./readhb_nozeros < HB/can_24.psa > tmp/A
./readhb_size    < HB/can_24.psa > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 24 nrow 24 ncol 24 nz 160
triplet-form matrix, n_row = 24, n_col = 24 nz = 160. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 24 n_col 24, nz = 160. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       24
    number of columns in matrix A:    24
    entries in matrix A:              160
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               0
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    24
        symmetry of nonzero pattern:               1.000000
        nz in S+S' (excl. diagonal):               136
        nz on diagonal of matrix S:                24
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.00300e+03
        est. nz in L+U (incl. diagonal):           218
        est. largest front (# entries):            64
        est. max nz in any column of L:            8
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 725
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         131
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                     763                    -      -
        peak size (Units)                       3244                    -      -
        final size (Units)                       393                    -      -
    Numeric final size (Units)                   598                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                   3840                    -      -
    peak memory usage (MBytes)                   0.0                    -      -
    numeric factorization flops          2.37900e+03                    -      -
    nz in L (incl diagonal)                      149                    -      -
    nz in U (incl diagonal)                      208                    -      -
    nz in L+U (incl diagonal)                    333                    -      -
    largest front (# entries)                    182                    -      -
    largest # rows in front                       13                    -      -
    largest # columns in front                    14                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       24
    number of columns in matrix A:    24
    entries in matrix A:              160
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               0
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    24
        symmetry of nonzero pattern:               1.000000
        nz in S+S' (excl. diagonal):               136
        nz on diagonal of matrix S:                24
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.00300e+03
        est. nz in L+U (incl. diagonal):           218
        est. largest front (# entries):            64
        est. max nz in any column of L:            8
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 725
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         131
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              4.00000e+00
    maximum sum (abs (rows of A)):              9.00000e+00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                     763                  711    93%
        peak size (Units)                       3244                 2709    84%
        final size (Units)                       393                  133    34%
    Numeric final size (Units)                   598                  326    55%
    Numeric final size (MBytes)                  0.0                  0.0    55%
    peak memory usage (Units)                   3840                 3305    86%
    peak memory usage (MBytes)                   0.0                  0.0    86%
    numeric factorization flops          2.37900e+03          1.57000e+02     7%
    nz in L (incl diagonal)                      149                   53    36%
    nz in U (incl diagonal)                      208                   73    35%
    nz in L+U (incl diagonal)                    333                  102    31%
    largest front (# entries)                    182                   78    43%
    largest # rows in front                       13                    7    54%
    largest # columns in front                    14                   13    93%

    initial allocation ratio used:                 1.2
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 10
    nz in L (incl diagonal), if none dropped       53
    nz in U (incl diagonal), if none dropped       73
    number of small entries dropped                0
    nonzeros on diagonal of U:                     24
    min abs. value on diagonal of U:               1.11e-01
    max abs. value on diagonal of U:               2.50e-01
    estimate of reciprocal of condition number:    4.44e-01
    indices in compressed pattern:                 76
    numerical values stored in Numeric object:     102
    numeric factorization defragmentations:        0
    numeric factorization reallocations:           0
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   1.06000e+03
    iterative refinement steps taken:              0
    iterative refinement steps attempted:          0
    sparse backward error omega1:                  7.86e-17
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        1.21700e+03


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 24. OK

relative maxnorm of residual, ||Ax-b||/||b||: 2.58379e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92754e-15

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  24
    nz, number of nonzeros in A:                        160
    symmetry of A:                                      1.0000
    number of nonzeros on diagonal:                     24
    nonzeros in pattern of A+A' (excl. diagonal):       136
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              1516
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 97
    nonzeros in L (including diagonal):                 121
    # divide operations for LDL' or LU:                 97
    # multiply-subtract operations for LDL':            275
    # multiply-subtract operations for LU:              453
    max nz. in any column of L (incl. diagonal):        8

    chol flop count for real A, sqrt counted as 1 flop: 671
    LDL' flop count for real A:                         647
    LDL' flop count for complex A:                      3073
    LU flop count for real A (with no pivoting):        1003
    LU flop count for complex A (with no pivoting):     4497

