Commit 80a3b2e0a3b6e165e2737e370a4576bcb8508fbe
1 parent
e1aefab233
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@39 b657c933-2333-4658-acf2-d3c7c2708721
Showing 6 changed files with 2904 additions and 2062 deletions Side-by-side Diff
doc/besseli-mono.pdf
No preview for this file type
doc/besselj-mono.pdf
No preview for this file type
doc/besselk-mono.pdf
No preview for this file type
doc/bessely-mono.pdf
No preview for this file type
doc/fvn.pdf
No preview for this file type
doc/fvn.tex
... | ... | @@ -300,7 +300,7 @@ |
300 | 300 | \begin{itemize} |
301 | 301 | \item n (in) is an integer equal to the matrix rank |
302 | 302 | \end{itemize} |
303 | -This function return the identity matrix of rank n, in the type of the left hand side. No generic interface for this one. | |
303 | +This function return the identity matrix of rank n, in the specified type. No generic interface for this one. | |
304 | 304 | |
305 | 305 | |
306 | 306 | |
... | ... | @@ -585,7 +585,7 @@ |
585 | 585 | |
586 | 586 | |
587 | 587 | \section{Least square polynomial} |
588 | -fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition. | |
588 | +fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgels (dgels), which solve this problem. | |
589 | 589 | |
590 | 590 | \begin{verbatim} |
591 | 591 | call fvn_lspoly(np,x,y,deg,coeff,status) |
... | ... | @@ -848,7 +848,7 @@ |
848 | 848 | |
849 | 849 | |
850 | 850 | \section{Special functions} |
851 | -Specials functions are available in fvn by using an implementation of fnlib \url{http://www.netlib.org/fn}. This can be used separatly from the rest of fvn by using the module \verb'fvn_fnlib' and linking the library \verb'libfvn_fnlib.a' . The module provides a generic interfaces to all the routines. Specific names of the routines are given in the description. The double complex versions of the routines are not present in the web version of fnlib, so these have been added, but not intensely tested. | |
851 | +Specials functions are available in fvn by using an implementation of fnlib \url{http://www.netlib.org/fn} with some additions. This can be used separatly from the rest of fvn by using the module \verb'fvn_fnlib' and linking the library \verb'libfvn_fnlib.a' . The module provides a generic interfaces to all the routines. Specific names of the routines are given in the description. | |
852 | 852 | |
853 | 853 | \paragraph{Important Note} |
854 | 854 | Due to the addition of fnlib to fvn, some functions that were in fvn and are redondant will be removed from fvn, so update your code now and replace them with the fnlib version. These are listed here after : |
855 | 855 | |
... | ... | @@ -1533,12 +1533,47 @@ |
1533 | 1533 | |
1534 | 1534 | Specific interfaces : \verb'besj1,dbesj1' |
1535 | 1535 | |
1536 | +\subsubsection{bsjn} | |
1537 | +\begin{verbatim} | |
1538 | + bsjn(n,x,factor,big) | |
1539 | +\end{verbatim} | |
1540 | +\begin{itemize} | |
1541 | + \item n is an integer | |
1542 | + \item x is a real | |
1543 | + \item factor is an optional integer | |
1544 | + \item big is an optional real | |
1545 | +\end{itemize} | |
1546 | +This function evaluates Bessel function of the first kind of order n (plotted in figure \ref{besseljnfamily}). These functions satisfy the recurrent relation \ref {bsjn}. | |
1547 | +\begin{equation} | |
1548 | + \label{bsjn} | |
1549 | +J_{n+1}(x)={{2n}\over x} J_n(x) - J_{n-1}(x) | |
1550 | +\end{equation} | |
