Commit f85d3b317a5f308dca1d53a0eb67db8d54d41c36

Authored by daniau
1 parent 856145b45a

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@20 b657c933-2333-4658-acf2-d3c7c2708721

Showing 3 changed files with 257 additions and 0 deletions Inline Diff

No preview for this file type
fvn_sparse/umfpack_wrapper.c
#include "umfpack.h" 1 1 #include "umfpack.h"
#include <ctype.h> 2 2 #include <ctype.h>
#include <stdio.h> 3 3 #include <stdio.h>
#ifdef NULL 4 4 #ifdef NULL
#undef NULL 5 5 #undef NULL
#endif 6 6 #endif
#define NULL 0 7 7 #define NULL 0
#define LEN 200 8 8 #define LEN 200
9 9
/* for umfpack 4.1 */ 10 10 /* for umfpack 4.1 */
/* #define UF_long long */ 11 11 /* #define UF_long long */
/* 12 12 /*
13 13
set of routines used by fvn_sparse 14 14 set of routines used by fvn_sparse
15 15
complex(8) and integer(8) 16 16 complex(8) and integer(8)
17 17
*/ 18 18 */
19 19
/* defaults */ 20 20 /* defaults */
21 21
void umfpack_zl_defaults_ (double Control [UMFPACK_CONTROL]) 22 22 void umfpack_zl_defaults_ (double Control [UMFPACK_CONTROL])
{ 23 23 {
umfpack_zl_defaults (Control) ; 24 24 umfpack_zl_defaults (Control) ;
} 25 25 }
26 26
/* free the Numeric object */ 27 27 /* free the Numeric object */
void umfpack_zl_free_numeric_(void **Numeric) 28 28 void umfpack_zl_free_numeric_(void **Numeric)
{ 29 29 {
umfpack_zl_free_numeric (Numeric) ; 30 30 umfpack_zl_free_numeric (Numeric) ;
} 31 31 }
32 32
/* free th Symbolic object */ 33 33 /* free th Symbolic object */
void umfpack_zl_free_symbolic_(void **Symbolic) 34 34 void umfpack_zl_free_symbolic_(void **Symbolic)
{ 35 35 {
umfpack_zl_free_symbolic (Symbolic) ; 36 36 umfpack_zl_free_symbolic (Symbolic) ;
} 37 37 }
38 38
/* numeric factorization */ 39 39 /* numeric factorization */
void umfpack_zl_numeric_ (UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], double Az [ ], 40 40 void umfpack_zl_numeric_ (UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], double Az [ ],
void **Symbolic, void **Numeric, 41 41 void **Symbolic, void **Numeric,
double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) 42 42 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{ 43 43 {
(void) umfpack_zl_numeric (Ap, Ai, Ax, Az, *Symbolic, Numeric, Control, Info); 44 44 (void) umfpack_zl_numeric (Ap, Ai, Ax, Az, *Symbolic, Numeric, Control, Info);
} 45 45 }
46 46
/* pre-ordering and symbolic factorization */ 47 47 /* pre-ordering and symbolic factorization */
void umfpack_zl_symbolic_ (UF_long *m, UF_long *n, UF_long Ap [ ], UF_long Ai [ ], 48 48 void umfpack_zl_symbolic_ (UF_long *m, UF_long *n, UF_long Ap [ ], UF_long Ai [ ],
double Ax [ ], double Az [ ], void **Symbolic, 49 49 double Ax [ ], double Az [ ], void **Symbolic,
double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) 50 50 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{ 51 51 {
(void) umfpack_zl_symbolic (*m, *n, Ap, Ai, Ax, Az, Symbolic, Control, Info) ; 52 52 (void) umfpack_zl_symbolic (*m, *n, Ap, Ai, Ax, Az, Symbolic, Control, Info) ;
} 53 53 }
54 54
/* solve a linear system */ 55 55 /* solve a linear system */
56 56
void umfpack_zl_solve_ (UF_long *sys, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], double Az [ ], 57 57 void umfpack_zl_solve_ (UF_long *sys, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ], double Az [ ],
double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, 58 58 double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric,
double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) 59 59 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{ 60 60 {
(void) umfpack_zl_solve (*sys, Ap, Ai, Ax, Az, x, xz, b, bz, 61 61 (void) umfpack_zl_solve (*sys, Ap, Ai, Ax, Az, x, xz, b, bz,
*Numeric, Control, Info) ; 62 62 *Numeric, Control, Info) ;
} 63 63 }
64 64
/* triplet 2 col */ 65 65 /* triplet 2 col */
66 66
void umfpack_zl_triplet_to_col_ (UF_long *m, UF_long *n, UF_long *nz, UF_long Ti [ ], UF_long Tj [ ], 67 67 void umfpack_zl_triplet_to_col_ (UF_long *m, UF_long *n, UF_long *nz, UF_long Ti [ ], UF_long Tj [ ],
double Tx [ ], double Tz [ ], UF_long Ap [ ], UF_long Ai [ ], 68 68 double Tx [ ], double Tz [ ], UF_long Ap [ ], UF_long Ai [ ],
double Ax [ ], double Az [ ], UF_long *status) 69 69 double Ax [ ], double Az [ ], UF_long *status)
{ 70 70 {
*status = umfpack_zl_triplet_to_col (*m, *n, *nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, (UF_long *) NULL); 71 71 *status = umfpack_zl_triplet_to_col (*m, *n, *nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, (UF_long *) NULL);
} 72 72 }
73 73
74 74
75 75
76 76
/* complex(8) and integer(4) */ 77 77 /* complex(8) and integer(4) */
78 78
/* defaults */ 79 79 /* defaults */
80 80
void umfpack_zi_defaults_ (double Control [UMFPACK_CONTROL]) 81 81 void umfpack_zi_defaults_ (double Control [UMFPACK_CONTROL])
{ 82 82 {
umfpack_zi_defaults (Control) ; 83 83 umfpack_zi_defaults (Control) ;
} 84 84 }
85 85
86 86
/* free the Numeric object */ 87 87 /* free the Numeric object */
void umfpack_zi_free_numeric_(void **Numeric) 88 88 void umfpack_zi_free_numeric_(void **Numeric)
{ 89 89 {
umfpack_zi_free_numeric (Numeric) ; 90 90 umfpack_zi_free_numeric (Numeric) ;
} 91 91 }
92 92
/* free the Symbolic object */ 93 93 /* free the Symbolic object */
void umfpack_zi_free_symbolic_(void **Symbolic) 94 94 void umfpack_zi_free_symbolic_(void **Symbolic)
{ 95 95 {
umfpack_zi_free_symbolic (Symbolic) ; 96 96 umfpack_zi_free_symbolic (Symbolic) ;
} 97 97 }
98 98
/* numeric factorization */ 99 99 /* numeric factorization */
void umfpack_zi_numeric_ (int Ap [ ], int Ai [ ], double Ax [ ], double Az [ ], 100 100 void umfpack_zi_numeric_ (int Ap [ ], int Ai [ ], double Ax [ ], double Az [ ],
void **Symbolic, void **Numeric, 101 101 void **Symbolic, void **Numeric,
double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) 102 102 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{ 103 103 {
(void) umfpack_zi_numeric (Ap, Ai, Ax, Az, *Symbolic, Numeric, Control, Info); 104 104 (void) umfpack_zi_numeric (Ap, Ai, Ax, Az, *Symbolic, Numeric, Control, Info);
} 105 105 }
106 106
/* pre-ordering and symbolic factorization */ 107 107 /* pre-ordering and symbolic factorization */
void umfpack_zi_symbolic_ (int *m, int *n, int Ap [ ], int Ai [ ], 108 108 void umfpack_zi_symbolic_ (int *m, int *n, int Ap [ ], int Ai [ ],
double Ax [ ], double Az [ ], void **Symbolic, 109 109 double Ax [ ], double Az [ ], void **Symbolic,
double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) 110 110 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{ 111 111 {
(void) umfpack_zi_symbolic (*m, *n, Ap, Ai, Ax, Az, Symbolic, Control, Info) ; 112 112 (void) umfpack_zi_symbolic (*m, *n, Ap, Ai, Ax, Az, Symbolic, Control, Info) ;
} 113 113 }
114 114
/* solve a linear system */ 115 115 /* solve a linear system */
116 116
void umfpack_zi_solve_ (int *sys, int Ap [ ], int Ai [ ], double Ax [ ], double Az [ ], 117 117 void umfpack_zi_solve_ (int *sys, int Ap [ ], int Ai [ ], double Ax [ ], double Az [ ],
double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric, 118 118 double x [ ], double xz [ ], double b [ ], double bz [ ], void **Numeric,
double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) 119 119 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
{ 120 120 {
(void) umfpack_zi_solve (*sys, Ap, Ai, Ax, Az, x, xz, b, bz, 121 121 (void) umfpack_zi_solve (*sys, Ap, Ai, Ax, Az, x, xz, b, bz,
*Numeric, Control, Info) ; 122 122 *Numeric, Control, Info) ;
} 123 123 }
124 124
/* triplet 2 col */ 125 125 /* triplet 2 col */
126 126
void umfpack_zi_triplet_to_col_ (int *m, int *n, int *nz, int Ti [ ], int Tj [ ], 127 127 void umfpack_zi_triplet_to_col_ (int *m, int *n, int *nz, int Ti [ ], int Tj [ ],
double Tx [ ], double Tz [ ], int Ap [ ], int Ai [ ], 128 128 double Tx [ ], double Tz [ ], int Ap [ ], int Ai [ ],
double Ax [ ], double Az [ ], int *status) 129 129 double Ax [ ], double Az [ ], int *status)
{ 130 130 {
*status = umfpack_zi_triplet_to_col (*m, *n, *nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, (int *) NULL); 131 131 *status = umfpack_zi_triplet_to_col (*m, *n, *nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, (int *) NULL);
} 132 132 }
133
134 /* real(8) and integer(8) */
135
136 /* defaults */
137
138 void umfpack_dl_defaults_ (double Control [UMFPACK_CONTROL])
139 {
140 umfpack_dl_defaults (Control) ;
141 }
142
143 void umfpack_dl_free_numeric_ (void **Numeric)
144 {
145 umfpack_dl_free_numeric (Numeric) ;
146 }
147
148 void umfpack_dl_free_symbolic_ (void **Symbolic)
149 {
150 umfpack_dl_free_symbolic (Symbolic) ;
151 }
152
153 void umfpack_dl_numeric_ (UF_long Ap [ ], UF_long Ai [ ], double Ax [ ],
154 void **Symbolic, void **Numeric,
155 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
156 {
157 (void) umfpack_dl_numeric (Ap, Ai, Ax, *Symbolic, Numeric, Control, Info);
158 }
159
160 void umfpack_dl_symbolic_ (UF_long *m, UF_long *n, UF_long Ap [ ], UF_long Ai [ ],
161 double Ax [ ], void **Symbolic,
162 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
163 {
164 (void) umfpack_dl_symbolic (*m, *n, Ap, Ai, Ax, Symbolic, Control, Info) ;
165 }
166
167 void umfpack_dl_solve_ (UF_long *sys, UF_long Ap [ ], UF_long Ai [ ], double Ax [ ],
168 double x [ ], double b [ ], void **Numeric,
169 double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
170 {
171 (void) umfpack_dl_solve (*sys, Ap, Ai, Ax, x, b, *Numeric, Control, Info) ;
172 }
173
174 void umfpack_dl_triplet_to_col_ (UF_long *m, UF_long *n, UF_long *nz, UF_long Ti [ ], UF_long Tj [ ],
175 double T [ ], UF_long Ap [ ], UF_long Ai [ ],
176 double A [ ], UF_long *status)
177 {
178 *status = umfpack_dl_triplet_to_col (*m, *n, *nz, Ti, Tj, T, Ap, Ai, A, (UF_long *) NULL);
179 }
180
181 /* real(8) and integer(4) */
182
183 /* defaults */
184
185 void umfpack_di_defaults_ (double Control [UMFPACK_CONTROL])
186 {
187 umfpack_di_defaults (Control) ;
188 }
189
190 void umfpack_di_free_numeric_ (void **Numeric)
191 {
192 umfpack_di_free_numeric (Numeric) ;
193 }
194
195 void umfpack_di_free_symbolic_ (void **Symbolic)
196 {
197 umfpack_di_free_symbolic (Symbolic) ;
1 1
module fvn 2 2 module fvn
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 3 3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 4 4 !
! fvn : a f95 module replacement for some imsl routines 5 5 ! fvn : a f95 module replacement for some imsl routines
! it uses lapack for linear algebra 6 6 ! it uses lapack for linear algebra
! it uses modified quadpack for integration 7 7 ! it uses modified quadpack for integration
! 8 8 !
! William Daniau 2007 9 9 ! William Daniau 2007
! william.daniau@femto-st.fr 10 10 ! william.daniau@femto-st.fr
! 11 11 !
! Routines naming scheme : 12 12 ! Routines naming scheme :
! 13 13 !
! fvn_x_name 14 14 ! fvn_x_name
! where x can be s : real 15 15 ! where x can be s : real
! d : real double precision 16 16 ! d : real double precision
! c : complex 17 17 ! c : complex
! z : double complex 18 18 ! z : double complex
! 19 19 !
! 20 20 !
! This piece of code is totally free! Do whatever you want with it. However 21 21 ! This piece of code is totally free! Do whatever you want with it. However
! if you find it usefull it would be kind to give credits ;-) 22 22 ! if you find it usefull it would be kind to give credits ;-)
! 23 23 !
! svn version 24 24 ! svn version
! September 2007 : added sparse system solving by interfacing umfpack 25 25 ! September 2007 : added sparse system solving by interfacing umfpack
! June 2007 : added some complex trigonometric functions 26 26 ! June 2007 : added some complex trigonometric functions
! 27 27 !
! TO DO LIST : 28 28 ! TO DO LIST :
! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm 29 29 ! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm
! eigenvalues are given with no particular order. 30 30 ! eigenvalues are given with no particular order.
! + Generic interface for fvn_x_name family -> fvn_name 31 31 ! + Generic interface for fvn_x_name family -> fvn_name
! + Make some parameters optional, status for example 32 32 ! + Make some parameters optional, status for example
! + use f95 kinds "double complex" -> complex(kind=8) 33 33 ! + use f95 kinds "double complex" -> complex(kind=8)
! + unify quadpack routines 34 34 ! + unify quadpack routines
! + ... 35 35 ! + ...
! 36 36 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 37 37 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
38 38
implicit none 39 39 implicit none
! We define pi and i for the module 40 40 ! We define pi and i for the module
real(kind=8),parameter :: fvn_pi = 3.141592653589793_8 41 41 real(kind=8),parameter :: fvn_pi = 3.141592653589793_8
complex(kind=8),parameter :: fvn_i = (0._8,1._8) 42 42 complex(kind=8),parameter :: fvn_i = (0._8,1._8)
43 43
44 44
! All quadpack routines are private to the module 45 45 ! All quadpack routines are private to the module
private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & 46 46 private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, &
dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & 47 47 dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, &
dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & 48 48 dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, &
dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt 49 49 dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt
50 50
51 51
contains 52 52 contains
53 53
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 54 54 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 55 55 !
! Matrix inversion subroutines 56 56 ! Matrix inversion subroutines
! 57 57 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 58 58 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
subroutine fvn_s_matinv(d,a,inva,status) 59 59 subroutine fvn_s_matinv(d,a,inva,status)
! 60 60 !
! Matrix inversion of a real matrix using BLAS and LAPACK 61 61 ! Matrix inversion of a real matrix using BLAS and LAPACK
! 62 62 !
! d (in) : matrix rank 63 63 ! d (in) : matrix rank
! a (in) : input matrix 64 64 ! a (in) : input matrix
! inva (out) : inversed matrix 65 65 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 66 66 ! status (ou) : =0 if something failed
! 67 67 !
implicit none 68 68 implicit none
integer, intent(in) :: d 69 69 integer, intent(in) :: d
real, intent(in) :: a(d,d) 70 70 real, intent(in) :: a(d,d)
real, intent(out) :: inva(d,d) 71 71 real, intent(out) :: inva(d,d)
integer, intent(out) :: status 72 72 integer, intent(out) :: status
73 73
integer, allocatable :: ipiv(:) 74 74 integer, allocatable :: ipiv(:)
real, allocatable :: work(:) 75 75 real, allocatable :: work(:)
real twork(1) 76 76 real twork(1)
integer :: info 77 77 integer :: info
integer :: lwork 78 78 integer :: lwork
79 79
status=1 80 80 status=1
81 81
allocate(ipiv(d)) 82 82 allocate(ipiv(d))
! copy a into inva using BLAS 83 83 ! copy a into inva using BLAS
!call scopy(d*d,a,1,inva,1) 84 84 !call scopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 85 85 inva(:,:)=a(:,:)
! LU factorization using LAPACK 86 86 ! LU factorization using LAPACK
call sgetrf(d,d,inva,d,ipiv,info) 87 87 call sgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 88 88 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 89 89 if (info /= 0) then
status=0 90 90 status=0
deallocate(ipiv) 91 91 deallocate(ipiv)
return 92 92 return
end if 93 93 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 94 94 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call sgetri(d,inva,d,ipiv,twork,-1,info) 95 95 call sgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 96 96 lwork=int(twork(1))
allocate(work(lwork)) 97 97 allocate(work(lwork))
! Matrix inversion using LAPACK 98 98 ! Matrix inversion using LAPACK
call sgetri(d,inva,d,ipiv,work,lwork,info) 99 99 call sgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 100 100 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 101 101 if (info /= 0) then
status=0 102 102 status=0
end if 103 103 end if
deallocate(work) 104 104 deallocate(work)
deallocate(ipiv) 105 105 deallocate(ipiv)
end subroutine 106 106 end subroutine
107 107
subroutine fvn_d_matinv(d,a,inva,status) 108 108 subroutine fvn_d_matinv(d,a,inva,status)
! 109 109 !