AMD test done
./readhb_nozeros < HB/west0067.rua > tmp/A
./readhb_size    < HB/west0067.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 67 nrow 67 ncol 67 nz 294
triplet-form matrix, n_row = 67, n_col = 67 nz = 294. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 67 n_col 67, nz = 294. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       67
    number of columns in matrix A:    67
    entries in matrix A:              294
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    unsymmetric
    ordering used:                    colamd on A
    modify Q during factorization:    yes
    prefer diagonal pivoting:         no
    pivots with zero Markowitz cost:               1
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S not square or diagonal not preserved
    symbolic factorization defragmentations:       1
    symbolic memory usage (Units):                 1639
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         252
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    1711                    -      -
        peak size (Units)                       6115                    -      -
        final size (Units)                      1628                    -      -
    Numeric final size (Units)                  2108                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                   7476                    -      -
    peak memory usage (MBytes)                   0.1                    -      -
    numeric factorization flops          1.41920e+04                    -      -
    nz in L (incl diagonal)                      542                    -      -
    nz in U (incl diagonal)                      902                    -      -
    nz in L+U (incl diagonal)                   1377                    -      -
    largest front (# entries)                    483                    -      -
    largest # rows in front                       21                    -      -
    largest # columns in front                    23                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       67
    number of columns in matrix A:    67
    entries in matrix A:              294
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    unsymmetric
    ordering used:                    colamd on A
    modify Q during factorization:    yes
    prefer diagonal pivoting:         no
    pivots with zero Markowitz cost:               1
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    0
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S not square or diagonal not preserved
    symbolic factorization defragmentations:       1
    symbolic memory usage (Units):                 1639
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         252
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              1.00000e+00
    maximum sum (abs (rows of A)):              6.59006e+00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    1711                 1577    92%
        peak size (Units)                       6115                 3581    59%
        final size (Units)                      1628                  682    42%
    Numeric final size (Units)                  2108                 1129    54%
    Numeric final size (MBytes)                  0.0                  0.0    54%
    peak memory usage (Units)                   7476                 4942    66%
    peak memory usage (MBytes)                   0.1                  0.0    66%
    numeric factorization flops          1.41920e+04          2.50100e+03    18%
    nz in L (incl diagonal)                      542                  323    60%
    nz in U (incl diagonal)                      902                  339    38%
    nz in L+U (incl diagonal)                   1377                  595    43%
    largest front (# entries)                    483                   80    17%
    largest # rows in front                       21                   10    48%
    largest # columns in front                    23                   11    48%

    initial allocation ratio used:                 0.7
    # of forced updates due to frontal growth:     0
    nz in L (incl diagonal), if none dropped       323
    nz in U (incl diagonal), if none dropped       339
    number of small entries dropped                0
    nonzeros on diagonal of U:                     67
    min abs. value on diagonal of U:               2.74e-02
    max abs. value on diagonal of U:               2.28e+00
    estimate of reciprocal of condition number:    1.20e-02
    indices in compressed pattern:                 263
    numerical values stored in Numeric object:     599
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   6.16500e+03
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          1
    sparse backward error omega1:                  1.32e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        8.66600e+03


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 67. OK

relative maxnorm of residual, ||Ax-b||/||b||: 9.15507e-17
relative maxnorm of error, ||x-xtrue||/||xtrue||: 2.349e-15

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  67
    nz, number of nonzeros in A:                        294
    symmetry of A:                                      0.0342
    number of nonzeros on diagonal:                     2
    nonzeros in pattern of A+A' (excl. diagonal):       574
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              5164
    # of memory compactions:                            1

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 930
    nonzeros in L (including diagonal):                 997
    # divide operations for LDL' or LU:                 930
    # multiply-subtract operations for LDL':            9170
    # multiply-subtract operations for LU:              17410
    max nz. in any column of L (incl. diagonal):        33

    chol flop count for real A, sqrt counted as 1 flop: 19337
    LDL' flop count for real A:                         19270
    LDL' flop count for complex A:                      81730
    LU flop count for real A (with no pivoting):        35750
    LU flop count for complex A (with no pivoting):     147650

