Commit 80a3b2e0a3b6e165e2737e370a4576bcb8508fbe

Authored by daniau
1 parent e1aefab233

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@39 b657c933-2333-4658-acf2-d3c7c2708721

Showing 6 changed files with 2904 additions and 2062 deletions Side-by-side Diff

doc/besseli-mono.pdf
No preview for this file type
doc/besselj-mono.pdf
No preview for this file type
doc/besselk-mono.pdf
No preview for this file type
doc/bessely-mono.pdf
No preview for this file type
No preview for this file type
... ... @@ -300,7 +300,7 @@
300 300 \begin{itemize}
301 301 \item n (in) is an integer equal to the matrix rank
302 302 \end{itemize}
303   -This function return the identity matrix of rank n, in the type of the left hand side. No generic interface for this one.
  303 +This function return the identity matrix of rank n, in the specified type. No generic interface for this one.
304 304  
305 305  
306 306  
... ... @@ -585,7 +585,7 @@
585 585  
586 586  
587 587 \section{Least square polynomial}
588   -fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgelss (dgelss), which solve this problem using singular value decomposition.
  588 +fvn provide a function to find a least square polynomial of a given degree, for real in single or double precision. It is performed using Lapack subroutine sgels (dgels), which solve this problem.
589 589  
590 590 \begin{verbatim}
591 591 call fvn_lspoly(np,x,y,deg,coeff,status)
... ... @@ -848,7 +848,7 @@
848 848  
849 849  
850 850 \section{Special functions}
851   -Specials functions are available in fvn by using an implementation of fnlib \url{http://www.netlib.org/fn}. This can be used separatly from the rest of fvn by using the module \verb'fvn_fnlib' and linking the library \verb'libfvn_fnlib.a' . The module provides a generic interfaces to all the routines. Specific names of the routines are given in the description. The double complex versions of the routines are not present in the web version of fnlib, so these have been added, but not intensely tested.
  851 +Specials functions are available in fvn by using an implementation of fnlib \url{http://www.netlib.org/fn} with some additions. This can be used separatly from the rest of fvn by using the module \verb'fvn_fnlib' and linking the library \verb'libfvn_fnlib.a' . The module provides a generic interfaces to all the routines. Specific names of the routines are given in the description.
852 852  
853 853 \paragraph{Important Note}
854 854 Due to the addition of fnlib to fvn, some functions that were in fvn and are redondant will be removed from fvn, so update your code now and replace them with the fnlib version. These are listed here after :
855 855  
... ... @@ -1533,12 +1533,47 @@
1533 1533  
1534 1534 Specific interfaces : \verb'besj1,dbesj1'
1535 1535  
  1536 +\subsubsection{bsjn}
  1537 +\begin{verbatim}
  1538 + bsjn(n,x,factor,big)
  1539 +\end{verbatim}
  1540 +\begin{itemize}
  1541 + \item n is an integer
  1542 + \item x is a real
  1543 + \item factor is an optional integer
  1544 + \item big is an optional real
  1545 +\end{itemize}
  1546 +This function evaluates Bessel function of the first kind of order n (plotted in figure \ref{besseljnfamily}). These functions satisfy the recurrent relation \ref {bsjn}.
  1547 +\begin{equation}
  1548 + \label{bsjn}
  1549 +J_{n+1}(x)={{2n}\over x} J_n(x) - J_{n-1}(x)
  1550 +\end{equation}
  1551 +This relation is directly used in upward direction to compute $J_n(x)$ for $x>n$. However it is unstable for $x<n$, therefore a Miller's Algorithm is used. The principle of this method is to use the reccurent relation downward from an arbitrary higher than n order with an arbitrary seed and then normalize the solution with \ref{bsjnnorm}
  1552 +\begin{equation}
  1553 + \label{bsjnnorm}
  1554 + 1=J_0+2J_2+2J_4+2J_6+...