! Matrix inversion of a double precision matrix using BLAS and LAPACK 110 110 ! Matrix inversion of a double precision matrix using BLAS and LAPACK
! 111 111 !
! d (in) : matrix rank 112 112 ! d (in) : matrix rank
! a (in) : input matrix 113 113 ! a (in) : input matrix
! inva (out) : inversed matrix 114 114 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 115 115 ! status (ou) : =0 if something failed
! 116 116 !
implicit none 117 117 implicit none
integer, intent(in) :: d 118 118 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 119 119 double precision, intent(in) :: a(d,d)
double precision, intent(out) :: inva(d,d) 120 120 double precision, intent(out) :: inva(d,d)
integer, intent(out) :: status 121 121 integer, intent(out) :: status
122 122
integer, allocatable :: ipiv(:) 123 123 integer, allocatable :: ipiv(:)
double precision, allocatable :: work(:) 124 124 double precision, allocatable :: work(:)
double precision :: twork(1) 125 125 double precision :: twork(1)
integer :: info 126 126 integer :: info
integer :: lwork 127 127 integer :: lwork
128 128
status=1 129 129 status=1
130 130
allocate(ipiv(d)) 131 131 allocate(ipiv(d))
! copy a into inva using BLAS 132 132 ! copy a into inva using BLAS
!call dcopy(d*d,a,1,inva,1) 133 133 !call dcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 134 134 inva(:,:)=a(:,:)
! LU factorization using LAPACK 135 135 ! LU factorization using LAPACK
call dgetrf(d,d,inva,d,ipiv,info) 136 136 call dgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 137 137 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 138 138 if (info /= 0) then
status=0 139 139 status=0
deallocate(ipiv) 140 140 deallocate(ipiv)
return 141 141 return
end if 142 142 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 143 143 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call dgetri(d,inva,d,ipiv,twork,-1,info) 144 144 call dgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 145 145 lwork=int(twork(1))
allocate(work(lwork)) 146 146 allocate(work(lwork))
! Matrix inversion using LAPACK 147 147 ! Matrix inversion using LAPACK
call dgetri(d,inva,d,ipiv,work,lwork,info) 148 148 call dgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 149 149 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 150 150 if (info /= 0) then
status=0 151 151 status=0
end if 152 152 end if
deallocate(work) 153 153 deallocate(work)
deallocate(ipiv) 154 154 deallocate(ipiv)
end subroutine 155 155 end subroutine
156 156
subroutine fvn_c_matinv(d,a,inva,status) 157 157 subroutine fvn_c_matinv(d,a,inva,status)
! 158 158 !
! Matrix inversion of a complex matrix using BLAS and LAPACK 159 159 ! Matrix inversion of a complex matrix using BLAS and LAPACK
! 160 160 !
! d (in) : matrix rank 161 161 ! d (in) : matrix rank
! a (in) : input matrix 162 162 ! a (in) : input matrix
! inva (out) : inversed matrix 163 163 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 164 164 ! status (ou) : =0 if something failed
! 165 165 !
implicit none 166 166 implicit none
integer, intent(in) :: d 167 167 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 168 168 complex, intent(in) :: a(d,d)
complex, intent(out) :: inva(d,d) 169 169 complex, intent(out) :: inva(d,d)
integer, intent(out) :: status 170 170 integer, intent(out) :: status
171 171
integer, allocatable :: ipiv(:) 172 172 integer, allocatable :: ipiv(:)
complex, allocatable :: work(:) 173 173 complex, allocatable :: work(:)
complex :: twork(1) 174 174 complex :: twork(1)
integer :: info 175 175 integer :: info
integer :: lwork 176 176 integer :: lwork
177 177
status=1 178 178 status=1
179 179
allocate(ipiv(d)) 180 180 allocate(ipiv(d))
! copy a into inva using BLAS 181 181 ! copy a into inva using BLAS
!call ccopy(d*d,a,1,inva,1) 182 182 !call ccopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 183 183 inva(:,:)=a(:,:)
184 184
! LU factorization using LAPACK 185 185 ! LU factorization using LAPACK
call cgetrf(d,d,inva,d,ipiv,info) 186 186 call cgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 187 187 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 188 188 if (info /= 0) then
status=0 189 189 status=0
deallocate(ipiv) 190 190 deallocate(ipiv)
return 191 191 return
end if 192 192 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 193 193 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call cgetri(d,inva,d,ipiv,twork,-1,info) 194 194 call cgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 195 195 lwork=int(twork(1))
allocate(work(lwork)) 196 196 allocate(work(lwork))
! Matrix inversion using LAPACK 197 197 ! Matrix inversion using LAPACK
call cgetri(d,inva,d,ipiv,work,lwork,info) 198 198 call cgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 199 199 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 200 200 if (info /= 0) then
status=0 201 201 status=0
end if 202 202 end if
deallocate(work) 203 203 deallocate(work)
deallocate(ipiv) 204 204 deallocate(ipiv)
end subroutine 205 205 end subroutine
206 206
subroutine fvn_z_matinv(d,a,inva,status) 207 207 subroutine fvn_z_matinv(d,a,inva,status)
! 208 208 !
! Matrix inversion of a double complex matrix using BLAS and LAPACK 209 209 ! Matrix inversion of a double complex matrix using BLAS and LAPACK
! 210 210 !
! d (in) : matrix rank 211 211 ! d (in) : matrix rank
! a (in) : input matrix 212 212 ! a (in) : input matrix
! inva (out) : inversed matrix 213 213 ! inva (out) : inversed matrix
! status (ou) : =0 if something failed 214 214 ! status (ou) : =0 if something failed
! 215 215 !
implicit none 216 216 implicit none
integer, intent(in) :: d 217 217 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 218 218 double complex, intent(in) :: a(d,d)
double complex, intent(out) :: inva(d,d) 219 219 double complex, intent(out) :: inva(d,d)
integer, intent(out) :: status 220 220 integer, intent(out) :: status
221 221
integer, allocatable :: ipiv(:) 222 222 integer, allocatable :: ipiv(:)
double complex, allocatable :: work(:) 223 223 double complex, allocatable :: work(:)
double complex :: twork(1) 224 224 double complex :: twork(1)
integer :: info 225 225 integer :: info
integer :: lwork 226 226 integer :: lwork
227 227
status=1 228 228 status=1
229 229
allocate(ipiv(d)) 230 230 allocate(ipiv(d))
! copy a into inva using BLAS 231 231 ! copy a into inva using BLAS
!call zcopy(d*d,a,1,inva,1) 232 232 !call zcopy(d*d,a,1,inva,1)
inva(:,:)=a(:,:) 233 233 inva(:,:)=a(:,:)
234 234
! LU factorization using LAPACK 235 235 ! LU factorization using LAPACK
call zgetrf(d,d,inva,d,ipiv,info) 236 236 call zgetrf(d,d,inva,d,ipiv,info)
! if info is not equal to 0, something went wrong we exit setting status to 0 237 237 ! if info is not equal to 0, something went wrong we exit setting status to 0
if (info /= 0) then 238 238 if (info /= 0) then
status=0 239 239 status=0
deallocate(ipiv) 240 240 deallocate(ipiv)
return 241 241 return
end if 242 242 end if
! we use the query fonction of xxxtri to obtain the optimal workspace size 243 243 ! we use the query fonction of xxxtri to obtain the optimal workspace size
call zgetri(d,inva,d,ipiv,twork,-1,info) 244 244 call zgetri(d,inva,d,ipiv,twork,-1,info)
lwork=int(twork(1)) 245 245 lwork=int(twork(1))
allocate(work(lwork)) 246 246 allocate(work(lwork))
! Matrix inversion using LAPACK 247 247 ! Matrix inversion using LAPACK
call zgetri(d,inva,d,ipiv,work,lwork,info) 248 248 call zgetri(d,inva,d,ipiv,work,lwork,info)
! again if info is not equal to 0, we exit setting status to 0 249 249 ! again if info is not equal to 0, we exit setting status to 0
if (info /= 0) then 250 250 if (info /= 0) then
status=0 251 251 status=0
end if 252 252 end if
deallocate(work) 253 253 deallocate(work)
deallocate(ipiv) 254 254 deallocate(ipiv)
end subroutine 255 255 end subroutine
256 256
257 257
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 258 258 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 259 259 !
! Determinants 260 260 ! Determinants
! 261 261 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 262 262 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function fvn_s_det(d,a,status) 263 263 function fvn_s_det(d,a,status)
! 264 264 !
! Evaluate the determinant of a square matrix using lapack LU factorization 265 265 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 266 266 !
! d (in) : matrix rank 267 267 ! d (in) : matrix rank
! a (in) : The Matrix 268 268 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 269 269 ! status (out) : =0 if LU factorization failed
! 270 270 !
implicit none 271 271 implicit none
integer, intent(in) :: d 272 272 integer, intent(in) :: d
real, intent(in) :: a(d,d) 273 273 real, intent(in) :: a(d,d)
integer, intent(out) :: status 274 274 integer, intent(out) :: status
real :: fvn_s_det 275 275 real :: fvn_s_det
276 276
real, allocatable :: wc_a(:,:) 277 277 real, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 278 278 integer, allocatable :: ipiv(:)
integer :: info,i 279 279 integer :: info,i
280 280
status=1 281 281 status=1
allocate(wc_a(d,d)) 282 282 allocate(wc_a(d,d))
allocate(ipiv(d)) 283 283 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 284 284 wc_a(:,:)=a(:,:)
call sgetrf(d,d,wc_a,d,ipiv,info) 285 285 call sgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 286 286 if (info/= 0) then
status=0 287 287 status=0
fvn_s_det=0.e0 288 288 fvn_s_det=0.e0
deallocate(ipiv) 289 289 deallocate(ipiv)
deallocate(wc_a) 290 290 deallocate(wc_a)
return 291 291 return
end if 292 292 end if
fvn_s_det=1.e0 293 293 fvn_s_det=1.e0
do i=1,d 294 294 do i=1,d
if (ipiv(i)==i) then 295 295 if (ipiv(i)==i) then
fvn_s_det=fvn_s_det*wc_a(i,i) 296 296 fvn_s_det=fvn_s_det*wc_a(i,i)
else 297 297 else
fvn_s_det=-fvn_s_det*wc_a(i,i) 298 298 fvn_s_det=-fvn_s_det*wc_a(i,i)
end if 299 299 end if
end do 300 300 end do
deallocate(ipiv) 301 301 deallocate(ipiv)
deallocate(wc_a) 302 302 deallocate(wc_a)
303 303
end function 304 304 end function
305 305
function fvn_d_det(d,a,status) 306 306 function fvn_d_det(d,a,status)
! 307 307 !
! Evaluate the determinant of a square matrix using lapack LU factorization 308 308 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 309 309 !
! d (in) : matrix rank 310 310 ! d (in) : matrix rank
! a (in) : The Matrix 311 311 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 312 312 ! status (out) : =0 if LU factorization failed
! 313 313 !
implicit none 314 314 implicit none
integer, intent(in) :: d 315 315 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 316 316 double precision, intent(in) :: a(d,d)
integer, intent(out) :: status 317 317 integer, intent(out) :: status
double precision :: fvn_d_det 318 318 double precision :: fvn_d_det
319 319
double precision, allocatable :: wc_a(:,:) 320 320 double precision, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 321 321 integer, allocatable :: ipiv(:)
integer :: info,i 322 322 integer :: info,i
323 323
status=1 324 324 status=1
allocate(wc_a(d,d)) 325 325 allocate(wc_a(d,d))
allocate(ipiv(d)) 326 326 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 327 327 wc_a(:,:)=a(:,:)
call dgetrf(d,d,wc_a,d,ipiv,info) 328 328 call dgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 329 329 if (info/= 0) then
status=0 330 330 status=0
fvn_d_det=0.d0 331 331 fvn_d_det=0.d0
deallocate(ipiv) 332 332 deallocate(ipiv)
deallocate(wc_a) 333 333 deallocate(wc_a)
return 334 334 return
end if 335 335 end if
fvn_d_det=1.d0 336 336 fvn_d_det=1.d0
do i=1,d 337 337 do i=1,d
if (ipiv(i)==i) then 338 338 if (ipiv(i)==i) then
fvn_d_det=fvn_d_det*wc_a(i,i) 339 339 fvn_d_det=fvn_d_det*wc_a(i,i)
else 340 340 else
fvn_d_det=-fvn_d_det*wc_a(i,i) 341 341 fvn_d_det=-fvn_d_det*wc_a(i,i)
end if 342 342 end if
end do 343 343 end do
deallocate(ipiv) 344 344 deallocate(ipiv)
deallocate(wc_a) 345 345 deallocate(wc_a)
346 346
end function 347 347 end function
348 348
function fvn_c_det(d,a,status) ! 349 349 function fvn_c_det(d,a,status) !
! Evaluate the determinant of a square matrix using lapack LU factorization 350 350 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 351 351 !
! d (in) : matrix rank 352 352 ! d (in) : matrix rank
! a (in) : The Matrix 353 353 ! a (in) : The Matrix
! status (out) : =0 if LU factorization failed 354 354 ! status (out) : =0 if LU factorization failed
! 355 355 !
implicit none 356 356 implicit none
integer, intent(in) :: d 357 357 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 358 358 complex, intent(in) :: a(d,d)
integer, intent(out) :: status 359 359 integer, intent(out) :: status
complex :: fvn_c_det 360 360 complex :: fvn_c_det
361 361
complex, allocatable :: wc_a(:,:) 362 362 complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 363 363 integer, allocatable :: ipiv(:)
integer :: info,i 364 364 integer :: info,i
365 365
status=1 366 366 status=1
allocate(wc_a(d,d)) 367 367 allocate(wc_a(d,d))
allocate(ipiv(d)) 368 368 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 369 369 wc_a(:,:)=a(:,:)
call cgetrf(d,d,wc_a,d,ipiv,info) 370 370 call cgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 371 371 if (info/= 0) then
status=0 372 372 status=0
fvn_c_det=(0.e0,0.e0) 373 373 fvn_c_det=(0.e0,0.e0)
deallocate(ipiv) 374 374 deallocate(ipiv)
deallocate(wc_a) 375 375 deallocate(wc_a)
return 376 376 return
end if 377 377 end if
fvn_c_det=(1.e0,0.e0) 378 378 fvn_c_det=(1.e0,0.e0)
do i=1,d 379 379 do i=1,d
if (ipiv(i)==i) then 380 380 if (ipiv(i)==i) then
fvn_c_det=fvn_c_det*wc_a(i,i) 381 381 fvn_c_det=fvn_c_det*wc_a(i,i)
else 382 382 else
fvn_c_det=-fvn_c_det*wc_a(i,i) 383 383 fvn_c_det=-fvn_c_det*wc_a(i,i)
end if 384 384 end if
end do 385 385 end do
deallocate(ipiv) 386 386 deallocate(ipiv)
deallocate(wc_a) 387 387 deallocate(wc_a)
388 388
end function 389 389 end function
390 390
function fvn_z_det(d,a,status) 391 391 function fvn_z_det(d,a,status)
! 392 392 !
! Evaluate the determinant of a square matrix using lapack LU factorization 393 393 ! Evaluate the determinant of a square matrix using lapack LU factorization
! 394 394 !
! d (in) : matrix rank 395 395 ! d (in) : matrix rank
! a (in) : The Matrix 396 396 ! a (in) : The Matrix
! det (out) : determinant 397 397 ! det (out) : determinant
! status (out) : =0 if LU factorization failed 398 398 ! status (out) : =0 if LU factorization failed
! 399 399 !
implicit none 400 400 implicit none
integer, intent(in) :: d 401 401 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 402 402 double complex, intent(in) :: a(d,d)
integer, intent(out) :: status 403 403 integer, intent(out) :: status
double complex :: fvn_z_det 404 404 double complex :: fvn_z_det
405 405
double complex, allocatable :: wc_a(:,:) 406 406 double complex, allocatable :: wc_a(:,:)
integer, allocatable :: ipiv(:) 407 407 integer, allocatable :: ipiv(:)
integer :: info,i 408 408 integer :: info,i
409 409
status=1 410 410 status=1
allocate(wc_a(d,d)) 411 411 allocate(wc_a(d,d))
allocate(ipiv(d)) 412 412 allocate(ipiv(d))
wc_a(:,:)=a(:,:) 413 413 wc_a(:,:)=a(:,:)
call zgetrf(d,d,wc_a,d,ipiv,info) 414 414 call zgetrf(d,d,wc_a,d,ipiv,info)
if (info/= 0) then 415 415 if (info/= 0) then
status=0 416 416 status=0
fvn_z_det=(0.d0,0.d0) 417 417 fvn_z_det=(0.d0,0.d0)
deallocate(ipiv) 418 418 deallocate(ipiv)
deallocate(wc_a) 419 419 deallocate(wc_a)
return 420 420 return
end if 421 421 end if
fvn_z_det=(1.d0,0.d0) 422 422 fvn_z_det=(1.d0,0.d0)
do i=1,d 423 423 do i=1,d
if (ipiv(i)==i) then 424 424 if (ipiv(i)==i) then
fvn_z_det=fvn_z_det*wc_a(i,i) 425 425 fvn_z_det=fvn_z_det*wc_a(i,i)
else 426 426 else
fvn_z_det=-fvn_z_det*wc_a(i,i) 427 427 fvn_z_det=-fvn_z_det*wc_a(i,i)
end if 428 428 end if
end do 429 429 end do
deallocate(ipiv) 430 430 deallocate(ipiv)
deallocate(wc_a) 431 431 deallocate(wc_a)
432 432
end function 433 433 end function
434 434
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 435 435 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 436 436 !