1551 | +This relation is directly used in upward direction to compute $J_n(x)$ for $x>n$. However it is unstable for $x<n$, therefore a Miller's Algorithm is used. The principle of this method is to use the reccurent relation downward from an arbitrary higher than n order with an arbitrary seed and then normalize the solution with \ref{bsjnnorm} | |
1552 | +\begin{equation} | |
1553 | + \label{bsjnnorm} | |
1554 | + 1=J_0+2J_2+2J_4+2J_6+... | |
1555 | +\end{equation} | |
1556 | +The optional parameters \verb'factor' and \verb'big' can be used to modify the behaviour of the algorithm. \verb'factor' is used in determining the arbitrary starting order ( an even integer near $n+\sqrt{factor~n}$), the default $factor$ value is 40. \verb'big' is a real determining the threshold for which anti-overflow counter measures has to be taken, default value is $1.10^{10}$ | |
1557 | + | |
1558 | +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsj0(x)$ or $bsj1(x)$ is actually performed. | |
1559 | + | |
1560 | +\begin{figure} | |
1561 | + \begin{center} | |
1562 | + \includegraphics[width=0.9\textwidth]{besselj-mono.pdf} | |
1563 | + \caption{Bessel $J_n$ functions family} | |
1564 | + \label{besseljnfamily} | |
1565 | + \end{center} | |
1566 | +\end{figure} | |
1567 | + | |
1568 | + | |
1569 | +Specific interfaces : \verb'besjn,dbesjn' | |
1570 | + | |
1536 | 1571 | \subsubsection{bsy0} |
1537 | 1572 | \begin{verbatim} |
1538 | 1573 | bsy0(x) |
1539 | 1574 | \end{verbatim} |
1540 | 1575 | \begin{itemize} |
1541 | - \item x is a real | |
1576 | + \item x is a strictly positive real | |
1542 | 1577 | \end{itemize} |
1543 | 1578 | This function evaluates the Bessel function of the second kind of order 0 defined by equation \ref{bsy0} |
1544 | 1579 | \begin{equation} |
... | ... | @@ -1553,7 +1588,7 @@ |
1553 | 1588 | bsy1(x) |
1554 | 1589 | \end{verbatim} |
1555 | 1590 | \begin{itemize} |
1556 | - \item x is a real | |
1591 | + \item x is a strictly positive real | |
1557 | 1592 | \end{itemize} |
1558 | 1593 | This function evaluates the Bessel function of the second kind of order 1 defined by equation \ref{bsy1}. |
1559 | 1594 | \begin{equation} |
... | ... | @@ -1564,6 +1599,35 @@ |
1564 | 1599 | |
1565 | 1600 | Specific interfaces : \verb'besy1,dbesy1' |
1566 | 1601 | |
1602 | + | |
1603 | +\subsubsection{bsyn} | |
1604 | +\begin{verbatim} | |
1605 | + bsyn(n,x) | |
1606 | +\end{verbatim} | |
1607 | +\begin{itemize} | |
1608 | + \item n is an integer | |
1609 | + \item x is a strictly positive real | |
1610 | +\end{itemize} | |
1611 | +This function evaluates the Bessel function of the second kind of order n (plotted in figure \ref{besselynfamily}). These functions satisfy the recurrent relation \ref {bsyn}. | |
1612 | +\begin{equation} | |
1613 | + \label{bsyn} | |
1614 | +Y_{n+1}(x)={{2n}\over x} Y_n(x) - Y_{n-1}(x) | |
1615 | +\end{equation} | |
1616 | +This recurrent relation is directly used in the upward direction to compute $Y_n(x)$. | |
1617 | + | |
1618 | +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsy0(x)$ or $bsy1(x)$ is actually performed. | |
1619 | + | |
1620 | +\begin{figure} | |
1621 | + \begin{center} | |
1622 | + \includegraphics[width=0.9\textwidth]{bessely-mono.pdf} | |
1623 | + \caption{Bessel $Y_n$ functions family} | |
1624 | + \label{besselynfamily} | |
1625 | + \end{center} | |
1626 | +\end{figure} | |
1627 | + | |
1628 | + | |
1629 | +Specific interfaces : \verb'besyn,dbesyn' | |
1630 | + | |
1567 | 1631 | \subsubsection{bsi0} |
1568 | 1632 | \begin{verbatim} |
1569 | 1633 | bsi0(x) |
... | ... | @@ -1594,6 +1658,42 @@ |
1594 | 1658 | |
1595 | 1659 | Specific interfaces : \verb'besi1,dbesi1' |