AMD test done
./readhb_nozeros < HB/fs_183_6.rua > tmp/A
./readhb_size    < HB/fs_183_6.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 183 nrow 183 ncol 183 nz 1000
triplet-form matrix, n_row = 183, n_col = 183 nz = 1000. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 183 n_col 183, nz = 1000. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1000
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               36
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    147
        symmetry of nonzero pattern:               0.490515
        nz in S+S' (excl. diagonal):               1114
        nz on diagonal of matrix S:                147
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.490515
        nz in P2*S+(P2*S)' (excl. diag.):          1114
        nz on diagonal of P2*S:                    147
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.02930e+04
        est. nz in L+U (incl. diagonal):           1625
        est. largest front (# entries):            196
        est. max nz in any column of L:            14
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4846
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         763
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4458                    -      -
        peak size (Units)                      26277                    -      -
        final size (Units)                     15717                    -      -
    Numeric final size (Units)                 16951                    -      -
    Numeric final size (MBytes)                  0.1                    -      -
    peak memory usage (Units)                  29687                    -      -
    peak memory usage (MBytes)                   0.2                    -      -
    numeric factorization flops          2.67903e+05                    -      -
    nz in L (incl diagonal)                     2122                    -      -
    nz in U (incl diagonal)                     9931                    -      -
    nz in L+U (incl diagonal)                  11870                    -      -
    largest front (# entries)                   2337                    -      -
    largest # rows in front                       21                    -      -
    largest # columns in front                   136                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1000
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               36
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    147
        symmetry of nonzero pattern:               0.490515
        nz in S+S' (excl. diagonal):               1114
        nz on diagonal of matrix S:                147
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.490515
        nz in P2*S+(P2*S)' (excl. diag.):          1114
        nz on diagonal of P2*S:                    147
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.02930e+04
        est. nz in L+U (incl. diagonal):           1625
        est. largest front (# entries):            196
        est. max nz in any column of L:            14
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4846
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         763
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              1.84689e-01
    maximum sum (abs (rows of A)):              8.73139e+08

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4458                 4090    92%
        peak size (Units)                      26277                 8488    32%
        final size (Units)                     15717                 1658    11%
    Numeric final size (Units)                 16951                 2801    17%
    Numeric final size (MBytes)                  0.1                  0.0    17%
    peak memory usage (Units)                  29687                11898    40%
    peak memory usage (MBytes)                   0.2                  0.1    40%
    numeric factorization flops          2.67903e+05          7.82700e+03     3%
    nz in L (incl diagonal)                     2122                  838    39%
    nz in U (incl diagonal)                     9931                  804     8%
    nz in L+U (incl diagonal)                  11870                 1459    12%
    largest front (# entries)                   2337                  420    18%
    largest # rows in front                       21                   14    67%
    largest # columns in front                   136                   36    26%

    initial allocation ratio used:                 0.265
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 3
    nz in L (incl diagonal), if none dropped       838
    nz in U (incl diagonal), if none dropped       804
    number of small entries dropped                0
    nonzeros on diagonal of U:                     183
    min abs. value on diagonal of U:               2.30e-09
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    2.30e-09
    indices in compressed pattern:                 550
    numerical values stored in Numeric object:     1396
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   2.73290e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          2
    sparse backward error omega1:                  2.78e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        3.51560e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 183. OK

relative maxnorm of residual, ||Ax-b||/||b||: 1.55669e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 9.12839e-07

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  183
    nz, number of nonzeros in A:                        1000
    symmetry of A:                                      0.4431
    number of nonzeros on diagonal:                     183
    nonzeros in pattern of A+A' (excl. diagonal):       1272
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              12692
    # of memory compactions:                            1

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 882
    nonzeros in L (including diagonal):                 1065
    # divide operations for LDL' or LU:                 882
    # multiply-subtract operations for LDL':            3378
    # multiply-subtract operations for LU:              5874
    max nz. in any column of L (incl. diagonal):        15

    chol flop count for real A, sqrt counted as 1 flop: 7821
    LDL' flop count for real A:                         7638
    LDL' flop count for complex A:                      34962
    LU flop count for real A (with no pivoting):        12630
    LU flop count for complex A (with no pivoting):     54930