  1555 +\end{equation}
  1556 +The optional parameters \verb'factor' and \verb'big' can be used to modify the behaviour of the algorithm. \verb'factor' is used in determining the arbitrary starting order ( an even integer near $n+\sqrt{factor~n}$), the default $factor$ value is 40. \verb'big' is a real determining the threshold for which anti-overflow counter measures has to be taken, default value is $1.10^{10}$
  1557 +
  1558 +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsj0(x)$ or $bsj1(x)$ is actually performed.
  1559 +
  1560 +\begin{figure}
  1561 + \begin{center}
  1562 + \includegraphics[width=0.9\textwidth]{besselj-mono.pdf}
  1563 + \caption{Bessel $J_n$ functions family}
  1564 + \label{besseljnfamily}
  1565 + \end{center}
  1566 +\end{figure}
  1567 +
  1568 +
  1569 +Specific interfaces : \verb'besjn,dbesjn'
  1570 +
1536 1571 \subsubsection{bsy0}
1537 1572 \begin{verbatim}
1538 1573 bsy0(x)
1539 1574 \end{verbatim}
1540 1575 \begin{itemize}
1541   - \item x is a real
  1576 + \item x is a strictly positive real
1542 1577 \end{itemize}
1543 1578 This function evaluates the Bessel function of the second kind of order 0 defined by equation \ref{bsy0}
1544 1579 \begin{equation}
... ... @@ -1553,7 +1588,7 @@
1553 1588 bsy1(x)
1554 1589 \end{verbatim}
1555 1590 \begin{itemize}
1556   - \item x is a real
  1591 + \item x is a strictly positive real
1557 1592 \end{itemize}
1558 1593 This function evaluates the Bessel function of the second kind of order 1 defined by equation \ref{bsy1}.
1559 1594 \begin{equation}
... ... @@ -1564,6 +1599,35 @@
1564 1599  
1565 1600 Specific interfaces : \verb'besy1,dbesy1'
1566 1601  
  1602 +
  1603 +\subsubsection{bsyn}
  1604 +\begin{verbatim}
  1605 + bsyn(n,x)
  1606 +\end{verbatim}
  1607 +\begin{itemize}
  1608 + \item n is an integer
  1609 + \item x is a strictly positive real
  1610 +\end{itemize}
  1611 +This function evaluates the Bessel function of the second kind of order n (plotted in figure \ref{besselynfamily}). These functions satisfy the recurrent relation \ref {bsyn}.
  1612 +\begin{equation}
  1613 + \label{bsyn}
  1614 +Y_{n+1}(x)={{2n}\over x} Y_n(x) - Y_{n-1}(x)
  1615 +\end{equation}
  1616 +This recurrent relation is directly used in the upward direction to compute $Y_n(x)$.
  1617 +
  1618 +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsy0(x)$ or $bsy1(x)$ is actually performed.
  1619 +
  1620 +\begin{figure}
  1621 + \begin{center}
  1622 + \includegraphics[width=0.9\textwidth]{bessely-mono.pdf}
  1623 + \caption{Bessel $Y_n$ functions family}
  1624 + \label{besselynfamily}
  1625 + \end{center}
  1626 +\end{figure}
  1627 +
  1628 +
  1629 +Specific interfaces : \verb'besyn,dbesyn'
  1630 +
1567 1631 \subsubsection{bsi0}
1568 1632 \begin{verbatim}
1569 1633 bsi0(x)
... ... @@ -1594,6 +1658,42 @@
1594 1658  
1595 1659 Specific interfaces : \verb'besi1,dbesi1'
1596 1660  
  1661 +\subsubsection{bsin}
  1662 +\begin{verbatim}
  1663 + bsin(n,x,factor,big)
  1664 +\end{verbatim}
  1665 +\begin{itemize}
  1666 + \item n is an integer
  1667 + \item x is a real
  1668 + \item factor is an optional integer
  1669 + \item big is an optional real
  1670 +\end{itemize}
  1671 +This function evaluates Bessel function of the third kind of order n (plotted in figure \ref{besselinfamily}). These functions satisfy the recuurent relation \ref{bsin}
  1672 +\begin{equation}
  1673 + \label{bsin}
  1674 +I_{n+1}(x)=-{{2n}\over x}I_n(x) + I_{n-1}(x)
  1675 +\end{equation}
  1676 +This relation is unstable in the upward direction, therefore a Miller's Algorithm is used to evaluate the function. Even if there's a usable normalization relation \ref{bsinnorm}, it is not used in the routine, instead normalization is done by a simple call to \verb'bsi0(x)'.