1596 | 1660 | |
1661 | +\subsubsection{bsin} | |
1662 | +\begin{verbatim} | |
1663 | + bsin(n,x,factor,big) | |
1664 | +\end{verbatim} | |
1665 | +\begin{itemize} | |
1666 | + \item n is an integer | |
1667 | + \item x is a real | |
1668 | + \item factor is an optional integer | |
1669 | + \item big is an optional real | |
1670 | +\end{itemize} | |
1671 | +This function evaluates Bessel function of the third kind of order n (plotted in figure \ref{besselinfamily}). These functions satisfy the recuurent relation \ref{bsin} | |
1672 | +\begin{equation} | |
1673 | + \label{bsin} | |
1674 | +I_{n+1}(x)=-{{2n}\over x}I_n(x) + I_{n-1}(x) | |
1675 | +\end{equation} | |
1676 | +This relation is unstable in the upward direction, therefore a Miller's Algorithm is used to evaluate the function. Even if there's a usable normalization relation \ref{bsinnorm}, it is not used in the routine, instead normalization is done by a simple call to \verb'bsi0(x)'. | |
1677 | +\begin{equation} | |
1678 | + \label{bsinnorm} | |
1679 | + 1=I_0-2I_2+2I_4-2I_6+.... | |
1680 | +\end{equation} | |
1681 | +The optional parameters \verb'factor' and \verb'big' can be used to modify the behaviour of the algorithm. \verb'factor' is used in determining the arbitrary starting order ( an even integer near $n+\sqrt{factor~n}$), the default $factor$ value is 40. \verb'big' is a real determining the threshold for which anti-overflow counter measures has to be taken, default value is $1.10^{10}$ | |
1682 | + | |
1683 | +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsi0(x)$ or $bsi1(x)$ is actually performed. | |
1684 | + | |
1685 | +\begin{figure} | |
1686 | + \begin{center} | |
1687 | + \includegraphics[width=0.9\textwidth]{besseli-mono.pdf} | |
1688 | + \caption{Bessel $I_n$ functions family} | |
1689 | + \label{besselinfamily} | |
1690 | + \end{center} | |
1691 | +\end{figure} | |
1692 | + | |
1693 | + | |
1694 | +Specific interfaces : \verb'besin,dbesin' | |
1695 | + | |
1696 | + | |
1597 | 1697 | \subsubsection{bsk0} |
1598 | 1698 | \begin{verbatim} |
1599 | 1699 | bsk0(x) |
... | ... | @@ -1624,6 +1724,36 @@ |
1624 | 1724 | |
1625 | 1725 | Specific interfaces : \verb'besk1,dbesk1' |
1626 | 1726 | |
1727 | +\subsubsection{bskn} | |
1728 | +\begin{verbatim} | |
1729 | + bskn(n,x) | |
1730 | +\end{verbatim} | |
1731 | +\begin{itemize} | |
1732 | + \item n is an integer | |
1733 | + \item x is strictly positive real | |
1734 | +\end{itemize} | |
1735 | +This function evaluates the modified Bessel function of the second kind of order n (plotted in figure \ref{besselknfamily}). These functions satisfy the recurrent relation \ref{bskn} | |
1736 | + | |
1737 | +\begin{equation} | |
1738 | + \label{bskn} | |
1739 | +K_{n+1}(x)={{2n}\over x}K_n(x)+K_{n-1}(x) | |
1740 | +\end{equation} | |
1741 | +This recurrent relation is directly used in the upward direction to compute $K_n(x)$. | |
1742 | + | |
1743 | +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsk0(x)$ or $bsk1(x)$ is actually performed. | |
1744 | + | |
1745 | +\begin{figure} | |
1746 | + \begin{center} | |
1747 | + \includegraphics[width=0.9\textwidth]{besselk-mono.pdf} | |
1748 | + \caption{Bessel $K_n$ functions family} | |
1749 | + \label{besselknfamily} | |
1750 | + \end{center} | |
1751 | +\end{figure} | |
1752 | + | |
1753 | + | |
1754 | +Specific interface : \verb'beskn,dbeskn' | |
1755 | + | |
1756 | + | |
1627 | 1757 | \subsubsection{bsi0e} |
1628 | 1758 | \begin{verbatim} |
1629 | 1759 | bsi0e(x) |
1630 | 1760 | |
1631 | 1761 | |
... | ... | @@ -1765,17 +1895,17 @@ |