AMD test done
./readhb         < HB/fs_183_6.rua > tmp/A
./readhb_size    < HB/fs_183_6.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 183 nrow 183 ncol 183 nz 1069
triplet-form matrix, n_row = 183, n_col = 183 nz = 1069. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 183 n_col 183, nz = 1069. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1069
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               29
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    154
        symmetry of nonzero pattern:               0.446860
        nz in S+S' (excl. diagonal):               1286
        nz on diagonal of matrix S:                154
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.446860
        nz in P2*S+(P2*S)' (excl. diag.):          1286
        nz on diagonal of P2*S:                    154
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.78450e+04
        est. nz in L+U (incl. diagonal):           2080
        est. largest front (# entries):            400
        est. max nz in any column of L:            20
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4966
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         773
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4742                    -      -
        peak size (Units)                      26357                    -      -
        final size (Units)                     17822                    -      -
    Numeric final size (Units)                 19056                    -      -
    Numeric final size (MBytes)                  0.1                    -      -
    peak memory usage (Units)                  29809                    -      -
    peak memory usage (MBytes)                   0.2                    -      -
    numeric factorization flops          3.51312e+05                    -      -
    nz in L (incl diagonal)                     2633                    -      -
    nz in U (incl diagonal)                    10968                    -      -
    nz in L+U (incl diagonal)                  13418                    -      -
    largest front (# entries)                   3220                    -      -
    largest # rows in front                       25                    -      -
    largest # columns in front                   140                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       183
    number of columns in matrix A:    183
    entries in matrix A:              1069
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric 2-by-2
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               29
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    4
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    154
        symmetry of nonzero pattern:               0.446860
        nz in S+S' (excl. diagonal):               1286
        nz on diagonal of matrix S:                154
        fraction of nz on diagonal:                1.000000
    2-by-2 pivoting to place large entries on diagonal:
        # of small diagonal entries of S:          7
        # unmatched:                               7
        symmetry of P2*S:                          0.446860
        nz in P2*S+(P2*S)' (excl. diag.):          1286
        nz on diagonal of P2*S:                    154
        fraction of nz on diag of P2*S:            1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           1.78450e+04
        est. nz in L+U (incl. diagonal):           2080
        est. largest front (# entries):            400
        est. max nz in any column of L:            20
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4966
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         773
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              1.84689e-01
    maximum sum (abs (rows of A)):              8.73139e+08

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4742                 4372    92%
        peak size (Units)                      26357                11189    42%
        final size (Units)                     17822                 2107    12%
    Numeric final size (Units)                 19056                 3250    17%
    Numeric final size (MBytes)                  0.1                  0.0    17%
    peak memory usage (Units)                  29809                14641    49%
    peak memory usage (MBytes)                   0.2                  0.1    49%
    numeric factorization flops          3.51312e+05          1.19670e+04     3%
    nz in L (incl diagonal)                     2633                 1136    43%
    nz in U (incl diagonal)                    10968                  870     8%
    nz in L+U (incl diagonal)                  13418                 1823    14%
    largest front (# entries)                   3220                  728    23%
    largest # rows in front                       25                   20    80%
    largest # columns in front                   140                   58    41%

    initial allocation ratio used:                 0.282
    # of forced updates due to frontal growth:     1
    number of off-diagonal pivots:                 3
    nz in L (incl diagonal), if none dropped       1136
    nz in U (incl diagonal), if none dropped       870
    number of small entries dropped                0
    nonzeros on diagonal of U:                     183
    min abs. value on diagonal of U:               2.30e-09
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    2.30e-09
    indices in compressed pattern:                 741
    numerical values stored in Numeric object:     1781
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    1
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   3.04790e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          2
    sparse backward error omega1:                  3.97e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        4.24460e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 183. OK

relative maxnorm of residual, ||Ax-b||/||b||: 1.55669e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.0186e-06

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  183
    nz, number of nonzeros in A:                        1069
    symmetry of A:                                      0.4176
    number of nonzeros on diagonal:                     183
    nonzeros in pattern of A+A' (excl. diagonal):       1402
    # dense rows/columns of A+A':                       0
    memory used, in bytes:                              13316
    # of memory compactions:                            1