! Condition test 437 437 ! Condition test
! 438 438 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 439 439 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1-norm 440 440 ! 1-norm
! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm 441 441 ! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm
! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond 442 442 ! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond
! 443 443 !
subroutine fvn_s_matcon(d,a,rcond,status) 444 444 subroutine fvn_s_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 445 445 ! Matrix condition (reciprocal of condition number)
! 446 446 !
! d (in) : matrix rank 447 447 ! d (in) : matrix rank
! a (in) : The Matrix 448 448 ! a (in) : The Matrix
! rcond (out) : guess what 449 449 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 450 450 ! status (out) : =0 if something went wrong
! 451 451 !
implicit none 452 452 implicit none
integer, intent(in) :: d 453 453 integer, intent(in) :: d
real, intent(in) :: a(d,d) 454 454 real, intent(in) :: a(d,d)
real, intent(out) :: rcond 455 455 real, intent(out) :: rcond
integer, intent(out) :: status 456 456 integer, intent(out) :: status
457 457
real, allocatable :: work(:) 458 458 real, allocatable :: work(:)
integer, allocatable :: iwork(:) 459 459 integer, allocatable :: iwork(:)
real :: anorm 460 460 real :: anorm
real, allocatable :: wc_a(:,:) ! working copy of a 461 461 real, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 462 462 integer :: info
integer, allocatable :: ipiv(:) 463 463 integer, allocatable :: ipiv(:)
464 464
real, external :: slange 465 465 real, external :: slange
466 466
467 467
status=1 468 468 status=1
469 469
anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm 470 470 anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
471 471
allocate(wc_a(d,d)) 472 472 allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1) 473 473 !call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 474 474 wc_a(:,:)=a(:,:)
475 475
allocate(ipiv(d)) 476 476 allocate(ipiv(d))
call sgetrf(d,d,wc_a,d,ipiv,info) 477 477 call sgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 478 478 if (info /= 0) then
status=0 479 479 status=0
deallocate(ipiv) 480 480 deallocate(ipiv)
deallocate(wc_a) 481 481 deallocate(wc_a)
return 482 482 return
end if 483 483 end if
allocate(work(4*d)) 484 484 allocate(work(4*d))
allocate(iwork(d)) 485 485 allocate(iwork(d))
call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) 486 486 call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then 487 487 if (info /= 0) then
status=0 488 488 status=0
end if 489 489 end if
deallocate(iwork) 490 490 deallocate(iwork)
deallocate(work) 491 491 deallocate(work)
deallocate(ipiv) 492 492 deallocate(ipiv)
deallocate(wc_a) 493 493 deallocate(wc_a)
494 494
end subroutine 495 495 end subroutine
496 496
subroutine fvn_d_matcon(d,a,rcond,status) 497 497 subroutine fvn_d_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 498 498 ! Matrix condition (reciprocal of condition number)
! 499 499 !
! d (in) : matrix rank 500 500 ! d (in) : matrix rank
! a (in) : The Matrix 501 501 ! a (in) : The Matrix
! rcond (out) : guess what 502 502 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 503 503 ! status (out) : =0 if something went wrong
! 504 504 !
implicit none 505 505 implicit none
integer, intent(in) :: d 506 506 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 507 507 double precision, intent(in) :: a(d,d)
double precision, intent(out) :: rcond 508 508 double precision, intent(out) :: rcond
integer, intent(out) :: status 509 509 integer, intent(out) :: status
510 510
double precision, allocatable :: work(:) 511 511 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 512 512 integer, allocatable :: iwork(:)
double precision :: anorm 513 513 double precision :: anorm
double precision, allocatable :: wc_a(:,:) ! working copy of a 514 514 double precision, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 515 515 integer :: info
integer, allocatable :: ipiv(:) 516 516 integer, allocatable :: ipiv(:)
517 517
double precision, external :: dlange 518 518 double precision, external :: dlange
519 519
520 520
status=1 521 521 status=1
522 522
anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm 523 523 anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm
524 524
allocate(wc_a(d,d)) 525 525 allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1) 526 526 !call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 527 527 wc_a(:,:)=a(:,:)
528 528
allocate(ipiv(d)) 529 529 allocate(ipiv(d))
call dgetrf(d,d,wc_a,d,ipiv,info) 530 530 call dgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 531 531 if (info /= 0) then
status=0 532 532 status=0
deallocate(ipiv) 533 533 deallocate(ipiv)
deallocate(wc_a) 534 534 deallocate(wc_a)
return 535 535 return
end if 536 536 end if
537 537
allocate(work(4*d)) 538 538 allocate(work(4*d))
allocate(iwork(d)) 539 539 allocate(iwork(d))
call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) 540 540 call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info)
if (info /= 0) then 541 541 if (info /= 0) then
status=0 542 542 status=0
end if 543 543 end if
deallocate(iwork) 544 544 deallocate(iwork)
deallocate(work) 545 545 deallocate(work)
deallocate(ipiv) 546 546 deallocate(ipiv)
deallocate(wc_a) 547 547 deallocate(wc_a)
548 548
end subroutine 549 549 end subroutine
550 550
subroutine fvn_c_matcon(d,a,rcond,status) 551 551 subroutine fvn_c_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 552 552 ! Matrix condition (reciprocal of condition number)
! 553 553 !
! d (in) : matrix rank 554 554 ! d (in) : matrix rank
! a (in) : The Matrix 555 555 ! a (in) : The Matrix
! rcond (out) : guess what 556 556 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 557 557 ! status (out) : =0 if something went wrong
! 558 558 !
implicit none 559 559 implicit none
integer, intent(in) :: d 560 560 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 561 561 complex, intent(in) :: a(d,d)
real, intent(out) :: rcond 562 562 real, intent(out) :: rcond
integer, intent(out) :: status 563 563 integer, intent(out) :: status
564 564
real, allocatable :: rwork(:) 565 565 real, allocatable :: rwork(:)
complex, allocatable :: work(:) 566 566 complex, allocatable :: work(:)
integer, allocatable :: iwork(:) 567 567 integer, allocatable :: iwork(:)
real :: anorm 568 568 real :: anorm
complex, allocatable :: wc_a(:,:) ! working copy of a 569 569 complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 570 570 integer :: info
integer, allocatable :: ipiv(:) 571 571 integer, allocatable :: ipiv(:)
572 572
real, external :: clange 573 573 real, external :: clange
574 574
575 575
status=1 576 576 status=1
577 577
anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm 578 578 anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
579 579
allocate(wc_a(d,d)) 580 580 allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1) 581 581 !call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 582 582 wc_a(:,:)=a(:,:)
583 583
allocate(ipiv(d)) 584 584 allocate(ipiv(d))
call cgetrf(d,d,wc_a,d,ipiv,info) 585 585 call cgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 586 586 if (info /= 0) then
status=0 587 587 status=0
deallocate(ipiv) 588 588 deallocate(ipiv)
deallocate(wc_a) 589 589 deallocate(wc_a)
return 590 590 return
end if 591 591 end if
allocate(work(2*d)) 592 592 allocate(work(2*d))
allocate(rwork(2*d)) 593 593 allocate(rwork(2*d))
call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) 594 594 call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then 595 595 if (info /= 0) then
status=0 596 596 status=0
end if 597 597 end if
deallocate(rwork) 598 598 deallocate(rwork)
deallocate(work) 599 599 deallocate(work)
deallocate(ipiv) 600 600 deallocate(ipiv)
deallocate(wc_a) 601 601 deallocate(wc_a)
end subroutine 602 602 end subroutine
603 603
subroutine fvn_z_matcon(d,a,rcond,status) 604 604 subroutine fvn_z_matcon(d,a,rcond,status)
! Matrix condition (reciprocal of condition number) 605 605 ! Matrix condition (reciprocal of condition number)
! 606 606 !
! d (in) : matrix rank 607 607 ! d (in) : matrix rank
! a (in) : The Matrix 608 608 ! a (in) : The Matrix
! rcond (out) : guess what 609 609 ! rcond (out) : guess what
! status (out) : =0 if something went wrong 610 610 ! status (out) : =0 if something went wrong
! 611 611 !
implicit none 612 612 implicit none
integer, intent(in) :: d 613 613 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 614 614 double complex, intent(in) :: a(d,d)
double precision, intent(out) :: rcond 615 615 double precision, intent(out) :: rcond
integer, intent(out) :: status 616 616 integer, intent(out) :: status
617 617
double complex, allocatable :: work(:) 618 618 double complex, allocatable :: work(:)
double precision, allocatable :: rwork(:) 619 619 double precision, allocatable :: rwork(:)
double precision :: anorm 620 620 double precision :: anorm
double complex, allocatable :: wc_a(:,:) ! working copy of a 621 621 double complex, allocatable :: wc_a(:,:) ! working copy of a
integer :: info 622 622 integer :: info
integer, allocatable :: ipiv(:) 623 623 integer, allocatable :: ipiv(:)
624 624
double precision, external :: zlange 625 625 double precision, external :: zlange
626 626
627 627
status=1 628 628 status=1
629 629
anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm 630 630 anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm
631 631
allocate(wc_a(d,d)) 632 632 allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1) 633 633 !call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 634 634 wc_a(:,:)=a(:,:)
635 635
allocate(ipiv(d)) 636 636 allocate(ipiv(d))
call zgetrf(d,d,wc_a,d,ipiv,info) 637 637 call zgetrf(d,d,wc_a,d,ipiv,info)
if (info /= 0) then 638 638 if (info /= 0) then
status=0 639 639 status=0
deallocate(ipiv) 640 640 deallocate(ipiv)
deallocate(wc_a) 641 641 deallocate(wc_a)
return 642 642 return
end if 643 643 end if
644 644
allocate(work(2*d)) 645 645 allocate(work(2*d))
allocate(rwork(2*d)) 646 646 allocate(rwork(2*d))
call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) 647 647 call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info)
if (info /= 0) then 648 648 if (info /= 0) then
status=0 649 649 status=0
end if 650 650 end if
deallocate(rwork) 651 651 deallocate(rwork)
deallocate(work) 652 652 deallocate(work)
deallocate(ipiv) 653 653 deallocate(ipiv)
deallocate(wc_a) 654 654 deallocate(wc_a)
end subroutine 655 655 end subroutine
656 656
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 657 657 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 658 658 !
! Valeurs propres/ Vecteurs propre 659 659 ! Valeurs propres/ Vecteurs propre
! 660 660 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 661 661 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
662 662
subroutine fvn_s_matev(d,a,evala,eveca,status) 663 663 subroutine fvn_s_matev(d,a,evala,eveca,status)
! 664 664 !
! integer d (in) : matrice rank 665 665 ! integer d (in) : matrice rank
! real a(d,d) (in) : The Matrix 666 666 ! real a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues 667 667 ! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 668 668 ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 669 669 ! integer (out) : status =0 if something went wrong
! 670 670 !
! interfacing Lapack routine SGEEV 671 671 ! interfacing Lapack routine SGEEV
implicit none 672 672 implicit none
integer, intent(in) :: d 673 673 integer, intent(in) :: d
real, intent(in) :: a(d,d) 674 674 real, intent(in) :: a(d,d)
complex, intent(out) :: evala(d) 675 675 complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d) 676 676 complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 677 677 integer, intent(out) :: status
678 678
real, allocatable :: wc_a(:,:) ! a working copy of a 679 679 real, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 680 680 integer :: info
integer :: lwork 681 681 integer :: lwork
real, allocatable :: wr(:),wi(:) 682 682 real, allocatable :: wr(:),wi(:)
real :: vl ! unused but necessary for the call 683 683 real :: vl ! unused but necessary for the call
real, allocatable :: vr(:,:) 684 684 real, allocatable :: vr(:,:)
real, allocatable :: work(:) 685 685 real, allocatable :: work(:)
real :: twork(1) 686 686 real :: twork(1)
integer i 687 687 integer i
integer j 688 688 integer j
689 689
! making a working copy of a 690 690 ! making a working copy of a
allocate(wc_a(d,d)) 691 691 allocate(wc_a(d,d))
!call scopy(d*d,a,1,wc_a,1) 692 692 !call scopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 693 693 wc_a(:,:)=a(:,:)
694 694
allocate(wr(d)) 695 695 allocate(wr(d))
allocate(wi(d)) 696 696 allocate(wi(d))
allocate(vr(d,d)) 697 697 allocate(vr(d,d))
! query optimal work size 698 698 ! query optimal work size
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) 699 699 call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1)) 700 700 lwork=int(twork(1))
allocate(work(lwork)) 701 701 allocate(work(lwork))
call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) 702 702 call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
703 703
if (info /= 0) then 704 704 if (info /= 0) then
status=0 705 705 status=0
deallocate(work) 706 706 deallocate(work)
deallocate(vr) 707 707 deallocate(vr)
deallocate(wi) 708 708 deallocate(wi)
deallocate(wr) 709 709 deallocate(wr)
deallocate(wc_a) 710 710 deallocate(wc_a)
return 711 711 return
end if 712 712 end if
713 713
! now fill in the results 714 714 ! now fill in the results
i=1 715 715 i=1
do while(i<=d) 716 716 do while(i<=d)
evala(i)=cmplx(wr(i),wi(i)) 717 717 evala(i)=cmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real 718 718 if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=cmplx(vr(:,i),0.) 719 719 eveca(:,i)=cmplx(vr(:,i),0.)
else ! eigenvalue is complex 720 720 else ! eigenvalue is complex
evala(i+1)=cmplx(wr(i+1),wi(i+1)) 721 721 evala(i+1)=cmplx(wr(i+1),wi(i+1))
eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) 722 722 eveca(:,i)=cmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) 723 723 eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1))
i=i+1 724 724 i=i+1
end if 725 725 end if
i=i+1 726 726 i=i+1
enddo 727 727 enddo
deallocate(work) 728 728 deallocate(work)
deallocate(vr) 729 729 deallocate(vr)
deallocate(wi) 730 730 deallocate(wi)
deallocate(wr) 731 731 deallocate(wr)
deallocate(wc_a) 732 732 deallocate(wc_a)
733 733
end subroutine 734 734 end subroutine
735 735
subroutine fvn_d_matev(d,a,evala,eveca,status) 736 736 subroutine fvn_d_matev(d,a,evala,eveca,status)
! 737 737 !
! integer d (in) : matrice rank 738 738 ! integer d (in) : matrice rank
! double precision a(d,d) (in) : The Matrix 739 739 ! double precision a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues 740 740 ! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 741 741 ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 742 742 ! integer (out) : status =0 if something went wrong
! 743 743 !
! interfacing Lapack routine DGEEV 744 744 ! interfacing Lapack routine DGEEV
implicit none 745 745 implicit none
integer, intent(in) :: d 746 746 integer, intent(in) :: d
double precision, intent(in) :: a(d,d) 747 747 double precision, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d) 748 748 double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d) 749 749 double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 750 750 integer, intent(out) :: status
751 751
double precision, allocatable :: wc_a(:,:) ! a working copy of a 752 752 double precision, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 753 753 integer :: info
integer :: lwork 754 754 integer :: lwork
double precision, allocatable :: wr(:),wi(:) 755 755 double precision, allocatable :: wr(:),wi(:)
double precision :: vl ! unused but necessary for the call 756 756 double precision :: vl ! unused but necessary for the call
double precision, allocatable :: vr(:,:) 757 757 double precision, allocatable :: vr(:,:)
double precision, allocatable :: work(:) 758 758 double precision, allocatable :: work(:)
double precision :: twork(1) 759 759 double precision :: twork(1)
integer i 760 760 integer i
integer j 761 761 integer j
762 762
! making a working copy of a 763 763 ! making a working copy of a
allocate(wc_a(d,d)) 764 764 allocate(wc_a(d,d))
!call dcopy(d*d,a,1,wc_a,1) 765 765 !call dcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 766 766 wc_a(:,:)=a(:,:)
767 767
allocate(wr(d)) 768 768 allocate(wr(d))
allocate(wi(d)) 769 769 allocate(wi(d))
allocate(vr(d,d)) 770 770 allocate(vr(d,d))
! query optimal work size 771 771 ! query optimal work size
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) 772 772 call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info)
lwork=int(twork(1)) 773 773 lwork=int(twork(1))
allocate(work(lwork)) 774 774 allocate(work(lwork))
call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) 775 775 call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info)
776 776
if (info /= 0) then 777 777 if (info /= 0) then
status=0 778 778 status=0
deallocate(work) 779 779 deallocate(work)
deallocate(vr) 780 780 deallocate(vr)
deallocate(wi) 781 781 deallocate(wi)
deallocate(wr) 782 782 deallocate(wr)
deallocate(wc_a) 783 783 deallocate(wc_a)
return 784 784 return
end if 785 785 end if
786 786
! now fill in the results 787 787 ! now fill in the results
i=1 788 788 i=1
do while(i<=d) 789 789 do while(i<=d)
evala(i)=dcmplx(wr(i),wi(i)) 790 790 evala(i)=dcmplx(wr(i),wi(i))
if (wi(i) == 0.) then ! eigenvalue is real 791 791 if (wi(i) == 0.) then ! eigenvalue is real
eveca(:,i)=dcmplx(vr(:,i),0.) 792 792 eveca(:,i)=dcmplx(vr(:,i),0.)
else ! eigenvalue is complex 793 793 else ! eigenvalue is complex
evala(i+1)=dcmplx(wr(i+1),wi(i+1)) 794 794 evala(i+1)=dcmplx(wr(i+1),wi(i+1))
eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) 795 795 eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1))
eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) 796 796 eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1))
i=i+1 797 797 i=i+1
end if 798 798 end if
i=i+1 799 799 i=i+1
enddo 800 800 enddo
801 801
deallocate(work) 802 802 deallocate(work)
deallocate(vr) 803 803 deallocate(vr)
deallocate(wi) 804 804 deallocate(wi)
deallocate(wr) 805 805 deallocate(wr)
deallocate(wc_a) 806 806 deallocate(wc_a)
807 807
end subroutine 808 808 end subroutine
809 809
subroutine fvn_c_matev(d,a,evala,eveca,status) 810 810 subroutine fvn_c_matev(d,a,evala,eveca,status)
! 811 811 !