  1677 +\begin{equation}
  1678 + \label{bsinnorm}
  1679 + 1=I_0-2I_2+2I_4-2I_6+....
  1680 +\end{equation}
  1681 +The optional parameters \verb'factor' and \verb'big' can be used to modify the behaviour of the algorithm. \verb'factor' is used in determining the arbitrary starting order ( an even integer near $n+\sqrt{factor~n}$), the default $factor$ value is 40. \verb'big' is a real determining the threshold for which anti-overflow counter measures has to be taken, default value is $1.10^{10}$
  1682 +
  1683 +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsi0(x)$ or $bsi1(x)$ is actually performed.
  1684 +
  1685 +\begin{figure}
  1686 + \begin{center}
  1687 + \includegraphics[width=0.9\textwidth]{besseli-mono.pdf}
  1688 + \caption{Bessel $I_n$ functions family}
  1689 + \label{besselinfamily}
  1690 + \end{center}
  1691 +\end{figure}
  1692 +
  1693 +
  1694 +Specific interfaces : \verb'besin,dbesin'
  1695 +
  1696 +
1597 1697 \subsubsection{bsk0}
1598 1698 \begin{verbatim}
1599 1699 bsk0(x)
... ... @@ -1624,6 +1724,36 @@
1624 1724  
1625 1725 Specific interfaces : \verb'besk1,dbesk1'
1626 1726  
  1727 +\subsubsection{bskn}
  1728 +\begin{verbatim}
  1729 + bskn(n,x)
  1730 +\end{verbatim}
  1731 +\begin{itemize}
  1732 + \item n is an integer
  1733 + \item x is strictly positive real
  1734 +\end{itemize}
  1735 +This function evaluates the modified Bessel function of the second kind of order n (plotted in figure \ref{besselknfamily}). These functions satisfy the recurrent relation \ref{bskn}
  1736 +
  1737 +\begin{equation}
  1738 + \label{bskn}
  1739 +K_{n+1}(x)={{2n}\over x}K_n(x)+K_{n-1}(x)
  1740 +\end{equation}
  1741 +This recurrent relation is directly used in the upward direction to compute $K_n(x)$.
  1742 +
  1743 +By convenience, the routine accept $n=0$ and $n=1$, in that cases a call to $bsk0(x)$ or $bsk1(x)$ is actually performed.
  1744 +
  1745 +\begin{figure}
  1746 + \begin{center}
  1747 + \includegraphics[width=0.9\textwidth]{besselk-mono.pdf}
  1748 + \caption{Bessel $K_n$ functions family}
  1749 + \label{besselknfamily}
  1750 + \end{center}
  1751 +\end{figure}
  1752 +
  1753 +
  1754 +Specific interface : \verb'beskn,dbeskn'
  1755 +
  1756 +
1627 1757 \subsubsection{bsi0e}
1628 1758 \begin{verbatim}
1629 1759 bsi0e(x)
1630 1760  
1631 1761  
... ... @@ -1765,17 +1895,17 @@
1765 1895 \end{itemize}
1766 1896  
1767 1897 This function evaluates the exponentially scaled Airy function defined in equation \ref{aie}.
1768   -\begin{equation}
1769   - \label{aie}
1770   -aie(x)=Ai(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai(x)\rm{~if~}x>0
1771   -\end{equation}
1772 1898 %\begin{equation}
1773   -% \left{\begin{array}{ll}
1774   -% Ai(x) & \textrm{~if~}x\leq0 \\
1775   -% e^{{2\over3}x^{3\over2}}Ai(x) & \textrm{~if~}x>0
1776   -%\end{array}\right.