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 1072
    nonzeros in L (including diagonal):                 1255
    # divide operations for LDL' or LU:                 1072
    # multiply-subtract operations for LDL':            5320
    # multiply-subtract operations for LU:              9568
    max nz. in any column of L (incl. diagonal):        21

    chol flop count for real A, sqrt counted as 1 flop: 11895
    LDL' flop count for real A:                         11712
    LDL' flop count for complex A:                      52208
    LU flop count for real A (with no pivoting):        20208
    LU flop count for complex A (with no pivoting):     86192

AMD test done
./readhb         < HB/arc130.rua > tmp/A
./readhb_size    < HB/arc130.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 130 nrow 130 ncol 130 nz 1282
triplet-form matrix, n_row = 130, n_col = 130 nz = 1282. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 130 n_col 130, nz = 1282. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1282
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               6
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    7
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    124
        symmetry of nonzero pattern:               0.841193
        nz in S+S' (excl. diagonal):               1204
        nz on diagonal of matrix S:                124
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           8.27000e+03
        est. nz in L+U (incl. diagonal):           1336
        est. largest front (# entries):            324
        est. max nz in any column of L:            18
        number of "dense" rows/columns in S+S':    2
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4766
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         644
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4729                    -      -
        peak size (Units)                      25036                    -      -
        final size (Units)                     12837                    -      -
    Numeric final size (Units)                 13731                    -      -
    Numeric final size (MBytes)                  0.1                    -      -
    peak memory usage (Units)                  27695                    -      -
    peak memory usage (MBytes)                   0.2                    -      -
    numeric factorization flops          9.41610e+04                    -      -
    nz in L (incl diagonal)                     1009                    -      -
    nz in U (incl diagonal)                     7849                    -      -
    nz in L+U (incl diagonal)                   8728                    -      -
    largest front (# entries)                   2337                    -      -
    largest # rows in front                       19                    -      -
    largest # columns in front                   123                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1282
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               6
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    7
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    124
        symmetry of nonzero pattern:               0.841193
        nz in S+S' (excl. diagonal):               1204
        nz on diagonal of matrix S:                124
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           8.27000e+03
        est. nz in L+U (incl. diagonal):           1336
        est. largest front (# entries):            324
        est. max nz in any column of L:            18
        number of "dense" rows/columns in S+S':    2
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4766
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         644
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              7.94859e-01
    maximum sum (abs (rows of A)):              1.08460e+06

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    4729                 4451    94%
        peak size (Units)                      25036                 6477    26%
        final size (Units)                     12837                 1054     8%
    Numeric final size (Units)                 13731                 1883    14%
    Numeric final size (MBytes)                  0.1                  0.0    14%
    peak memory usage (Units)                  27695                 9136    33%
    peak memory usage (MBytes)                   0.2                  0.1    33%
    numeric factorization flops          9.41610e+04          4.20900e+03     4%
    nz in L (incl diagonal)                     1009                  417    41%
    nz in U (incl diagonal)                     7849                  787    10%
    nz in L+U (incl diagonal)                   8728                 1074    12%
    largest front (# entries)                   2337                  270    12%
    largest # rows in front                       19                   18    95%
    largest # columns in front                   123                   15    12%

    initial allocation ratio used:                 0.36
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 0
    nz in L (incl diagonal), if none dropped       417
    nz in U (incl diagonal), if none dropped       796
    number of small entries dropped                9
    nonzeros on diagonal of U:                     130
    min abs. value on diagonal of U:               9.22e-07
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    9.22e-07
    indices in compressed pattern:                 79
    numerical values stored in Numeric object:     977
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   1.80440e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          1
    sparse backward error omega1:                  1.06e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        2.22530e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 130. OK

relative maxnorm of residual, ||Ax-b||/||b||: 4.12105e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 2.15116e-10

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  130
    nz, number of nonzeros in A:                        1282
    symmetry of A:                                      0.7587
    number of nonzeros on diagonal:                     130
    nonzeros in pattern of A+A' (excl. diagonal):       1430
    # dense rows/columns of A+A':                       2
    memory used, in bytes:                              11544
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 756
    nonzeros in L (including diagonal):                 886
    # divide operations for LDL' or LU:                 756
    # multiply-subtract operations for LDL':            2959
    # multiply-subtract operations for LU:              5162
    max nz. in any column of L (incl. diagonal):        18

    chol flop count for real A, sqrt counted as 1 flop: 6804
    LDL' flop count for real A:                         6674
    LDL' flop count for complex A:                      30476
    LU flop count for real A (with no pivoting):        11080
    LU flop count for complex A (with no pivoting):     48100