! integer d (in) : matrice rank 812 812 ! integer d (in) : matrice rank
! complex a(d,d) (in) : The Matrix 813 813 ! complex a(d,d) (in) : The Matrix
! complex evala(d) (out) : eigenvalues 814 814 ! complex evala(d) (out) : eigenvalues
! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 815 815 ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 816 816 ! integer (out) : status =0 if something went wrong
! 817 817 !
! interfacing Lapack routine CGEEV 818 818 ! interfacing Lapack routine CGEEV
implicit none 819 819 implicit none
integer, intent(in) :: d 820 820 integer, intent(in) :: d
complex, intent(in) :: a(d,d) 821 821 complex, intent(in) :: a(d,d)
complex, intent(out) :: evala(d) 822 822 complex, intent(out) :: evala(d)
complex, intent(out) :: eveca(d,d) 823 823 complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 824 824 integer, intent(out) :: status
825 825
complex, allocatable :: wc_a(:,:) ! a working copy of a 826 826 complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 827 827 integer :: info
integer :: lwork 828 828 integer :: lwork
complex, allocatable :: work(:) 829 829 complex, allocatable :: work(:)
complex :: twork(1) 830 830 complex :: twork(1)
real, allocatable :: rwork(:) 831 831 real, allocatable :: rwork(:)
complex :: vl ! unused but necessary for the call 832 832 complex :: vl ! unused but necessary for the call
833 833
status=1 834 834 status=1
835 835
! making a working copy of a 836 836 ! making a working copy of a
allocate(wc_a(d,d)) 837 837 allocate(wc_a(d,d))
!call ccopy(d*d,a,1,wc_a,1) 838 838 !call ccopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 839 839 wc_a(:,:)=a(:,:)
840 840
841 841
! query optimal work size 842 842 ! query optimal work size
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) 843 843 call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1)) 844 844 lwork=int(twork(1))
allocate(work(lwork)) 845 845 allocate(work(lwork))
allocate(rwork(2*d)) 846 846 allocate(rwork(2*d))
call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) 847 847 call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
848 848
if (info /= 0) then 849 849 if (info /= 0) then
status=0 850 850 status=0
end if 851 851 end if
deallocate(rwork) 852 852 deallocate(rwork)
deallocate(work) 853 853 deallocate(work)
deallocate(wc_a) 854 854 deallocate(wc_a)
855 855
end subroutine 856 856 end subroutine
857 857
subroutine fvn_z_matev(d,a,evala,eveca,status) 858 858 subroutine fvn_z_matev(d,a,evala,eveca,status)
! 859 859 !
! integer d (in) : matrice rank 860 860 ! integer d (in) : matrice rank
! double complex a(d,d) (in) : The Matrix 861 861 ! double complex a(d,d) (in) : The Matrix
! double complex evala(d) (out) : eigenvalues 862 862 ! double complex evala(d) (out) : eigenvalues
! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector 863 863 ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector
! integer (out) : status =0 if something went wrong 864 864 ! integer (out) : status =0 if something went wrong
! 865 865 !
! interfacing Lapack routine ZGEEV 866 866 ! interfacing Lapack routine ZGEEV
implicit none 867 867 implicit none
integer, intent(in) :: d 868 868 integer, intent(in) :: d
double complex, intent(in) :: a(d,d) 869 869 double complex, intent(in) :: a(d,d)
double complex, intent(out) :: evala(d) 870 870 double complex, intent(out) :: evala(d)
double complex, intent(out) :: eveca(d,d) 871 871 double complex, intent(out) :: eveca(d,d)
integer, intent(out) :: status 872 872 integer, intent(out) :: status
873 873
double complex, allocatable :: wc_a(:,:) ! a working copy of a 874 874 double complex, allocatable :: wc_a(:,:) ! a working copy of a
integer :: info 875 875 integer :: info
integer :: lwork 876 876 integer :: lwork
double complex, allocatable :: work(:) 877 877 double complex, allocatable :: work(:)
double complex :: twork(1) 878 878 double complex :: twork(1)
double precision, allocatable :: rwork(:) 879 879 double precision, allocatable :: rwork(:)
double complex :: vl ! unused but necessary for the call 880 880 double complex :: vl ! unused but necessary for the call
881 881
status=1 882 882 status=1
883 883
! making a working copy of a 884 884 ! making a working copy of a
allocate(wc_a(d,d)) 885 885 allocate(wc_a(d,d))
!call zcopy(d*d,a,1,wc_a,1) 886 886 !call zcopy(d*d,a,1,wc_a,1)
wc_a(:,:)=a(:,:) 887 887 wc_a(:,:)=a(:,:)
888 888
! query optimal work size 889 889 ! query optimal work size
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) 890 890 call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info)
lwork=int(twork(1)) 891 891 lwork=int(twork(1))
allocate(work(lwork)) 892 892 allocate(work(lwork))
allocate(rwork(2*d)) 893 893 allocate(rwork(2*d))
call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) 894 894 call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info)
895 895
if (info /= 0) then 896 896 if (info /= 0) then
status=0 897 897 status=0
end if 898 898 end if
deallocate(rwork) 899 899 deallocate(rwork)
deallocate(work) 900 900 deallocate(work)
deallocate(wc_a) 901 901 deallocate(wc_a)
902 902
end subroutine 903 903 end subroutine
904 904
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 905 905 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 906 906 !
! Akima spline interpolation and spline evaluation 907 907 ! Akima spline interpolation and spline evaluation
! 908 908 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 909 909 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
910 910
! Single precision 911 911 ! Single precision
subroutine fvn_s_akima(n,x,y,br,co) 912 912 subroutine fvn_s_akima(n,x,y,br,co)
implicit none 913 913 implicit none
integer, intent(in) :: n 914 914 integer, intent(in) :: n
real, intent(in) :: x(n) 915 915 real, intent(in) :: x(n)
real, intent(in) :: y(n) 916 916 real, intent(in) :: y(n)
real, intent(out) :: br(n) 917 917 real, intent(out) :: br(n)
real, intent(out) :: co(4,n) 918 918 real, intent(out) :: co(4,n)
919 919
real, allocatable :: var(:),z(:) 920 920 real, allocatable :: var(:),z(:)
real :: wi_1,wi 921 921 real :: wi_1,wi
integer :: i 922 922 integer :: i
real :: dx,a,b 923 923 real :: dx,a,b
924 924
! br is just a copy of x 925 925 ! br is just a copy of x
br(:)=x(:) 926 926 br(:)=x(:)
927 927
allocate(var(n)) 928 928 allocate(var(n))
allocate(z(n)) 929 929 allocate(z(n))
! evaluate the variations 930 930 ! evaluate the variations
do i=1, n-1 931 931 do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) 932 932 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do 933 933 end do
var(n+2)=2.e0*var(n+1)-var(n) 934 934 var(n+2)=2.e0*var(n+1)-var(n)
var(n+3)=2.e0*var(n+2)-var(n+1) 935 935 var(n+3)=2.e0*var(n+2)-var(n+1)
var(2)=2.e0*var(3)-var(4) 936 936 var(2)=2.e0*var(3)-var(4)
var(1)=2.e0*var(2)-var(3) 937 937 var(1)=2.e0*var(2)-var(3)
938 938
do i = 1, n 939 939 do i = 1, n
wi_1=abs(var(i+3)-var(i+2)) 940 940 wi_1=abs(var(i+3)-var(i+2))
wi=abs(var(i+1)-var(i)) 941 941 wi=abs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.e0) then 942 942 if ((wi_1+wi).eq.0.e0) then
z(i)=(var(i+2)+var(i+1))/2.e0 943 943 z(i)=(var(i+2)+var(i+1))/2.e0
else 944 944 else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) 945 945 z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if 946 946 end if
end do 947 947 end do
948 948
do i=1, n-1 949 949 do i=1, n-1
dx=x(i+1)-x(i) 950 950 dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd 951 951 a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd 952 952 b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i) 953 953 co(1,i)=y(i)
co(2,i)=z(i) 954 954 co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! méthode wd 955 955 !co(3,i)=-(a-3.*b)/dx**2 ! méthode wd
!co(4,i)=(a-2.*b)/dx**3 ! méthode wd 956 956 !co(4,i)=(a-2.*b)/dx**3 ! méthode wd
co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! méthode JP Moreau 957 957 co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! méthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! 958 958 co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 !
! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6 959 959 ! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ... 960 960 ! etrangement la fonction csval corrige et donne la bonne valeur ...
end do 961 961 end do
co(1,n)=y(n) 962 962 co(1,n)=y(n)
co(2,n)=z(n) 963 963 co(2,n)=z(n)
co(3,n)=0.e0 964 964 co(3,n)=0.e0
co(4,n)=0.e0 965 965 co(4,n)=0.e0
966 966
deallocate(z) 967 967 deallocate(z)
deallocate(var) 968 968 deallocate(var)
969 969
end subroutine 970 970 end subroutine
971 971
! Double precision 972 972 ! Double precision
subroutine fvn_d_akima(n,x,y,br,co) 973 973 subroutine fvn_d_akima(n,x,y,br,co)
974 974
implicit none 975 975 implicit none
integer, intent(in) :: n 976 976 integer, intent(in) :: n
double precision, intent(in) :: x(n) 977 977 double precision, intent(in) :: x(n)
double precision, intent(in) :: y(n) 978 978 double precision, intent(in) :: y(n)
double precision, intent(out) :: br(n) 979 979 double precision, intent(out) :: br(n)
double precision, intent(out) :: co(4,n) 980 980 double precision, intent(out) :: co(4,n)
981 981
double precision, allocatable :: var(:),z(:) 982 982 double precision, allocatable :: var(:),z(:)
double precision :: wi_1,wi 983 983 double precision :: wi_1,wi
integer :: i 984 984 integer :: i
double precision :: dx,a,b 985 985 double precision :: dx,a,b
986 986
! br is just a copy of x 987 987 ! br is just a copy of x
br(:)=x(:) 988 988 br(:)=x(:)
989 989
allocate(var(n)) 990 990 allocate(var(n))
allocate(z(n)) 991 991 allocate(z(n))
! evaluate the variations 992 992 ! evaluate the variations
do i=1, n-1 993 993 do i=1, n-1
var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) 994 994 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i))
end do 995 995 end do
var(n+2)=2.d0*var(n+1)-var(n) 996 996 var(n+2)=2.d0*var(n+1)-var(n)
var(n+3)=2.d0*var(n+2)-var(n+1) 997 997 var(n+3)=2.d0*var(n+2)-var(n+1)
var(2)=2.d0*var(3)-var(4) 998 998 var(2)=2.d0*var(3)-var(4)
var(1)=2.d0*var(2)-var(3) 999 999 var(1)=2.d0*var(2)-var(3)
1000 1000
do i = 1, n 1001 1001 do i = 1, n
wi_1=dabs(var(i+3)-var(i+2)) 1002 1002 wi_1=dabs(var(i+3)-var(i+2))
wi=dabs(var(i+1)-var(i)) 1003 1003 wi=dabs(var(i+1)-var(i))
if ((wi_1+wi).eq.0.d0) then 1004 1004 if ((wi_1+wi).eq.0.d0) then
z(i)=(var(i+2)+var(i+1))/2.d0 1005 1005 z(i)=(var(i+2)+var(i+1))/2.d0
else 1006 1006 else
z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) 1007 1007 z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi)
end if 1008 1008 end if
end do 1009 1009 end do
1010 1010
do i=1, n-1 1011 1011 do i=1, n-1
dx=x(i+1)-x(i) 1012 1012 dx=x(i+1)-x(i)
a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd 1013 1013 a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd
b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd 1014 1014 b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd
co(1,i)=y(i) 1015 1015 co(1,i)=y(i)
co(2,i)=z(i) 1016 1016 co(2,i)=z(i)
!co(3,i)=-(a-3.*b)/dx**2 ! méthode wd 1017 1017 !co(3,i)=-(a-3.*b)/dx**2 ! méthode wd
!co(4,i)=(a-2.*b)/dx**3 ! méthode wd 1018 1018 !co(4,i)=(a-2.*b)/dx**3 ! méthode wd
co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! méthode JP Moreau 1019 1019 co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! méthode JP Moreau
co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! 1020 1020 co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 !
! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6 1021 1021 ! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6
! etrangement la fonction csval corrige et donne la bonne valeur ... 1022 1022 ! etrangement la fonction csval corrige et donne la bonne valeur ...
end do 1023 1023 end do
co(1,n)=y(n) 1024 1024 co(1,n)=y(n)
co(2,n)=z(n) 1025 1025 co(2,n)=z(n)
co(3,n)=0.d0 1026 1026 co(3,n)=0.d0
co(4,n)=0.d0 1027 1027 co(4,n)=0.d0
1028 1028
deallocate(z) 1029 1029 deallocate(z)
deallocate(var) 1030 1030 deallocate(var)
1031 1031
end subroutine 1032 1032 end subroutine
1033 1033
! 1034 1034 !
! Single precision spline evaluation 1035 1035 ! Single precision spline evaluation
! 1036 1036 !
function fvn_s_spline_eval(x,n,br,co) 1037 1037 function fvn_s_spline_eval(x,n,br,co)
implicit none 1038 1038 implicit none
real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated 1039 1039 real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals 1040 1040 integer, intent(in) :: n ! number of intervals
real, intent(in) :: br(n+1) ! breakpoints 1041 1041 real, intent(in) :: br(n+1) ! breakpoints
real, intent(in) :: co(4,n+1) ! spline coeeficients 1042 1042 real, intent(in) :: co(4,n+1) ! spline coeeficients
real :: fvn_s_spline_eval 1043 1043 real :: fvn_s_spline_eval
1044 1044
integer :: i 1045 1045 integer :: i
real :: dx 1046 1046 real :: dx
1047 1047
if (x<=br(1)) then 1048 1048 if (x<=br(1)) then
i=1 1049 1049 i=1
else if (x>=br(n+1)) then 1050 1050 else if (x>=br(n+1)) then
i=n 1051 1051 i=n
else 1052 1052 else
i=1 1053 1053 i=1
do while(x>=br(i)) 1054 1054 do while(x>=br(i))
i=i+1 1055 1055 i=i+1
end do 1056 1056 end do
i=i-1 1057 1057 i=i-1
end if 1058 1058 end if
dx=x-br(i) 1059 1059 dx=x-br(i)
fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 1060 1060 fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
1061 1061
end function 1062 1062 end function
1063 1063
! Double precision spline evaluation 1064 1064 ! Double precision spline evaluation
function fvn_d_spline_eval(x,n,br,co) 1065 1065 function fvn_d_spline_eval(x,n,br,co)
implicit none 1066 1066 implicit none
double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated 1067 1067 double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated
integer, intent(in) :: n ! number of intervals 1068 1068 integer, intent(in) :: n ! number of intervals
double precision, intent(in) :: br(n+1) ! breakpoints 1069 1069 double precision, intent(in) :: br(n+1) ! breakpoints
double precision, intent(in) :: co(4,n+1) ! spline coeeficients 1070 1070 double precision, intent(in) :: co(4,n+1) ! spline coeeficients
double precision :: fvn_d_spline_eval 1071 1071 double precision :: fvn_d_spline_eval
1072 1072
integer :: i 1073 1073 integer :: i
double precision :: dx 1074 1074 double precision :: dx
1075 1075
1076 1076
if (x<=br(1)) then 1077 1077 if (x<=br(1)) then
i=1 1078 1078 i=1
else if (x>=br(n+1)) then 1079 1079 else if (x>=br(n+1)) then
i=n 1080 1080 i=n
else 1081 1081 else
i=1 1082 1082 i=1
do while(x>=br(i)) 1083 1083 do while(x>=br(i))
i=i+1 1084 1084 i=i+1
end do 1085 1085 end do
i=i-1 1086 1086 i=i-1
end if 1087 1087 end if
1088 1088
dx=x-br(i) 1089 1089 dx=x-br(i)
fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 1090 1090 fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3
1091 1091
end function 1092 1092 end function
1093 1093
1094 1094
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1095 1095 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1096 1096 !
! Least square problem 1097 1097 ! Least square problem
! 1098 1098 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1099 1099 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1100 1100 !
! 1101 1101 !
subroutine fvn_d_lspoly(np,x,y,deg,coeff,status) 1102 1102 subroutine fvn_d_lspoly(np,x,y,deg,coeff,status)
! 1103 1103 !
! Least square polynomial fitting 1104 1104 ! Least square polynomial fitting
! 1105 1105 !
! Find the coefficients of the least square polynomial of a given degree 1106 1106 ! Find the coefficients of the least square polynomial of a given degree
! for a set of coordinates. 1107 1107 ! for a set of coordinates.
! 1108 1108 !
! The degree must be lower than the number of points 1109 1109 ! The degree must be lower than the number of points
! 1110 1110 !