1777   -%\label{aie}
  1899 +% \label{aie}
  1900 +%aie(x)=Ai(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai(x)\rm{~if~}x>0
1778 1901 %\end{equation}
  1902 +\begin{equation}
  1903 +\label{aie}
  1904 + aie(x)=\left\{\begin{array}{ll}
  1905 + Ai(x) & \textrm{~if~}x\leq0 \\
  1906 + e^{{2\over3}x^{3\over2}}Ai(x) & \textrm{~if~}x>0
  1907 +\end{array}\right.
  1908 +\end{equation}
1779 1909  
1780 1910 Specific interfaces : \verb'aie,daie'
1781 1911  
1782 1912  
... ... @@ -1788,9 +1918,16 @@
1788 1918 \item x is a real
1789 1919 \end{itemize}
1790 1920 This function evaluates the exponentially scaled Airy function of the second kind defined in equation \ref{bie}.
  1921 +%\begin{equation}
  1922 +% \label{bie}
  1923 +%bie(x)=Bi(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi(x)\rm{~if~}x>0
  1924 +%\end{equation}
1791 1925 \begin{equation}
1792 1926 \label{bie}
1793   -bie(x)=Bi(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi(x)\rm{~if~}x>0
  1927 +bie(x)=\left\{\begin{array}{ll}
  1928 +Bi(x) & \textrm{~if~}x\leq0 \\
  1929 +e^{-{2\over3}x^{3\over2}}Bi(x) & \textrm{~if~}x>0
  1930 +\end{array}\right.
1794 1931 \end{equation}
1795 1932  
1796 1933 Specific interfaces : \verb'bie,dbie'
1797 1934  
1798 1935  
... ... @@ -1803,11 +1940,19 @@
1803 1940 \item x is a real
1804 1941 \end{itemize}
1805 1942 This function evaluates the exponentially scaled derivative of the Airy function as defined in equation \ref{aide}.
  1943 +%\begin{equation}
  1944 +% \label{aide}
  1945 +%aie(x)=Ai^\prime(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai^\prime(x)\rm{~if~}x>0
  1946 +%\end{equation}
1806 1947 \begin{equation}
1807 1948 \label{aide}
1808   -aie(x)=Ai^\prime(x) \textrm{~if~}x\leq0 \qquad \qquad aie(x)=e^{{2\over3}x^{3\over2}}Ai^\prime(x)\rm{~if~}x>0
  1949 +aide(x)=\left\{\begin{array}{ll}
  1950 +Ai^\prime(x) & \textrm{~if~}x\leq0 \\
  1951 +e^{{2\over3}x^{3\over2}}Ai^\prime(x) & \textrm{~if~}x>0
  1952 +\end{array}\right.
1809 1953 \end{equation}
1810 1954  
  1955 +
1811 1956 Specific interfaces : \verb'aide,daide'
1812 1957  
1813 1958  
... ... @@ -1821,7 +1966,10 @@
1821 1966 This function evaluates the exponentially scaled derivative of the Airy function of the second kind as defined in equation \ref{bide}.
1822 1967 \begin{equation}
1823 1968 \label{bide}
1824   -bie(x)=Bi^\prime(x)\textrm{~if~}x\leq0 \qquad \qquad bie(x)=e^{-{2\over3}x^{3\over2}}Bi^\prime(x)\rm{~if~}x>0
  1969 +bie(x)=\left\{\begin{array}{ll}
  1970 +Bi^\prime(x) & \textrm{~if~}x\leq0 \\
  1971 +e^{-{2\over3}x^{3\over2}}Bi^\prime(x) & \textrm{~if~}x>0
  1972 +\end{array}\right.
1825 1973 \end{equation}
1826 1974  
1827 1975 Specific interfaces : \verb'bide,dbide'