AMD test done
./readhb_nozeros < HB/arc130.rua > tmp/A
./readhb_size    < HB/arc130.rua > tmp/Asize
./umf4

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 0
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 130 nrow 130 ncol 130 nz 1037
triplet-form matrix, n_row = 130, n_col = 130 nz = 1037. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 130 n_col 130, nz = 1037. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                    -      -
        peak size (Units)                       9801                    -      -
        final size (Units)                      4259                    -      -
    Numeric final size (Units)                  5153                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                  12149                    -      -
    peak memory usage (MBytes)                   0.1                    -      -
    numeric factorization flops          2.47640e+04                    -      -
    nz in L (incl diagonal)                      606                    -      -
    nz in U (incl diagonal)                     2537                    -      -
    nz in L+U (incl diagonal)                   3013                    -      -
    largest front (# entries)                    459                    -      -
    largest # rows in front                       17                    -      -
    largest # columns in front                    48                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              7.94859e-01
    maximum sum (abs (rows of A)):              1.08460e+06

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                 3062    92%
        peak size (Units)                       9801                 6376    65%
        final size (Units)                      4259                 1141    27%
    Numeric final size (Units)                  5153                 1970    38%
    Numeric final size (MBytes)                  0.0                  0.0    38%
    peak memory usage (Units)                  12149                 8724    72%
    peak memory usage (MBytes)                   0.1                  0.1    72%
    numeric factorization flops          2.47640e+04          4.10700e+03    17%
    nz in L (incl diagonal)                      606                  409    67%
    nz in U (incl diagonal)                     2537                  792    31%
    nz in L+U (incl diagonal)                   3013                 1071    36%
    largest front (# entries)                    459                  240    52%
    largest # rows in front                       17                   16    94%
    largest # columns in front                    48                   15    31%

    initial allocation ratio used:                 0.755
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 0
    nz in L (incl diagonal), if none dropped       409
    nz in U (incl diagonal), if none dropped       792
    number of small entries dropped                0
    nonzeros on diagonal of U:                     130
    min abs. value on diagonal of U:               9.22e-07
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    9.22e-07
    indices in compressed pattern:                 70
    numerical values stored in Numeric object:     782
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   1.58270e+04
    iterative refinement steps taken:              1
    iterative refinement steps attempted:          1
    sparse backward error omega1:                  1.06e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        1.99340e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 130. OK

relative maxnorm of residual, ||Ax-b||/||b||: 2.74736e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92322e-10

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  130
    nz, number of nonzeros in A:                        1037
    symmetry of A:                                      0.4939
    number of nonzeros on diagonal:                     130
    nonzeros in pattern of A+A' (excl. diagonal):       1366
    # dense rows/columns of A+A':                       2
    memory used, in bytes:                              11236
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 725
    nonzeros in L (including diagonal):                 855
    # divide operations for LDL' or LU:                 725
    # multiply-subtract operations for LDL':            2742
    # multiply-subtract operations for LU:              4759
    max nz. in any column of L (incl. diagonal):        18

    chol flop count for real A, sqrt counted as 1 flop: 6339
    LDL' flop count for real A:                         6209
    LDL' flop count for complex A:                      28461
    LU flop count for real A (with no pivoting):        10243
    LU flop count for complex A (with no pivoting):     44597

AMD test done
./readhb_nozeros < HB/arc130.rua > tmp/A
./readhb_size    < HB/arc130.rua > tmp/Asize
./umf4 a 1e-6

===========================================================
=== UMFPACK v5.1.0 ========================================
===========================================================
droptol 1e-06
UMFPACK V5.1.0 (May 31, 2007), Control:
    Matrix entry defined as: double
    Int (generic integer) defined as: int

