– 6 : the input is invalid, because (epsabs.le.0 and epsrel.lt.max(50*rel.mach.acc.,0.5d-
28)) or limit.lt.1 or lenw.lt.limit*4. result, abserr, neval, last are set to zero. Except
when lenw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero,
work(1) is set to a and work(limit+1) to b.

• limit (in) is an integer equal to maximum number of subintervals in the partition of the
given integration interval (a,b). A value of 500 will usually give good results.

∫ b

a

f(x) dx (3)

8.3.2 Numerical integration of a two variable function

call fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)

This function evaluate the integral of a function f(x,y) as defined in equation 4. The parameters
of same name as in the previous paragraph have exactly the same function and behaviour thus
only what differs is decribed here

• a (in) and b (in) are real(8) corresponding respectively to lower and higher bound of inte-
gration for the x variable.

• g(x) (in) and h(x) (in) are external functions describing the lower and higher bound of
integration for the y variable as a function of x.

∫ b

a

∫ h(x)

g(x)

f(x, y) dy dx (4)

Example

program integ
use fvn
implicit none

real(8), external :: f1,f2,g,h
real(8) :: a,b,epsabs,epsrel,abserr,res
integer :: key,ier

a=0.
b=1.
epsabs=1d-8

14

epsrel=1d-8
key=2
call fvn_d_integ_1_gk(f1,a,b,epsabs,epsrel,key,res,abserr,ier,500)
write(*,*) "Integration of x*x between 0 and 1 : "
write(*,*) res

call fvn_d_integ_2_gk(f2,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,500)
write(*,*) "Integration of x*y between 0 and 1 on both x and y : "
write(*,*) res

end program

function f1(x)
implicit none

real(8) :: x,f1
f1=x*x

end function

function f2(x,y)
implicit none

real(8) :: x,y,f2
f2=x*y

end function

function g(x)
implicit none

real(8) :: x,g
g=0.

end function

function h(x)
implicit none

real(8) :: x,h
h=1.

end function

15