! np (in) : number of points 1111 1111 ! np (in) : number of points
! x(np) (in) : x data 1112 1112 ! x(np) (in) : x data
! y(np) (in) : y data 1113 1113 ! y(np) (in) : y data
! deg (in) : polynomial's degree 1114 1114 ! deg (in) : polynomial's degree
! coeff(deg+1) (out) : polynomial coefficients 1115 1115 ! coeff(deg+1) (out) : polynomial coefficients
! status (out) : =0 if a problem occurs 1116 1116 ! status (out) : =0 if a problem occurs
! 1117 1117 !
implicit none 1118 1118 implicit none
1119 1119
integer, intent(in) :: np,deg 1120 1120 integer, intent(in) :: np,deg
real(kind=8), intent(in), dimension(np) :: x,y 1121 1121 real(kind=8), intent(in), dimension(np) :: x,y
real(kind=8), intent(out), dimension(deg+1) :: coeff 1122 1122 real(kind=8), intent(out), dimension(deg+1) :: coeff
integer, intent(out) :: status 1123 1123 integer, intent(out) :: status
1124 1124
real(kind=8), allocatable, dimension(:,:) :: mat,bmat 1125 1125 real(kind=8), allocatable, dimension(:,:) :: mat,bmat
real(kind=8),dimension(:),allocatable :: work,singval 1126 1126 real(kind=8),dimension(:),allocatable :: work,singval
real(kind=8),dimension(1) :: twork 1127 1127 real(kind=8),dimension(1) :: twork
integer :: lwork,info,rank 1128 1128 integer :: lwork,info,rank
1129 1129
integer :: i,j 1130 1130 integer :: i,j
1131 1131
status=1 1132 1132 status=1
allocate(mat(np,deg+1),bmat(np,1),singval(deg+1)) 1133 1133 allocate(mat(np,deg+1),bmat(np,1),singval(deg+1))
1134 1134
! Design matrix valorisation 1135 1135 ! Design matrix valorisation
mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) ) 1136 1136 mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) )
1137 1137
! second member valorisation 1138 1138 ! second member valorisation
bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /)) 1139 1139 bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /))
1140 1140
! query workspace size 1141 1141 ! query workspace size
call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info) 1142 1142 call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info)
lwork=twork(1) 1143 1143 lwork=twork(1)
allocate(work(int(lwork))) 1144 1144 allocate(work(int(lwork)))
! real call 1145 1145 ! real call
call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info) 1146 1146 call dgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info)
1147 1147
if (info /= 0) then 1148 1148 if (info /= 0) then
status=0 1149 1149 status=0
end if 1150 1150 end if
1151 1151
coeff = (/ (bmat(i,1),i=1,deg+1) /) 1152 1152 coeff = (/ (bmat(i,1),i=1,deg+1) /)
1153 1153
deallocate(work) 1154 1154 deallocate(work)
deallocate(mat,bmat,singval) 1155 1155 deallocate(mat,bmat,singval)
end subroutine 1156 1156 end subroutine
1157 1157
subroutine fvn_s_lspoly(np,x,y,deg,coeff,status) 1158 1158 subroutine fvn_s_lspoly(np,x,y,deg,coeff,status)
! 1159 1159 !
! Least square polynomial fitting 1160 1160 ! Least square polynomial fitting
! 1161 1161 !
! Find the coefficients of the least square polynomial of a given degree 1162 1162 ! Find the coefficients of the least square polynomial of a given degree
! for a set of coordinates. 1163 1163 ! for a set of coordinates.
! 1164 1164 !
! The degree must be lower than the number of points 1165 1165 ! The degree must be lower than the number of points
! 1166 1166 !
! np (in) : number of points 1167 1167 ! np (in) : number of points
! x(np) (in) : x data 1168 1168 ! x(np) (in) : x data
! y(np) (in) : y data 1169 1169 ! y(np) (in) : y data
! deg (in) : polynomial's degree 1170 1170 ! deg (in) : polynomial's degree
! coeff(deg+1) (out) : polynomial coefficients 1171 1171 ! coeff(deg+1) (out) : polynomial coefficients
! status (out) : =0 if a problem occurs 1172 1172 ! status (out) : =0 if a problem occurs
! 1173 1173 !
implicit none 1174 1174 implicit none
1175 1175
integer, intent(in) :: np,deg 1176 1176 integer, intent(in) :: np,deg
real(kind=4), intent(in), dimension(np) :: x,y 1177 1177 real(kind=4), intent(in), dimension(np) :: x,y
real(kind=4), intent(out), dimension(deg+1) :: coeff 1178 1178 real(kind=4), intent(out), dimension(deg+1) :: coeff
integer, intent(out) :: status 1179 1179 integer, intent(out) :: status
1180 1180
real(kind=4), allocatable, dimension(:,:) :: mat,bmat 1181 1181 real(kind=4), allocatable, dimension(:,:) :: mat,bmat
real(kind=4),dimension(:),allocatable :: work,singval 1182 1182 real(kind=4),dimension(:),allocatable :: work,singval
real(kind=4),dimension(1) :: twork 1183 1183 real(kind=4),dimension(1) :: twork
integer :: lwork,info,rank 1184 1184 integer :: lwork,info,rank
1185 1185
integer :: i,j 1186 1186 integer :: i,j
1187 1187
status=1 1188 1188 status=1
allocate(mat(np,deg+1),bmat(np,1),singval(deg+1)) 1189 1189 allocate(mat(np,deg+1),bmat(np,1),singval(deg+1))
1190 1190
! Design matrix valorisation 1191 1191 ! Design matrix valorisation
mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) ) 1192 1192 mat=reshape( (/ ((x(i)**(j-1),i=1,np),j=1,deg+1) /),shape=(/ np,deg+1 /) )
1193 1193
! second member valorisation 1194 1194 ! second member valorisation
bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /)) 1195 1195 bmat=reshape ( (/ (y(i),i=1,np) /) ,shape = (/ np,1 /))
1196 1196
! query workspace size 1197 1197 ! query workspace size
call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info) 1198 1198 call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,twork,-1,info)
lwork=twork(1) 1199 1199 lwork=twork(1)
allocate(work(int(lwork))) 1200 1200 allocate(work(int(lwork)))
! real call 1201 1201 ! real call
call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info) 1202 1202 call sgelss(np,deg+1,1,mat,np,bmat,np,singval,-1.,rank,work,lwork,info)
1203 1203
if (info /= 0) then 1204 1204 if (info /= 0) then
status=0 1205 1205 status=0
end if 1206 1206 end if
1207 1207
coeff = (/ (bmat(i,1),i=1,deg+1) /) 1208 1208 coeff = (/ (bmat(i,1),i=1,deg+1) /)
1209 1209
deallocate(work) 1210 1210 deallocate(work)
deallocate(mat,bmat,singval) 1211 1211 deallocate(mat,bmat,singval)
end subroutine 1212 1212 end subroutine
1213 1213
1214 1214
! 1215 1215 !
! Muller 1216 1216 ! Muller
! 1217 1217 !
! 1218 1218 !
! 1219 1219 !
! William Daniau 2007 1220 1220 ! William Daniau 2007
! 1221 1221 !
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f 1222 1222 ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f
! http://plato.asu.edu/ftp/other_software/muller.f 1223 1223 ! http://plato.asu.edu/ftp/other_software/muller.f
! 1224 1224 !
! it can be used as a replacement for imsl routine dzanly with minor changes 1225 1225 ! it can be used as a replacement for imsl routine dzanly with minor changes
! 1226 1226 !
!----------------------------------------------------------------------- 1227 1227 !-----------------------------------------------------------------------
! 1228 1228 !
! purpose - zeros of an analytic complex function 1229 1229 ! purpose - zeros of an analytic complex function
! using the muller method with deflation 1230 1230 ! using the muller method with deflation
! 1231 1231 !
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, 1232 1232 ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax,
! infer,ier) 1233 1233 ! infer,ier)
! 1234 1234 !
! arguments f - a complex function subprogram, f(z), written 1235 1235 ! arguments f - a complex function subprogram, f(z), written
! by the user specifying the equation whose 1236 1236 ! by the user specifying the equation whose
! roots are to be found. f must appear in 1237 1237 ! roots are to be found. f must appear in
! an external statement in the calling pro- 1238 1238 ! an external statement in the calling pro-
! gram. 1239 1239 ! gram.
! eps - 1st stopping criterion. let fp(z)=f(z)/p 1240 1240 ! eps - 1st stopping criterion. let fp(z)=f(z)/p
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) 1241 1241 ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1))
! and z(1),...,z(k-1) are previously found 1242 1242 ! and z(1),...,z(k-1) are previously found
! roots. if ((cdabs(f(z)).le.eps) .and. 1243 1243 ! roots. if ((cdabs(f(z)).le.eps) .and.
! (cdabs(fp(z)).le.eps)), then z is accepted 1244 1244 ! (cdabs(fp(z)).le.eps)), then z is accepted
! as a root. (input) 1245 1245 ! as a root. (input)
! eps1 - 2nd stopping criterion. a root is accepted 1246 1246 ! eps1 - 2nd stopping criterion. a root is accepted
! if two successive approximations to a given 1247 1247 ! if two successive approximations to a given
! root agree within eps1. (input) 1248 1248 ! root agree within eps1. (input)
! note. if either or both of the stopping 1249 1249 ! note. if either or both of the stopping
! criteria are fulfilled, the root is 1250 1250 ! criteria are fulfilled, the root is
! accepted. 1251 1251 ! accepted.
! kn - the number of known roots which must be stored 1252 1252 ! kn - the number of known roots which must be stored
! in x(1),...,x(kn), prior to entry to muller 1253 1253 ! in x(1),...,x(kn), prior to entry to muller
! nguess - the number of initial guesses provided. these 1254 1254 ! nguess - the number of initial guesses provided. these
! guesses must be stored in x(kn+1),..., 1255 1255 ! guesses must be stored in x(kn+1),...,
! x(kn+nguess). nguess must be set equal 1256 1256 ! x(kn+nguess). nguess must be set equal
! to zero if no guesses are provided. (input) 1257 1257 ! to zero if no guesses are provided. (input)
! n - the number of new roots to be found by 1258 1258 ! n - the number of new roots to be found by
! muller (input) 1259 1259 ! muller (input)
! x - a complex vector of length kn+n. x(1),..., 1260 1260 ! x - a complex vector of length kn+n. x(1),...,
! x(kn) on input must contain any known 1261 1261 ! x(kn) on input must contain any known
! roots. x(kn+1),..., x(kn+n) on input may, 1262 1262 ! roots. x(kn+1),..., x(kn+n) on input may,
! on user option, contain initial guesses for 1263 1263 ! on user option, contain initial guesses for
! the n new roots which are to be computed. 1264 1264 ! the n new roots which are to be computed.
! if the user does not provide an initial 1265 1265 ! if the user does not provide an initial
! guess, zero is used. 1266 1266 ! guess, zero is used.
! on output, x(kn+1),...,x(kn+n) contain the 1267 1267 ! on output, x(kn+1),...,x(kn+n) contain the
! approximate roots found by muller. 1268 1268 ! approximate roots found by muller.
! itmax - the maximum allowable number of iterations 1269 1269 ! itmax - the maximum allowable number of iterations
! per root (input) 1270 1270 ! per root (input)
! infer - an integer vector of length kn+n. on 1271 1271 ! infer - an integer vector of length kn+n. on
! output infer(j) contains the number of 1272 1272 ! output infer(j) contains the number of
! iterations used in finding the j-th root 1273 1273 ! iterations used in finding the j-th root
! when convergence was achieved. if 1274 1274 ! when convergence was achieved. if
! convergence was not obtained in itmax 1275 1275 ! convergence was not obtained in itmax
! iterations, infer(j) will be greater than 1276 1276 ! iterations, infer(j) will be greater than
! itmax (output). 1277 1277 ! itmax (output).
! ier - error parameter (output) 1278 1278 ! ier - error parameter (output)
! warning error 1279 1279 ! warning error
! ier = 33 indicates failure to converge with- 1280 1280 ! ier = 33 indicates failure to converge with-
! in itmax iterations for at least one of 1281 1281 ! in itmax iterations for at least one of
! the (n) new roots. 1282 1282 ! the (n) new roots.
! 1283 1283 !
! 1284 1284 !
! remarks muller always returns the last approximation for root j 1285 1285 ! remarks muller always returns the last approximation for root j
! in x(j). if the convergence criterion is satisfied, 1286 1286 ! in x(j). if the convergence criterion is satisfied,
! then infer(j) is less than or equal to itmax. if the 1287 1287 ! then infer(j) is less than or equal to itmax. if the
! convergence criterion is not satisified, then infer(j) 1288 1288 ! convergence criterion is not satisified, then infer(j)
! is set to either itmax+1 or itmax+k, with k greater 1289 1289 ! is set to either itmax+1 or itmax+k, with k greater
! than 1. infer(j) = itmax+1 indicates that muller did 1290 1290 ! than 1. infer(j) = itmax+1 indicates that muller did
! not obtain convergence in the allowed number of iter- 1291 1291 ! not obtain convergence in the allowed number of iter-
! ations. in this case, the user may wish to set itmax 1292 1292 ! ations. in this case, the user may wish to set itmax
! to a larger value. infer(j) = itmax+k means that con- 1293 1293 ! to a larger value. infer(j) = itmax+k means that con-
! vergence was obtained (on iteration k) for the defla- 1294 1294 ! vergence was obtained (on iteration k) for the defla-
! ted function 1295 1295 ! ted function
! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) 1296 1296 ! fp(z) = f(z)/((z-z(1)...(z-z(j-1)))
! 1297 1297 !
! but failed for f(z). in this case, better initial 1298 1298 ! but failed for f(z). in this case, better initial
! guesses might help or, it might be necessary to relax 1299 1299 ! guesses might help or, it might be necessary to relax
! the convergence criterion. 1300 1300 ! the convergence criterion.
! 1301 1301 !
!----------------------------------------------------------------------- 1302 1302 !-----------------------------------------------------------------------
! 1303 1303 !
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) 1304 1304 subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier)
implicit none 1305 1305 implicit none
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq 1306 1306 double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & 1307 1307 double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, &
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & 1308 1308 tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, &
zero,p1,one,four,p5 1309 1309 zero,p1,one,four,p5
1310 1310
double complex, external :: f 1311 1311 double complex, external :: f
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & 1312 1312 integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, &
knpng,jk,ick,nn,lm1,errcode 1313 1313 knpng,jk,ick,nn,lm1,errcode
double complex :: x(kn+n) 1314 1314 double complex :: x(kn+n)
integer :: infer(kn+n) 1315 1315 integer :: infer(kn+n)
1316 1316
1317 1317
data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & 1318 1318 data zero/(0.0,0.0)/,p1/(0.1,0.0)/, &
one/(1.0,0.0)/,four/(4.0,0.0)/, & 1319 1319 one/(1.0,0.0)/,four/(4.0,0.0)/, &
p5/(0.5,0.0)/, & 1320 1320 p5/(0.5,0.0)/, &
rzero/0.0/,rten/10.0/,rhun/100.0/, & 1321 1321 rzero/0.0/,rten/10.0/,rhun/100.0/, &
ax/0.1/,ickmax/3/,rp01/0.01/ 1322 1322 ax/0.1/,ickmax/3/,rp01/0.01/
1323 1323
ier = 0 1324 1324 ier = 0
if (n .lt. 1) then ! What the hell are doing here then ... 1325 1325 if (n .lt. 1) then ! What the hell are doing here then ...