1765 | 1895 | \end{itemize} |
1766 | 1896 | |
1767 | 1897 | This function evaluates the exponentially scaled Airy function defined in equation \ref{aie}. |
1768 | -\begin{equation} | |
1769 | - \label{aie} | |
1770 | -aie(x)=Ai(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai(x)\rm{~if~}x>0 | |
1771 | -\end{equation} | |
1772 | 1898 | %\begin{equation} |
1773 | -% \left{\begin{array}{ll} | |
1774 | -% Ai(x) & \textrm{~if~}x\leq0 \\ | |
1775 | -% e^{{2\over3}x^{3\over2}}Ai(x) & \textrm{~if~}x>0 | |
1776 | -%\end{array}\right. | |
1777 | -%\label{aie} | |
1899 | +% \label{aie} | |
1900 | +%aie(x)=Ai(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai(x)\rm{~if~}x>0 | |
1778 | 1901 | %\end{equation} |
1902 | +\begin{equation} | |
1903 | +\label{aie} | |
1904 | + aie(x)=\left\{\begin{array}{ll} | |
1905 | + Ai(x) & \textrm{~if~}x\leq0 \\ | |
1906 | + e^{{2\over3}x^{3\over2}}Ai(x) & \textrm{~if~}x>0 | |
1907 | +\end{array}\right. | |
1908 | +\end{equation} | |
1779 | 1909 | |
1780 | 1910 | Specific interfaces : \verb'aie,daie' |
1781 | 1911 | |
1782 | 1912 | |
... | ... | @@ -1788,9 +1918,16 @@ |
1788 | 1918 | \item x is a real |
1789 | 1919 | \end{itemize} |
1790 | 1920 | This function evaluates the exponentially scaled Airy function of the second kind defined in equation \ref{bie}. |
1921 | +%\begin{equation} | |
1922 | +% \label{bie} | |
1923 | +%bie(x)=Bi(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi(x)\rm{~if~}x>0 | |
1924 | +%\end{equation} | |
1791 | 1925 | \begin{equation} |
1792 | 1926 | \label{bie} |
1793 | -bie(x)=Bi(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi(x)\rm{~if~}x>0 | |
1927 | +bie(x)=\left\{\begin{array}{ll} | |
1928 | +Bi(x) & \textrm{~if~}x\leq0 \\ | |
1929 | +e^{-{2\over3}x^{3\over2}}Bi(x) & \textrm{~if~}x>0 | |
1930 | +\end{array}\right. | |
1794 | 1931 | \end{equation} |
1795 | 1932 | |
1796 | 1933 | Specific interfaces : \verb'bie,dbie' |
1797 | 1934 | |
1798 | 1935 | |
... | ... | @@ -1803,11 +1940,19 @@ |
1803 | 1940 | \item x is a real |
1804 | 1941 | \end{itemize} |
1805 | 1942 | This function evaluates the exponentially scaled derivative of the Airy function as defined in equation \ref{aide}. |
1943 | +%\begin{equation} | |
1944 | +% \label{aide} | |
1945 | +%aie(x)=Ai^\prime(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai^\prime(x)\rm{~if~}x>0 | |
1946 | +%\end{equation} | |
1806 | 1947 | \begin{equation} |
1807 | 1948 | \label{aide} |
1808 | -aie(x)=Ai^\prime(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai^\prime(x)\rm{~if~}x>0 | |
1949 | +aide(x)=\left\{\begin{array}{ll} | |
1950 | +Ai^\prime(x) & \textrm{~if~}x\leq0 \\ | |
1951 | +e^{{2\over3}x^{3\over2}}Ai^\prime(x) & \textrm{~if~}x>0 | |
1952 | +\end{array}\right. | |
1809 | 1953 | \end{equation} |
1810 | 1954 | |
1955 | + | |
1811 | 1956 | Specific interfaces : \verb'aide,daide' |
1812 | 1957 | |
1813 | 1958 | |
... | ... | @@ -1821,7 +1966,10 @@ |
1821 | 1966 | This function evaluates the exponentially scaled derivative of the Airy function of the second kind as defined in equation \ref{bide}. |
1822 | 1967 | \begin{equation} |
1823 | 1968 | \label{bide} |
1824 | -bie(x)=Bi^\prime(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi^\prime(x)\rm{~if~}x>0 | |
1969 | +bie(x)=\left\{\begin{array}{ll} | |
1970 | +Bi^\prime(x) & \textrm{~if~}x\leq0 \\ | |
1971 | +e^{-{2\over3}x^{3\over2}}Bi^\prime(x) & \textrm{~if~}x>0 | |
1972 | +\end{array}\right. | |
1825 | 1973 | \end{equation} |
1826 | 1974 | |
1827 | 1975 | Specific interfaces : \verb'bide,dbide' |