    0: print level: 3
    1: dense row parameter:    0.2
        "dense" rows have    > max (16, (0.2)*16*sqrt(n_col) entries)
    2: dense column parameter: 0.2
        "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
    3: pivot tolerance: 0.1
    4: block size for dense matrix kernels: 32
    5: strategy: 0 (auto)
    6: initial allocation ratio: 0.7
    7: max iterative refinement steps: 2
    12: 2-by-2 pivot tolerance: 0.01
    13: Q fixed during numerical factorization: 0 (auto)
    14: AMD dense row/col parameter:    10
       "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
        Only used if the AMD ordering is used.
    15: diagonal pivot tolerance: 0.001
        Only used if diagonal pivoting is attempted.
    16: scaling: 1 (divide each row by sum of abs. values in each row)
    17: frontal matrix allocation ratio: 0.5
    18: drop tolerance: 1e-06
    19: AMD and COLAMD aggressive absorption: 1 (yes)

    The following options can only be changed at compile-time:
    8: BLAS library used:  Fortran BLAS.  size of BLAS integer: 4
    9: compiled for ANSI C
    10: CPU timer is POSIX times ( ) routine.
    11: compiled for normal operation (debugging disabled)
    computer/operating system: Linux
    size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 8 (in bytes)

File: tmp/A
File: tmp/Asize
n 130 nrow 130 ncol 130 nz 1037
triplet-form matrix, n_row = 130, n_col = 130 nz = 1037. OK

triplet-to-col time: wall 0 cpu 0
column-form matrix, n_row 130 n_col 130, nz = 1037. OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                    -      -
        peak size (Units)                       9801                    -      -
        final size (Units)                      4259                    -      -
    Numeric final size (Units)                  5153                    -      -
    Numeric final size (MBytes)                  0.0                    -      -
    peak memory usage (Units)                  12149                    -      -
    peak memory usage (MBytes)                   0.1                    -      -
    numeric factorization flops          2.47640e+04                    -      -
    nz in L (incl diagonal)                      606                    -      -
    nz in U (incl diagonal)                     2537                    -      -
    nz in L+U (incl diagonal)                   3013                    -      -
    largest front (# entries)                    459                    -      -
    largest # rows in front                       17                    -      -
    largest # columns in front                    48                    -      -

Symbolic object: OK

Numeric object:  OK

UMFPACK V5.1.0 (May 31, 2007), Info:
    matrix entry defined as:          double
    Int (generic integer) defined as: int
    BLAS library used: Fortran BLAS.  size of BLAS integer: 4
    MATLAB:                           no.
    CPU timer:                        POSIX times ( ) routine.
    number of rows in matrix A:       130
    number of columns in matrix A:    130
    entries in matrix A:              1037
    memory usage reported in:         8-byte Units
    size of int:                      4 bytes
    size of UF_long:                  8 bytes
    size of pointer:                  8 bytes
    size of numerical entry:          8 bytes

    strategy used:                    symmetric
    ordering used:                    amd on A+A'
    modify Q during factorization:    no
    prefer diagonal pivoting:         yes
    pivots with zero Markowitz cost:               54
    submatrix S after removing zero-cost pivots:
        number of "dense" rows:                    5
        number of "dense" columns:                 0
        number of empty rows:                      0
        number of empty columns                    0
        submatrix S square and diagonal preserved
    pattern of square submatrix S:
        number rows and columns                    76
        symmetry of nonzero pattern:               0.733224
        nz in S+S' (excl. diagonal):               774
        nz on diagonal of matrix S:                76
        fraction of nz on diagonal:                1.000000
    AMD statistics, for strict diagonal pivoting:
        est. flops for LU factorization:           5.81700e+03
        est. nz in L+U (incl. diagonal):           858
        est. largest front (# entries):            289
        est. max nz in any column of L:            17
        number of "dense" rows/columns in S+S':    0
    symbolic factorization defragmentations:       0
    symbolic memory usage (Units):                 4118
    symbolic memory usage (MBytes):                0.0
    Symbolic size (Units):                         534
    Symbolic size (MBytes):                        0
    symbolic factorization CPU time (sec):         0.00
    symbolic factorization wallclock time(sec):    0.00

    matrix scaled: yes (divided each row by sum of abs values in each row)
    minimum sum (abs (rows of A)):              7.94859e-01
    maximum sum (abs (rows of A)):              1.08460e+06