return 1326 1326 return
end if 1327 1327 end if
!eps1 = rten **(-nsig) 1328 1328 !eps1 = rten **(-nsig)
eps1 = min(eps1,rp01) 1329 1329 eps1 = min(eps1,rp01)
1330 1330
knp1 = kn+1 1331 1331 knp1 = kn+1
knpn = kn+n 1332 1332 knpn = kn+n
knpng = kn+nguess 1333 1333 knpng = kn+nguess
do i=1,knpn 1334 1334 do i=1,knpn
infer(i) = 0 1335 1335 infer(i) = 0
if (i .gt. knpng) x(i) = zero 1336 1336 if (i .gt. knpng) x(i) = zero
end do 1337 1337 end do
l= knp1 1338 1338 l= knp1
1339 1339
ic=0 1340 1340 ic=0
rloop: do while (l<=knpn) ! Main loop over new roots 1341 1341 rloop: do while (l<=knpn) ! Main loop over new roots
jk = 0 1342 1342 jk = 0
ick = 0 1343 1343 ick = 0
xl = x(l) 1344 1344 xl = x(l)
icloop: do 1345 1345 icloop: do
ic = 0 1346 1346 ic = 0
h = ax 1347 1347 h = ax
h = p1*h 1348 1348 h = p1*h
if (cdabs(xl) .gt. ax) h = p1*xl 1349 1349 if (cdabs(xl) .gt. ax) h = p1*xl
! first three points are 1350 1350 ! first three points are
! xl+h, xl-h, xl 1351 1351 ! xl+h, xl-h, xl
rt = xl+h 1352 1352 rt = xl+h
call deflated_work(errcode) 1353 1353 call deflated_work(errcode)
if (errcode == 1) then 1354 1354 if (errcode == 1) then
exit icloop 1355 1355 exit icloop
end if 1356 1356 end if
1357 1357
z0 = fprt 1358 1358 z0 = fprt
y0 = frt 1359 1359 y0 = frt
x0 = rt 1360 1360 x0 = rt
rt = xl-h 1361 1361 rt = xl-h
call deflated_work(errcode) 1362 1362 call deflated_work(errcode)
if (errcode == 1) then 1363 1363 if (errcode == 1) then
exit icloop 1364 1364 exit icloop
end if 1365 1365 end if
1366 1366
z1 = fprt 1367 1367 z1 = fprt
y1 = frt 1368 1368 y1 = frt
h = xl-rt 1369 1369 h = xl-rt
d = h/(rt-x0) 1370 1370 d = h/(rt-x0)
rt = xl 1371 1371 rt = xl
1372 1372
call deflated_work(errcode) 1373 1373 call deflated_work(errcode)
if (errcode == 1) then 1374 1374 if (errcode == 1) then
exit icloop 1375 1375 exit icloop
end if 1376 1376 end if
1377 1377
1378 1378
z2 = fprt 1379 1379 z2 = fprt
y2 = frt 1380 1380 y2 = frt
! begin main algorithm 1381 1381 ! begin main algorithm
iloop: do 1382 1382 iloop: do
dd = one + d 1383 1383 dd = one + d
t1 = z0*d*d 1384 1384 t1 = z0*d*d
t2 = z1*dd*dd 1385 1385 t2 = z1*dd*dd
xx = z2*dd 1386 1386 xx = z2*dd
t3 = z2*d 1387 1387 t3 = z2*d
bi = t1-t2+xx+t3 1388 1388 bi = t1-t2+xx+t3
den = bi*bi-four*(xx*t1-t3*(t2-xx)) 1389 1389 den = bi*bi-four*(xx*t1-t3*(t2-xx))
! use denominator of maximum amplitude 1390 1390 ! use denominator of maximum amplitude
t1 = cdsqrt(den) 1391 1391 t1 = cdsqrt(den)
qz = rhun*max(cdabs(bi),cdabs(t1)) 1392 1392 qz = rhun*max(cdabs(bi),cdabs(t1))
t2 = bi + t1 1393 1393 t2 = bi + t1
tpq = cdabs(t2)+qz 1394 1394 tpq = cdabs(t2)+qz
if (tpq .eq. qz) t2 = zero 1395 1395 if (tpq .eq. qz) t2 = zero
t3 = bi - t1 1396 1396 t3 = bi - t1
tpq = cdabs(t3) + qz 1397 1397 tpq = cdabs(t3) + qz
if (tpq .eq. qz) t3 = zero 1398 1398 if (tpq .eq. qz) t3 = zero
den = t2 1399 1399 den = t2
qz = cdabs(t3)-cdabs(t2) 1400 1400 qz = cdabs(t3)-cdabs(t2)
if (qz .gt. rzero) den = t3 1401 1401 if (qz .gt. rzero) den = t3
! test for zero denominator 1402 1402 ! test for zero denominator
if (cdabs(den) .eq. rzero) then 1403 1403 if (cdabs(den) .eq. rzero) then
call trans_rt() 1404 1404 call trans_rt()
call deflated_work(errcode) 1405 1405 call deflated_work(errcode)
if (errcode == 1) then 1406 1406 if (errcode == 1) then
exit icloop 1407 1407 exit icloop
end if 1408 1408 end if
z2 = fprt 1409 1409 z2 = fprt
y2 = frt 1410 1410 y2 = frt
cycle iloop 1411 1411 cycle iloop
end if 1412 1412 end if
1413 1413
1414 1414
d = -xx/den 1415 1415 d = -xx/den
d = d+d 1416 1416 d = d+d
h = d*h 1417 1417 h = d*h
rt = rt + h 1418 1418 rt = rt + h
! check convergence of the first kind 1419 1419 ! check convergence of the first kind
if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then 1420 1420 if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then
if (ic .ne. 0) then 1421 1421 if (ic .ne. 0) then
exit icloop 1422 1422 exit icloop
end if 1423 1423 end if
ic = 1 1424 1424 ic = 1
z0 = y1 1425 1425 z0 = y1
z1 = y2 1426 1426 z1 = y2
z2 = f(rt) 1427 1427 z2 = f(rt)
xl = rt 1428 1428 xl = rt
ick = ick+1 1429 1429 ick = ick+1
if (ick .le. ickmax) then 1430 1430 if (ick .le. ickmax) then
cycle iloop 1431 1431 cycle iloop
end if 1432 1432 end if
! warning error, itmax = maximum 1433 1433 ! warning error, itmax = maximum
jk = itmax + jk 1434 1434 jk = itmax + jk
ier = 33 1435 1435 ier = 33
end if 1436 1436 end if
if (ic .ne. 0) then 1437 1437 if (ic .ne. 0) then
cycle icloop 1438 1438 cycle icloop
end if 1439 1439 end if
call deflated_work(errcode) 1440 1440 call deflated_work(errcode)
if (errcode == 1) then 1441 1441 if (errcode == 1) then
exit icloop 1442 1442 exit icloop
end if 1443 1443 end if
1444 1444
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) 1445 1445 do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero)
! take remedial action to induce 1446 1446 ! take remedial action to induce
! convergence 1447 1447 ! convergence
d = d*p5 1448 1448 d = d*p5
h = h*p5 1449 1449 h = h*p5
rt = rt-h 1450 1450 rt = rt-h
call deflated_work(errcode) 1451 1451 call deflated_work(errcode)
if (errcode == 1) then 1452 1452 if (errcode == 1) then
exit icloop 1453 1453 exit icloop
end if 1454 1454 end if
end do 1455 1455 end do
z0 = z1 1456 1456 z0 = z1
z1 = z2 1457 1457 z1 = z2
z2 = fprt 1458 1458 z2 = fprt
y0 = y1 1459 1459 y0 = y1
y1 = y2 1460 1460 y1 = y2
y2 = frt 1461 1461 y2 = frt
end do iloop 1462 1462 end do iloop
end do icloop 1463 1463 end do icloop
x(l) = rt 1464 1464 x(l) = rt
infer(l) = jk 1465 1465 infer(l) = jk
l = l+1 1466 1466 l = l+1
end do rloop 1467 1467 end do rloop
1468 1468
contains 1469 1469 contains
subroutine trans_rt() 1470 1470 subroutine trans_rt()
tem = rten*eps1 1471 1471 tem = rten*eps1
if (cdabs(rt) .gt. ax) tem = tem*rt 1472 1472 if (cdabs(rt) .gt. ax) tem = tem*rt
rt = rt+tem 1473 1473 rt = rt+tem
d = (h+tem)*d/h 1474 1474 d = (h+tem)*d/h
h = h+tem 1475 1475 h = h+tem
end subroutine trans_rt 1476 1476 end subroutine trans_rt
1477 1477
subroutine deflated_work(errcode) 1478 1478 subroutine deflated_work(errcode)
! errcode=0 => no errors 1479 1479 ! errcode=0 => no errors
! errcode=1 => jk>itmax or convergence of second kind achieved 1480 1480 ! errcode=1 => jk>itmax or convergence of second kind achieved
integer :: errcode,flag 1481 1481 integer :: errcode,flag
1482 1482
flag=1 1483 1483 flag=1
loop1: do while(flag==1) 1484 1484 loop1: do while(flag==1)
errcode=0 1485 1485 errcode=0
jk = jk+1 1486 1486 jk = jk+1
if (jk .gt. itmax) then 1487 1487 if (jk .gt. itmax) then
ier=33 1488 1488 ier=33
errcode=1 1489 1489 errcode=1
return 1490 1490 return
end if 1491 1491 end if
frt = f(rt) 1492 1492 frt = f(rt)
fprt = frt 1493 1493 fprt = frt
if (l /= 1) then 1494 1494 if (l /= 1) then
lm1 = l-1 1495 1495 lm1 = l-1
do i=1,lm1 1496 1496 do i=1,lm1
tem = rt - x(i) 1497 1497 tem = rt - x(i)
if (cdabs(tem) .eq. rzero) then 1498 1498 if (cdabs(tem) .eq. rzero) then
!if (ic .ne. 0) go to 15 !! ?? possible? 1499 1499 !if (ic .ne. 0) go to 15 !! ?? possible?
call trans_rt() 1500 1500 call trans_rt()
cycle loop1 1501 1501 cycle loop1
end if 1502 1502 end if
fprt = fprt/tem 1503 1503 fprt = fprt/tem
end do 1504 1504 end do
end if 1505 1505 end if
flag=0 1506 1506 flag=0
end do loop1 1507 1507 end do loop1
1508 1508
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then 1509 1509 if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then
errcode=1 1510 1510 errcode=1
return 1511 1511 return
end if 1512 1512 end if
1513 1513
end subroutine deflated_work 1514 1514 end subroutine deflated_work
1515 1515
end subroutine 1516 1516 end subroutine
1517 1517
1518 1518
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1519 1519 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1520 1520 !
! Integration 1521 1521 ! Integration
! 1522 1522 !
! Only double precision coded atm 1523 1523 ! Only double precision coded atm
! 1524 1524 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1525 1525 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1526 1526
1527 1527
subroutine fvn_d_gauss_legendre(n,qx,qw) 1528 1528 subroutine fvn_d_gauss_legendre(n,qx,qw)
! 1529 1529 !
! This routine compute the n Gauss Legendre abscissas and weights 1530 1530 ! This routine compute the n Gauss Legendre abscissas and weights
! Adapted from Numerical Recipes routine gauleg 1531 1531 ! Adapted from Numerical Recipes routine gauleg
! 1532 1532 !
! n (in) : number of points 1533 1533 ! n (in) : number of points
! qx(out) : abscissas 1534 1534 ! qx(out) : abscissas
! qw(out) : weights 1535 1535 ! qw(out) : weights
! 1536 1536 !
implicit none 1537 1537 implicit none
double precision,parameter :: pi=3.141592653589793d0 1538 1538 double precision,parameter :: pi=3.141592653589793d0
integer, intent(in) :: n 1539 1539 integer, intent(in) :: n
double precision, intent(out) :: qx(n),qw(n) 1540 1540 double precision, intent(out) :: qx(n),qw(n)
1541 1541
integer :: m,i,j 1542 1542 integer :: m,i,j
double precision :: z,z1,p1,p2,p3,pp 1543 1543 double precision :: z,z1,p1,p2,p3,pp
m=(n+1)/2 1544 1544 m=(n+1)/2
do i=1,m 1545 1545 do i=1,m
z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) 1546 1546 z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0))
iloop: do 1547 1547 iloop: do
p1=1.d0 1548 1548 p1=1.d0
p2=0.d0 1549 1549 p2=0.d0
do j=1,n 1550 1550 do j=1,n
p3=p2 1551 1551 p3=p2
p2=p1 1552 1552 p2=p1
p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) 1553 1553 p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j)
end do 1554 1554 end do
pp=dble(n)*(z*p1-p2)/(z*z-1.d0) 1555 1555 pp=dble(n)*(z*p1-p2)/(z*z-1.d0)
z1=z 1556 1556 z1=z
z=z1-p1/pp 1557 1557 z=z1-p1/pp
if (dabs(z-z1)<=epsilon(z)) then 1558 1558 if (dabs(z-z1)<=epsilon(z)) then
exit iloop 1559 1559 exit iloop
end if 1560 1560 end if
end do iloop 1561 1561 end do iloop
qx(i)=-z 1562 1562 qx(i)=-z
qx(n+1-i)=z 1563 1563 qx(n+1-i)=z
qw(i)=2.d0/((1.d0-z*z)*pp*pp) 1564 1564 qw(i)=2.d0/((1.d0-z*z)*pp*pp)
qw(n+1-i)=qw(i) 1565 1565 qw(n+1-i)=qw(i)
end do 1566 1566 end do
end subroutine 1567 1567 end subroutine
1568 1568
1569 1569
1570 1570
subroutine fvn_d_gl_integ(f,a,b,n,res) 1571 1571 subroutine fvn_d_gl_integ(f,a,b,n,res)
! 1572 1572 !
! This is a simple non adaptative integration routine 1573 1573 ! This is a simple non adaptative integration routine
! using n gauss legendre abscissas and weights 1574 1574 ! using n gauss legendre abscissas and weights
! 1575 1575 !
! f(in) : the function to integrate 1576 1576 ! f(in) : the function to integrate
! a(in) : lower bound 1577 1577 ! a(in) : lower bound
! b(in) : higher bound 1578 1578 ! b(in) : higher bound
! n(in) : number of gauss legendre pairs 1579 1579 ! n(in) : number of gauss legendre pairs
! res(out): the evaluation of the integral 1580 1580 ! res(out): the evaluation of the integral
! 1581 1581 !
double precision,external :: f 1582 1582 double precision,external :: f
double precision, intent(in) :: a,b 1583 1583 double precision, intent(in) :: a,b
integer, intent(in):: n 1584 1584 integer, intent(in):: n
double precision, intent(out) :: res 1585 1585 double precision, intent(out) :: res
1586 1586
double precision, allocatable :: qx(:),qw(:) 1587 1587 double precision, allocatable :: qx(:),qw(:)
double precision :: xm,xr 1588 1588 double precision :: xm,xr
integer :: i 1589 1589 integer :: i
1590 1590
! First compute n gauss legendre abs and weight 1591 1591 ! First compute n gauss legendre abs and weight
allocate(qx(n)) 1592 1592 allocate(qx(n))
allocate(qw(n)) 1593 1593 allocate(qw(n))
call fvn_d_gauss_legendre(n,qx,qw) 1594 1594 call fvn_d_gauss_legendre(n,qx,qw)
1595 1595
xm=0.5d0*(b+a) 1596 1596 xm=0.5d0*(b+a)
xr=0.5d0*(b-a) 1597 1597 xr=0.5d0*(b-a)
1598 1598
res=0.d0 1599 1599 res=0.d0
1600 1600
do i=1,n 1601 1601 do i=1,n
res=res+qw(i)*f(xm+xr*qx(i)) 1602 1602 res=res+qw(i)*f(xm+xr*qx(i))
end do 1603 1603 end do
1604 1604
res=xr*res 1605 1605 res=xr*res
1606 1606
deallocate(qw) 1607 1607 deallocate(qw)
deallocate(qx) 1608 1608 deallocate(qx)
1609 1609
end subroutine 1610 1610 end subroutine
1611 1611
!!!!!!!!!!!!!!!!!!!!!!!! 1612 1612 !!!!!!!!!!!!!!!!!!!!!!!!
! 1613 1613 !
! Simple and double adaptative Gauss Kronrod integration based on 1614 1614 ! Simple and double adaptative Gauss Kronrod integration based on
! a modified version of quadpack ( http://www.netlib.org/quadpack 1615 1615 ! a modified version of quadpack ( http://www.netlib.org/quadpack
! 1616 1616 !
! Common parameters : 1617 1617 ! Common parameters :
! 1618 1618 !
! key (in) 1619 1619 ! key (in)
! epsabs 1620 1620 ! epsabs
! epsrel 1621 1621 ! epsrel
! 1622 1622 !
! 1623 1623 !
!!!!!!!!!!!!!!!!!!!!!!!! 1624 1624 !!!!!!!!!!!!!!!!!!!!!!!!
1625 1625
subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) 1626 1626 subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
! 1627 1627 !
! Evaluate the integral of function f(x) between a and b 1628 1628 ! Evaluate the integral of function f(x) between a and b
! 1629 1629 !
! f(in) : the function 1630 1630 ! f(in) : the function
! a(in) : lower bound 1631 1631 ! a(in) : lower bound
! b(in) : higher bound 1632 1632 ! b(in) : higher bound
! epsabs(in) : desired absolute error 1633 1633 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1634 1634 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1635 1635 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1636 1636 ! 1: 7 - 15 points
! 2: 10 - 21 points 1637 1637 ! 2: 10 - 21 points
! 3: 15 - 31 points 1638 1638 ! 3: 15 - 31 points
! 4: 20 - 41 points 1639 1639 ! 4: 20 - 41 points
! 5: 25 - 51 points 1640 1640 ! 5: 25 - 51 points
! 6: 30 - 61 points 1641 1641 ! 6: 30 - 61 points
! 1642 1642 !
! limit(in) : maximum number of subintervals in the partition of the 1643 1643 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1644 1644 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1645 1645 ! behaviour as the imsl routine dqdag
! 1646 1646 !
! res(out) : estimated integral value 1647 1647 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1648 1648 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1649 1649 ! ier(out) : error flag from quadpack routines
! 0 : no error 1650 1650 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1651 1651 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1652 1652 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1653 1653 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1654 1654 ! limit (and taking the according dimension
! adjustments into account). however, if 1655 1655 ! adjustments into account). however, if
! this yield no improvement it is advised 1656 1656 ! this yield no improvement it is advised
! to analyze the integrand in order to 1657 1657 ! to analyze the integrand in order to
! determine the integration difficulaties. 1658 1658 ! determine the integration difficulaties.
! if the position of a local difficulty can 1659 1659 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1660 1660 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1661 1661 ! discontinuity within the interval) one
! will probably gain from splitting up the 1662 1662 ! will probably gain from splitting up the
! interval at this point and calling the 1663 1663 ! interval at this point and calling the
! integrator on the subranges. if possible, 1664 1664 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1665 1665 ! an appropriate special-purpose integrator
! should be used which is designed for 1666 1666 ! should be used which is designed for
! handling the type of difficulty involved. 1667 1667 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1668 1668 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1669 1669 ! detected, which prevents the requested
! tolerance from being achieved. 1670 1670 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1671 1671 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1672 1672 ! at some points of the integration
! interval. 1673 1673 ! interval.
! 6 : the input is invalid, because 1674 1674 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1675 1675 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1676 1676 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1677 1677 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1678 1678 ! result, abserr, neval, last are set
! to zero. 1679 1679 ! to zero.
! except when lenw is invalid, iwork(1), 1680 1680 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1681 1681 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1682 1682 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1683 1683 ! work(limit+1) to b.
1684 1684
implicit none 1685 1685 implicit none
double precision, external :: f 1686 1686 double precision, external :: f
double precision, intent(in) :: a,b,epsabs,epsrel 1687 1687 double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key 1688 1688 integer, intent(in) :: key
integer, intent(in) :: limit 1689 1689 integer, intent(in) :: limit
double precision, intent(out) :: res,abserr 1690 1690 double precision, intent(out) :: res,abserr
integer, intent(out) :: ier 1691 1691 integer, intent(out) :: ier
1692 1692
double precision, allocatable :: work(:) 1693 1693 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1694 1694 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1695 1695 integer :: lenw,neval,last
1696 1696
! imsl value for limit is 500 1697 1697 ! imsl value for limit is 500
lenw=limit*4 1698 1698 lenw=limit*4
1699 1699
allocate(iwork(limit)) 1700 1700 allocate(iwork(limit))
allocate(work(lenw)) 1701 1701 allocate(work(lenw))
1702 1702
call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1703 1703 call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1704 1704
deallocate(work) 1705 1705 deallocate(work)
deallocate(iwork) 1706 1706 deallocate(iwork)
1707 1707
end subroutine 1708 1708 end subroutine
1709 1709
1710 1710
1711 1711
subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) 1712 1712 subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
! 1713 1713 !
! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) 1714 1714 ! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x)
! 1715 1715 !
! f(in) : the function 1716 1716 ! f(in) : the function
! a(in) : lower bound 1717 1717 ! a(in) : lower bound
! b(in) : higher bound 1718 1718 ! b(in) : higher bound
! g(in) : external function describing lower bound for y 1719 1719 ! g(in) : external function describing lower bound for y
! h(in) : external function describing higher bound for y 1720 1720 ! h(in) : external function describing higher bound for y
! epsabs(in) : desired absolute error 1721 1721 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1722 1722 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1723 1723 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1724 1724 ! 1: 7 - 15 points
! 2: 10 - 21 points 1725 1725 ! 2: 10 - 21 points
! 3: 15 - 31 points 1726 1726 ! 3: 15 - 31 points
! 4: 20 - 41 points 1727 1727 ! 4: 20 - 41 points
! 5: 25 - 51 points 1728 1728 ! 5: 25 - 51 points
! 6: 30 - 61 points 1729 1729 ! 6: 30 - 61 points
! 1730 1730 !
! limit(in) : maximum number of subintervals in the partition of the 1731 1731 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1732 1732 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1733 1733 ! behaviour as the imsl routine dqdag
! 1734 1734 !
! res(out) : estimated integral value 1735 1735 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1736 1736 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1737 1737 ! ier(out) : error flag from quadpack routines
! 0 : no error 1738 1738 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1739 1739 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1740 1740 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1741 1741 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1742 1742 ! limit (and taking the according dimension
! adjustments into account). however, if 1743 1743 ! adjustments into account). however, if
! this yield no improvement it is advised 1744 1744 ! this yield no improvement it is advised
! to analyze the integrand in order to 1745 1745 ! to analyze the integrand in order to
! determine the integration difficulaties. 1746 1746 ! determine the integration difficulaties.
! if the position of a local difficulty can 1747 1747 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1748 1748 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1749 1749 ! discontinuity within the interval) one
! will probably gain from splitting up the 1750 1750 ! will probably gain from splitting up the
! interval at this point and calling the 1751 1751 ! interval at this point and calling the
! integrator on the subranges. if possible, 1752 1752 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1753 1753 ! an appropriate special-purpose integrator
! should be used which is designed for 1754 1754 ! should be used which is designed for
! handling the type of difficulty involved. 1755 1755 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1756 1756 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1757 1757 ! detected, which prevents the requested
! tolerance from being achieved. 1758 1758 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1759 1759 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1760 1760 ! at some points of the integration
! interval. 1761 1761 ! interval.
! 6 : the input is invalid, because 1762 1762 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1763 1763 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1764 1764 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1765 1765 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1766 1766 ! result, abserr, neval, last are set
! to zero. 1767 1767 ! to zero.
! except when lenw is invalid, iwork(1), 1768 1768 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1769 1769 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1770 1770 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1771 1771 ! work(limit+1) to b.
1772 1772
implicit none 1773 1773 implicit none
double precision, external:: f,g,h 1774 1774 double precision, external:: f,g,h
double precision, intent(in) :: a,b,epsabs,epsrel 1775 1775 double precision, intent(in) :: a,b,epsabs,epsrel
integer, intent(in) :: key,limit 1776 1776 integer, intent(in) :: key,limit
integer, intent(out) :: ier 1777 1777 integer, intent(out) :: ier
double precision, intent(out) :: res,abserr 1778 1778 double precision, intent(out) :: res,abserr
1779 1779
1780 1780
double precision, allocatable :: work(:) 1781 1781 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1782 1782 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1783 1783 integer :: lenw,neval,last
1784 1784
! imsl value for limit is 500 1785 1785 ! imsl value for limit is 500
lenw=limit*4 1786 1786 lenw=limit*4
allocate(work(lenw)) 1787 1787 allocate(work(lenw))
allocate(iwork(limit)) 1788 1788 allocate(iwork(limit))
1789 1789
call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1790 1790 call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1791 1791
deallocate(iwork) 1792 1792 deallocate(iwork)
deallocate(work) 1793 1793 deallocate(work)
end subroutine 1794 1794 end subroutine
1795 1795
1796 1796
1797 1797
subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) 1798 1798 subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
! 1799 1799 !
! Evaluate the single integral of function f(x,y) for y between a and b with a 1800 1800 ! Evaluate the single integral of function f(x,y) for y between a and b with a
! given x value 1801 1801 ! given x value
! 1802 1802 !
! This function is used for the evaluation of the double integral fvn_d_integ_2_gk 1803 1803 ! This function is used for the evaluation of the double integral fvn_d_integ_2_gk
! 1804 1804 !
! f(in) : the function 1805 1805 ! f(in) : the function
! x(in) : x 1806 1806 ! x(in) : x
! a(in) : lower bound 1807 1807 ! a(in) : lower bound
! b(in) : higher bound 1808 1808 ! b(in) : higher bound
! epsabs(in) : desired absolute error 1809 1809 ! epsabs(in) : desired absolute error
! epsrel(in) : desired relative error 1810 1810 ! epsrel(in) : desired relative error
! key(in) : gauss kronrod rule 1811 1811 ! key(in) : gauss kronrod rule
! 1: 7 - 15 points 1812 1812 ! 1: 7 - 15 points
! 2: 10 - 21 points 1813 1813 ! 2: 10 - 21 points
! 3: 15 - 31 points 1814 1814 ! 3: 15 - 31 points
! 4: 20 - 41 points 1815 1815 ! 4: 20 - 41 points
! 5: 25 - 51 points 1816 1816 ! 5: 25 - 51 points
! 6: 30 - 61 points 1817 1817 ! 6: 30 - 61 points
! 1818 1818 !
! limit(in) : maximum number of subintervals in the partition of the 1819 1819 ! limit(in) : maximum number of subintervals in the partition of the
! given integration interval (a,b). A value of 500 will give the same 1820 1820 ! given integration interval (a,b). A value of 500 will give the same
! behaviour as the imsl routine dqdag 1821 1821 ! behaviour as the imsl routine dqdag
! 1822 1822 !
! res(out) : estimated integral value 1823 1823 ! res(out) : estimated integral value
! abserr(out) : estimated absolute error 1824 1824 ! abserr(out) : estimated absolute error
! ier(out) : error flag from quadpack routines 1825 1825 ! ier(out) : error flag from quadpack routines
! 0 : no error 1826 1826 ! 0 : no error
! 1 : maximum number of subdivisions allowed 1827 1827 ! 1 : maximum number of subdivisions allowed
! has been achieved. one can allow more 1828 1828 ! has been achieved. one can allow more
! subdivisions by increasing the value of 1829 1829 ! subdivisions by increasing the value of
! limit (and taking the according dimension 1830 1830 ! limit (and taking the according dimension
! adjustments into account). however, if 1831 1831 ! adjustments into account). however, if
! this yield no improvement it is advised 1832 1832 ! this yield no improvement it is advised
! to analyze the integrand in order to 1833 1833 ! to analyze the integrand in order to
! determine the integration difficulaties. 1834 1834 ! determine the integration difficulaties.
! if the position of a local difficulty can 1835 1835 ! if the position of a local difficulty can
! be determined (i.e.singularity, 1836 1836 ! be determined (i.e.singularity,
! discontinuity within the interval) one 1837 1837 ! discontinuity within the interval) one
! will probably gain from splitting up the 1838 1838 ! will probably gain from splitting up the
! interval at this point and calling the 1839 1839 ! interval at this point and calling the
! integrator on the subranges. if possible, 1840 1840 ! integrator on the subranges. if possible,
! an appropriate special-purpose integrator 1841 1841 ! an appropriate special-purpose integrator
! should be used which is designed for 1842 1842 ! should be used which is designed for
! handling the type of difficulty involved. 1843 1843 ! handling the type of difficulty involved.
! 2 : the occurrence of roundoff error is 1844 1844 ! 2 : the occurrence of roundoff error is
! detected, which prevents the requested 1845 1845 ! detected, which prevents the requested
! tolerance from being achieved. 1846 1846 ! tolerance from being achieved.
! 3 : extremely bad integrand behaviour occurs 1847 1847 ! 3 : extremely bad integrand behaviour occurs
! at some points of the integration 1848 1848 ! at some points of the integration
! interval. 1849 1849 ! interval.
! 6 : the input is invalid, because 1850 1850 ! 6 : the input is invalid, because
! (epsabs.le.0 and 1851 1851 ! (epsabs.le.0 and
! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) 1852 1852 ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
! or limit.lt.1 or lenw.lt.limit*4. 1853 1853 ! or limit.lt.1 or lenw.lt.limit*4.
! result, abserr, neval, last are set 1854 1854 ! result, abserr, neval, last are set
! to zero. 1855 1855 ! to zero.
! except when lenw is invalid, iwork(1), 1856 1856 ! except when lenw is invalid, iwork(1),
! work(limit*2+1) and work(limit*3+1) are 1857 1857 ! work(limit*2+1) and work(limit*3+1) are
! set to zero, work(1) is set to a and 1858 1858 ! set to zero, work(1) is set to a and
! work(limit+1) to b. 1859 1859 ! work(limit+1) to b.
1860 1860
implicit none 1861 1861 implicit none
double precision, external:: f 1862 1862 double precision, external:: f
double precision, intent(in) :: x,a,b,epsabs,epsrel 1863 1863 double precision, intent(in) :: x,a,b,epsabs,epsrel
integer, intent(in) :: key,limit 1864 1864 integer, intent(in) :: key,limit
integer, intent(out) :: ier 1865 1865 integer, intent(out) :: ier
double precision, intent(out) :: res,abserr 1866 1866 double precision, intent(out) :: res,abserr
1867 1867
1868 1868
double precision, allocatable :: work(:) 1869 1869 double precision, allocatable :: work(:)
integer, allocatable :: iwork(:) 1870 1870 integer, allocatable :: iwork(:)
integer :: lenw,neval,last 1871 1871 integer :: lenw,neval,last
1872 1872
! imsl value for limit is 500 1873 1873 ! imsl value for limit is 500
lenw=limit*4 1874 1874 lenw=limit*4
allocate(work(lenw)) 1875 1875 allocate(work(lenw))
allocate(iwork(limit)) 1876 1876 allocate(iwork(limit))
1877 1877
call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) 1878 1878 call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work)
1879 1879
deallocate(iwork) 1880 1880 deallocate(iwork)
deallocate(work) 1881 1881 deallocate(work)
end subroutine 1882 1882 end subroutine
1883 1883
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1884 1884 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Include the modified quadpack files 1885 1885 ! Include the modified quadpack files
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1886 1886 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
include "fvn_quadpack/dqag_2d_inner.f" 1887 1887 include "fvn_quadpack/dqag_2d_inner.f"
include "fvn_quadpack/dqk15_2d_inner.f" 1888 1888 include "fvn_quadpack/dqk15_2d_inner.f"
include "fvn_quadpack/dqk31_2d_outer.f" 1889 1889 include "fvn_quadpack/dqk31_2d_outer.f"
include "fvn_quadpack/d1mach.f" 1890 1890 include "fvn_quadpack/d1mach.f"
include "fvn_quadpack/dqk31_2d_inner.f" 1891 1891 include "fvn_quadpack/dqk31_2d_inner.f"
include "fvn_quadpack/dqage.f" 1892 1892 include "fvn_quadpack/dqage.f"
include "fvn_quadpack/dqk15.f" 1893 1893 include "fvn_quadpack/dqk15.f"
include "fvn_quadpack/dqk21.f" 1894 1894 include "fvn_quadpack/dqk21.f"
include "fvn_quadpack/dqk31.f" 1895 1895 include "fvn_quadpack/dqk31.f"
include "fvn_quadpack/dqk41.f" 1896 1896 include "fvn_quadpack/dqk41.f"
include "fvn_quadpack/dqk51.f" 1897 1897 include "fvn_quadpack/dqk51.f"
include "fvn_quadpack/dqk61.f" 1898 1898 include "fvn_quadpack/dqk61.f"
include "fvn_quadpack/dqk41_2d_outer.f" 1899 1899 include "fvn_quadpack/dqk41_2d_outer.f"
include "fvn_quadpack/dqk41_2d_inner.f" 1900 1900 include "fvn_quadpack/dqk41_2d_inner.f"
include "fvn_quadpack/dqag_2d_outer.f" 1901 1901 include "fvn_quadpack/dqag_2d_outer.f"
include "fvn_quadpack/dqpsrt.f" 1902 1902 include "fvn_quadpack/dqpsrt.f"
include "fvn_quadpack/dqag.f" 1903 1903 include "fvn_quadpack/dqag.f"
include "fvn_quadpack/dqage_2d_outer.f" 1904 1904 include "fvn_quadpack/dqage_2d_outer.f"
include "fvn_quadpack/dqage_2d_inner.f" 1905 1905 include "fvn_quadpack/dqage_2d_inner.f"
include "fvn_quadpack/dqk51_2d_outer.f" 1906 1906 include "fvn_quadpack/dqk51_2d_outer.f"
include "fvn_quadpack/dqk51_2d_inner.f" 1907 1907 include "fvn_quadpack/dqk51_2d_inner.f"
include "fvn_quadpack/dqk61_2d_outer.f" 1908 1908 include "fvn_quadpack/dqk61_2d_outer.f"
include "fvn_quadpack/dqk21_2d_outer.f" 1909 1909 include "fvn_quadpack/dqk21_2d_outer.f"
include "fvn_quadpack/dqk61_2d_inner.f" 1910 1910 include "fvn_quadpack/dqk61_2d_inner.f"
include "fvn_quadpack/dqk21_2d_inner.f" 1911 1911 include "fvn_quadpack/dqk21_2d_inner.f"
include "fvn_quadpack/dqk15_2d_outer.f" 1912 1912 include "fvn_quadpack/dqk15_2d_outer.f"
1913 1913
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1914 1914 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 1915 1915 !
! Trigonometric functions 1916 1916 ! Trigonometric functions
! 1917 1917 !