    symbolic/numeric factorization:      upper bound               actual      %
    variable-sized part of Numeric object:
        initial size (Units)                    3326                 2762    83%
        peak size (Units)                       9801                 5323    54%
        final size (Units)                      4259                  457    11%
    Numeric final size (Units)                  5153                 1286    25%
    Numeric final size (MBytes)                  0.0                  0.0    25%
    peak memory usage (Units)                  12149                 7671    63%
    peak memory usage (MBytes)                   0.1                  0.1    63%
    numeric factorization flops          2.47640e+04          4.10700e+03    17%
    nz in L (incl diagonal)                      606                  318    52%
    nz in U (incl diagonal)                     2537                  285    11%
    nz in L+U (incl diagonal)                   3013                  473    16%
    largest front (# entries)                    459                  240    52%
    largest # rows in front                       17                   16    94%
    largest # columns in front                    48                   15    31%

    initial allocation ratio used:                 0.755
    # of forced updates due to frontal growth:     0
    number of off-diagonal pivots:                 0
    nz in L (incl diagonal), if none dropped       409
    nz in U (incl diagonal), if none dropped       792
    number of small entries dropped                598
    nonzeros on diagonal of U:                     130
    min abs. value on diagonal of U:               9.22e-07
    max abs. value on diagonal of U:               1.00e+00
    estimate of reciprocal of condition number:    9.22e-07
    indices in compressed pattern:                 82
    numerical values stored in Numeric object:     386
    numeric factorization defragmentations:        1
    numeric factorization reallocations:           1
    costly numeric factorization reallocations:    0
    numeric factorization CPU time (sec):          0.00
    numeric factorization wallclock time (sec):    0.00

    solve flops:                                   2.06060e+04
    iterative refinement steps taken:              2
    iterative refinement steps attempted:          2
    sparse backward error omega1:                  1.47e-16
    sparse backward error omega2:                  0.00e+00
    solve CPU time (sec):                          0.00
    solve wall clock time (sec):                   0.00

    total symbolic + numeric + solve flops:        2.47130e+04


UMFPACK V5.1.0 (May 31, 2007): OK

dense vector, n = 130. OK

relative maxnorm of residual, ||Ax-b||/||b||: 2.74736e-16
relative maxnorm of error, ||x-xtrue||/||xtrue||: 1.92269e-10

Writing tmp/x
Writing tmp/info.umf4
umf4 done, strategy: 0


===========================================================
=== AMD ===================================================
===========================================================


------- Now trying the AMD ordering.  This not part of
the UMFPACK analysis or factorization, above, but a separate
test of just the AMD ordering routine.

AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering
    dense row parameter: 10
    (rows with more than max (10 * sqrt (n), 16) entries are
    considered "dense", and placed last in output permutation)
    aggressive absorption:  yes
    size of AMD integer: 4

AMD ordering time: cpu       0.00 wall       0.00

AMD version 2.2.0, May 31, 2007, results:
    status: OK
    n, dimension of A:                                  130
    nz, number of nonzeros in A:                        1037
    symmetry of A:                                      0.4939
    number of nonzeros on diagonal:                     130
    nonzeros in pattern of A+A' (excl. diagonal):       1366
    # dense rows/columns of A+A':                       2
    memory used, in bytes:                              11236
    # of memory compactions:                            0

    The following approximate statistics are for a subsequent
    factorization of A(P,P) + A(P,P)'.  They are slight upper
    bounds if there are no dense rows/columns in A+A', and become
    looser if dense rows/columns exist.

    nonzeros in L (excluding diagonal):                 725
    nonzeros in L (including diagonal):                 855
    # divide operations for LDL' or LU:                 725
    # multiply-subtract operations for LDL':            2742
    # multiply-subtract operations for LU:              4759
    max nz. in any column of L (incl. diagonal):        18

    chol flop count for real A, sqrt counted as 1 flop: 6339
    LDL' flop count for real A:                         6209
    LDL' flop count for complex A:                      28461
    LU flop count for real A (with no pivoting):        10243
    LU flop count for complex A (with no pivoting):     44597

AMD test done