! fvn_z_acos, fvn_z_asin : complex arc cosine and sine 1918 1918 ! fvn_z_acos, fvn_z_asin : complex arc cosine and sine
! fvn_d_acosh : arc cosinus hyperbolic 1919 1919 ! fvn_d_acosh : arc cosinus hyperbolic
! fvn_d_asinh : arc sinus hyperbolic 1920 1920 ! fvn_d_asinh : arc sinus hyperbolic
! 1921 1921 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1922 1922 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
function fvn_z_acos(z) 1923 1923 function fvn_z_acos(z)
! double complex arccos function adapted from 1924 1924 ! double complex arccos function adapted from
! the c gsl library 1925 1925 ! the c gsl library
! http://www.gnu.org/software/gsl/ 1926 1926 ! http://www.gnu.org/software/gsl/
implicit none 1927 1927 implicit none
complex(kind=8) :: fvn_z_acos 1928 1928 complex(kind=8) :: fvn_z_acos
complex(kind=8) :: z 1929 1929 complex(kind=8) :: z
real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1 1930 1930 real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1
real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8 1931 1931 real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8
complex(kind=8),parameter :: i=(0._8,1._8) 1932 1932 complex(kind=8),parameter :: i=(0._8,1._8)
real(kind=8) :: r_res,i_res 1933 1933 real(kind=8) :: r_res,i_res
1934 1934
rz=dreal(z) 1935 1935 rz=dreal(z)
iz=dimag(z) 1936 1936 iz=dimag(z)
if ( iz == 0._8 ) then 1937 1937 if ( iz == 0._8 ) then
fvn_z_acos=fvn_z_acos_real(rz) 1938 1938 fvn_z_acos=fvn_z_acos_real(rz)
return 1939 1939 return
end if 1940 1940 end if
1941 1941
x=dabs(rz) 1942 1942 x=dabs(rz)
y=dabs(iz) 1943 1943 y=dabs(iz)
r=fvn_d_hypot(x+1.,y) 1944 1944 r=fvn_d_hypot(x+1.,y)
s=fvn_d_hypot(x-1.,y) 1945 1945 s=fvn_d_hypot(x-1.,y)
a=0.5*(r + s) 1946 1946 a=0.5*(r + s)
b=x/a 1947 1947 b=x/a
y2=y*y 1948 1948 y2=y*y
1949 1949
if (b <= b_crossover) then 1950 1950 if (b <= b_crossover) then
r_res=dacos(b) 1951 1951 r_res=dacos(b)
else 1952 1952 else
if (x <= 1.) then 1953 1953 if (x <= 1.) then
d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x))) 1954 1954 d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x)))
r_res=datan(dsqrt(d)/x) 1955 1955 r_res=datan(dsqrt(d)/x)
else 1956 1956 else
apx=a+x 1957 1957 apx=a+x
d=0.5*(apx/(r+x+1)+apx/(s + (x - 1))) 1958 1958 d=0.5*(apx/(r+x+1)+apx/(s + (x - 1)))
r_res=datan((y*dsqrt(d))/x); 1959 1959 r_res=datan((y*dsqrt(d))/x);
end if 1960 1960 end if
end if 1961 1961 end if
1962 1962
if (a <= a_crossover) then 1963 1963 if (a <= a_crossover) then
if (x < 1.) then 1964 1964 if (x < 1.) then
am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x))) 1965 1965 am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x)))
else 1966 1966 else
am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1))) 1967 1967 am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1)))
end if 1968 1968 end if
i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1)))); 1969 1969 i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1))));
else 1970 1970 else
i_res = dlog (a + dsqrt (a*a - 1.)); 1971 1971 i_res = dlog (a + dsqrt (a*a - 1.));
end if 1972 1972 end if
if (rz <0.) then 1973 1973 if (rz <0.) then
r_res=fvn_pi-r_res 1974 1974 r_res=fvn_pi-r_res
end if 1975 1975 end if
i_res=-sign(1._8,iz)*i_res 1976 1976 i_res=-sign(1._8,iz)*i_res
fvn_z_acos=dcmplx(r_res)+fvn_i*dcmplx(i_res) 1977 1977 fvn_z_acos=dcmplx(r_res)+fvn_i*dcmplx(i_res)
1978 1978
end function fvn_z_acos 1979 1979 end function fvn_z_acos
1980 1980
function fvn_z_acos_real(r) 1981 1981 function fvn_z_acos_real(r)
! return the double complex arc cosinus for a 1982 1982 ! return the double complex arc cosinus for a
! double precision argument 1983 1983 ! double precision argument
implicit none 1984 1984 implicit none
real(kind=8) :: r 1985 1985 real(kind=8) :: r
complex(kind=8) :: fvn_z_acos_real 1986 1986 complex(kind=8) :: fvn_z_acos_real
1987 1987
if (dabs(r)<=1._8) then 1988 1988 if (dabs(r)<=1._8) then
fvn_z_acos_real=dcmplx(dacos(r)) 1989 1989 fvn_z_acos_real=dcmplx(dacos(r))
return 1990 1990 return
end if 1991 1991 end if
if (r < 0._8) then 1992 1992 if (r < 0._8) then
fvn_z_acos_real=dcmplx(fvn_pi)-fvn_i*dcmplx(fvn_d_acosh(-r)) 1993 1993 fvn_z_acos_real=dcmplx(fvn_pi)-fvn_i*dcmplx(fvn_d_acosh(-r))
else 1994 1994 else
fvn_z_acos_real=fvn_i*dcmplx(fvn_d_acosh(r)) 1995 1995 fvn_z_acos_real=fvn_i*dcmplx(fvn_d_acosh(r))
end if 1996 1996 end if
end function 1997 1997 end function
1998 1998
1999 1999
function fvn_z_asin(z) 2000 2000 function fvn_z_asin(z)
! double complex arcsin function derived from 2001 2001 ! double complex arcsin function derived from
! the c gsl library 2002 2002 ! the c gsl library
! http://www.gnu.org/software/gsl/ 2003 2003 ! http://www.gnu.org/software/gsl/
implicit none 2004 2004 implicit none
complex(kind=8) :: fvn_z_asin 2005 2005 complex(kind=8) :: fvn_z_asin
complex(kind=8) :: z 2006 2006 complex(kind=8) :: z
real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1 2007 2007 real(kind=8) :: rz,iz,x,y,a,b,y2,r,s,d,apx,am1
real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8 2008 2008 real(kind=8),parameter :: a_crossover=1.5_8,b_crossover = 0.6417_8
real(kind=8) :: r_res,i_res 2009 2009 real(kind=8) :: r_res,i_res
2010 2010
rz=dreal(z) 2011 2011 rz=dreal(z)
iz=dimag(z) 2012 2012 iz=dimag(z)
if ( iz == 0._8 ) then 2013 2013 if ( iz == 0._8 ) then
! z is real 2014 2014 ! z is real
fvn_z_asin=fvn_z_asin_real(rz) 2015 2015 fvn_z_asin=fvn_z_asin_real(rz)
return 2016 2016 return
end if 2017 2017 end if
2018 2018
x=dabs(rz) 2019 2019 x=dabs(rz)
y=dabs(iz) 2020 2020 y=dabs(iz)
r=fvn_d_hypot(x+1.,y) 2021 2021 r=fvn_d_hypot(x+1.,y)
s=fvn_d_hypot(x-1.,y) 2022 2022 s=fvn_d_hypot(x-1.,y)
a=0.5*(r + s) 2023 2023 a=0.5*(r + s)
b=x/a 2024 2024 b=x/a
y2=y*y 2025 2025 y2=y*y
2026 2026
if (b <= b_crossover) then 2027 2027 if (b <= b_crossover) then
r_res=dasin(b) 2028 2028 r_res=dasin(b)
else 2029 2029 else
if (x <= 1.) then 2030 2030 if (x <= 1.) then
d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x))) 2031 2031 d=0.5*(a+x)*(y2/(r+x+1)+(s + (1 - x)))
r_res=datan(x/dsqrt(d)) 2032 2032 r_res=datan(x/dsqrt(d))
else 2033 2033 else
apx=a+x 2034 2034 apx=a+x
d=0.5*(apx/(r+x+1)+apx/(s + (x - 1))) 2035 2035 d=0.5*(apx/(r+x+1)+apx/(s + (x - 1)))
r_res=datan(x/(y*dsqrt(d))); 2036 2036 r_res=datan(x/(y*dsqrt(d)));
end if 2037 2037 end if
end if 2038 2038 end if
2039 2039
if (a <= a_crossover) then 2040 2040 if (a <= a_crossover) then
if (x < 1.) then 2041 2041 if (x < 1.) then
am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x))) 2042 2042 am1=0.5*(y2 / (r + (x + 1)) + y2 / (s + (1 - x)))
else 2043 2043 else
am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1))) 2044 2044 am1=0.5*(y2 / (r + (x + 1)) + (s + (x - 1)))
end if 2045 2045 end if
i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1)))); 2046 2046 i_res = dlog(1.+(am1 + sqrt (am1 * (a + 1))));
else 2047 2047 else
i_res = dlog (a + dsqrt (a*a - 1.)); 2048 2048 i_res = dlog (a + dsqrt (a*a - 1.));
end if 2049 2049 end if
r_res=sign(1._8,rz)*r_res 2050 2050 r_res=sign(1._8,rz)*r_res
i_res=sign(1._8,iz)*i_res 2051 2051 i_res=sign(1._8,iz)*i_res
fvn_z_asin=dcmplx(r_res)+fvn_i*dcmplx(i_res) 2052 2052 fvn_z_asin=dcmplx(r_res)+fvn_i*dcmplx(i_res)
2053 2053
end function fvn_z_asin 2054 2054 end function fvn_z_asin
2055 2055
function fvn_z_asin_real(r) 2056 2056 function fvn_z_asin_real(r)
! return the double complex arc sinus for a 2057 2057 ! return the double complex arc sinus for a
! double precision argument 2058 2058 ! double precision argument
implicit none 2059 2059 implicit none
real(kind=8) :: r 2060 2060 real(kind=8) :: r
complex(kind=8) :: fvn_z_asin_real 2061 2061 complex(kind=8) :: fvn_z_asin_real
2062 2062
if (dabs(r)<=1._8) then 2063 2063 if (dabs(r)<=1._8) then
fvn_z_asin_real=dcmplx(dasin(r)) 2064 2064 fvn_z_asin_real=dcmplx(dasin(r))
return 2065 2065 return
end if 2066 2066 end if
if (r < 0._8) then 2067 2067 if (r < 0._8) then
fvn_z_asin_real=dcmplx(-fvn_pi/2._8)+fvn_i*dcmplx(fvn_d_acosh(-r)) 2068 2068 fvn_z_asin_real=dcmplx(-fvn_pi/2._8)+fvn_i*dcmplx(fvn_d_acosh(-r))
else 2069 2069 else
fvn_z_asin_real=dcmplx(fvn_pi/2._8)-fvn_i*dcmplx(fvn_d_acosh(r)) 2070 2070 fvn_z_asin_real=dcmplx(fvn_pi/2._8)-fvn_i*dcmplx(fvn_d_acosh(r))
end if 2071 2071 end if
end function fvn_z_asin_real 2072 2072 end function fvn_z_asin_real
2073 2073
function fvn_d_acosh(r) 2074 2074 function fvn_d_acosh(r)
! return the arc hyperbolic cosine 2075 2075 ! return the arc hyperbolic cosine
implicit none 2076 2076 implicit none
real(kind=8) :: r 2077 2077 real(kind=8) :: r
real(kind=8) :: fvn_d_acosh 2078 2078 real(kind=8) :: fvn_d_acosh
if (r >=1) then 2079 2079 if (r >=1) then
fvn_d_acosh=dlog(r+dsqrt(r*r-1)) 2080 2080 fvn_d_acosh=dlog(r+dsqrt(r*r-1))
else 2081 2081 else
!! TODO : Better error handling!!!!!! 2082 2082 !! TODO : Better error handling!!!!!!
stop "Argument to fvn_d_acosh lesser than 1" 2083 2083 stop "Argument to fvn_d_acosh lesser than 1"
end if 2084 2084 end if
end function fvn_d_acosh 2085 2085 end function fvn_d_acosh
2086 2086
function fvn_d_asinh(r) 2087 2087 function fvn_d_asinh(r)
! return the arc hyperbolic sine 2088 2088 ! return the arc hyperbolic sine
implicit none 2089 2089 implicit none
real(kind=8) :: r 2090 2090 real(kind=8) :: r
real(kind=8) :: fvn_d_asinh 2091 2091 real(kind=8) :: fvn_d_asinh
fvn_d_asinh=dlog(r+dsqrt(r*r+1)) 2092 2092 fvn_d_asinh=dlog(r+dsqrt(r*r+1))
end function fvn_d_asinh 2093 2093 end function fvn_d_asinh
2094 2094
function fvn_d_hypot(a,b) 2095 2095 function fvn_d_hypot(a,b)
implicit none 2096 2096 implicit none
! return the euclidian norm of vector(a,b) 2097 2097 ! return the euclidian norm of vector(a,b)
real(kind=8) :: a,b 2098 2098 real(kind=8) :: a,b
real(kind=8) :: fvn_d_hypot 2099 2099 real(kind=8) :: fvn_d_hypot
fvn_d_hypot=dsqrt(a*a+b*b) 2100 2100 fvn_d_hypot=dsqrt(a*a+b*b)
end function 2101 2101 end function
2102 2102
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2103 2103 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 2104 2104 !
! SPARSE RESOLUTION 2105 2105 ! SPARSE RESOLUTION
! 2106 2106 !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2107 2107 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! 2108 2108 !
! Sparse resolution is done by interfaçing Tim Davi's UMFPACK 2109 2109 ! Sparse resolution is done by interfaçing Tim Davi's UMFPACK
! http://www.cise.ufl.edu/research/sparse/SuiteSparse/ 2110 2110 ! http://www.cise.ufl.edu/research/sparse/SuiteSparse/
! Used packages from SuiteSparse : AMD,UMFPACK,UFconfig 2111 2111 ! Used packages from SuiteSparse : AMD,UMFPACK,UFconfig
! 2112 2112 !
! Solve Ax=B using UMFPACK 2113 2113 ! Solve Ax=B using UMFPACK
! 2114 2114 !
! Where A is a sparse matrix given in its triplet form 2115 2115 ! Where A is a sparse matrix given in its triplet form
! T -> non zero elements 2116 2116 ! T -> non zero elements
! Ti,Tj -> row and column index (1-based) of the given elt 2117 2117 ! Ti,Tj -> row and column index (1-based) of the given elt
! n : rank of matrix A 2118 2118 ! n : rank of matrix A
! nz : number of non zero elts 2119 2119 ! nz : number of non zero elts
! 2120 2120 !
! fvn_*_sparse_solve 2121 2121 ! fvn_*_sparse_solve
! * = zl : double complex + integer(8) 2122 2122 ! * = zl : double complex + integer(8)
! * = zi : double complex + integer(4) 2123 2123 ! * = zi : double complex + integer(4)
! 2124 2124 !
subroutine fvn_zl_sparse_solve(n,nz,T,Ti,Tj,B,x,status) 2125 2125 subroutine fvn_zl_sparse_solve(n,nz,T,Ti,Tj,B,x,status)
implicit none 2126 2126 implicit none
integer(8), intent(in) :: n,nz 2127 2127 integer(8), intent(in) :: n,nz
complex(8),dimension(nz),intent(in) :: T 2128 2128 complex(8),dimension(nz),intent(in) :: T
integer(8),dimension(nz),intent(in) :: Ti,Tj 2129 2129 integer(8),dimension(nz),intent(in) :: Ti,Tj
complex(8),dimension(n),intent(in) :: B 2130 2130 complex(8),dimension(n),intent(in) :: B
complex(8),dimension(n),intent(out) :: x 2131 2131 complex(8),dimension(n),intent(out) :: x
integer(8), intent(out) :: status 2132 2132 integer(8), intent(out) :: status
2133 2133
integer(8),dimension(:),allocatable :: wTi,wTj 2134 2134 integer(8),dimension(:),allocatable :: wTi,wTj
real(8),dimension(:),allocatable :: Tx,Tz 2135 2135 real(8),dimension(:),allocatable :: Tx,Tz
real(8),dimension(:),allocatable :: Ax,Az 2136 2136 real(8),dimension(:),allocatable :: Ax,Az
integer(8),dimension(:),allocatable :: Ap,Ai 2137 2137 integer(8),dimension(:),allocatable :: Ap,Ai
integer(8) :: symbolic,numeric 2138 2138 integer(8) :: symbolic,numeric
real(8),dimension(:),allocatable :: xx,xz,bx,bz 2139 2139 real(8),dimension(:),allocatable :: xx,xz,bx,bz
real(8),dimension(90) :: info 2140 2140 real(8),dimension(90) :: info
real(8),dimension(20) :: control 2141 2141 real(8),dimension(20) :: control
integer(8) :: sys 2142 2142 integer(8) :: sys
2143 2143
2144 2144
status=0 2145 2145 status=0
2146 2146
! we use a working copy of Ti and Tj to perform 1-based to 0-based translation 2147 2147 ! we use a working copy of Ti and Tj to perform 1-based to 0-based translation
! Tx and Tz are the real and imaginary parts of T 2148 2148 ! Tx and Tz are the real and imaginary parts of T
allocate(wTi(nz),wTj(nz)) 2149 2149 allocate(wTi(nz),wTj(nz))
allocate(Tx(nz),Tz(nz)) 2150 2150 allocate(Tx(nz),Tz(nz))
Tx=dble(T) 2151 2151 Tx=dble(T)
Tz=aimag(T) 2152 2152 Tz=aimag(T)
wTi=Ti-1 2153 2153 wTi=Ti-1
wTj=Tj-1 2154 2154 wTj=Tj-1
allocate(Ax(nz),Az(nz)) 2155 2155 allocate(Ax(nz),Az(nz))
allocate(Ap(n+1),Ai(nz)) 2156 2156 allocate(Ap(n+1),Ai(nz))
2157 2157
! perform the triplet to compressed column form -> Ap,Ai,Ax,Az 2158 2158 ! perform the triplet to compressed column form -> Ap,Ai,Ax,Az
call umfpack_zl_triplet_to_col(n,n,nz,wTi,wTj,Tx,Tz,Ap,Ai,Ax,Az,status) 2159 2159 call umfpack_zl_triplet_to_col(n,n,nz,wTi,wTj,Tx,Tz,Ap,Ai,Ax,Az,status)
! if status is not zero a problem has occured 2160 2160 ! if status is not zero a problem has occured
if (status /= 0) then 2161 2161 if (status /= 0) then
write(*,*) "Problem during umfpack_zl_triplet_to_col" 2162 2162 write(*,*) "Problem during umfpack_zl_triplet_to_col"
endif 2163 2163 endif
2164 2164
! Define defaults control values 2165 2165 ! Define defaults control values
call umfpack_zl_defaults(control) 2166 2166 call umfpack_zl_defaults(control)
2167 2167
! Symbolic analysis 2168 2168 ! Symbolic analysis
call umfpack_zl_symbolic(n,n,Ap,Ai,Ax,Az,symbolic, control, info) 2169 2169 call umfpack_zl_symbolic(n,n,Ap,Ai,Ax,Az,symbolic, control, info)
! info(1) should be zero 2170 2170 ! info(1) should be zero
if (info(1) /= 0) then 2171 2171 if (info(1) /= 0) then
write(*,*) "Problem during symbolic analysis" 2172 2172 write(*,*) "Problem during symbolic analysis"
status=info(1) 2173 2173 status=info(1)
endif 2174 2174 endif
2175 2175
! Numerical factorization 2176 2176 ! Numerical factorization
call umfpack_zl_numeric (Ap, Ai, Ax, Az, symbolic, numeric, control, info) 2177 2177 call umfpack_zl_numeric (Ap, Ai, Ax, Az, symbolic, numeric, control, info)
! info(1) should be zero 2178 2178 ! info(1) should be zero
if (info(1) /= 0) then 2179 2179 if (info(1) /= 0) then
write(*,*) "Problem during numerical factorization" 2180 2180 write(*,*) "Problem during numerical factorization"
status=info(1) 2181 2181 status=info(1)
endif 2182 2182 endif
2183 2183
! free the C symbolic pointer 2184 2184 ! free the C symbolic pointer
call umfpack_zl_free_symbolic (symbolic) 2185 2185 call umfpack_zl_free_symbolic (symbolic)
2186 2186
allocate(bx(n),bz(n),xx(n),xz(n)) 2187 2187 allocate(bx(n),bz(n),xx(n),xz(n))
bx=dble(B) 2188 2188 bx=dble(B)
bz=aimag(B) 2189 2189 bz=aimag(B)
sys=0 2190 2190 sys=0