Commit 6ac82e990ee0ab81340d03178f3bd7aec3d7de43
1 parent
06ed2f4ac7
Exists in
master
and in
3 other branches
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@9 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 0 additions and 1779 deletions Side-by-side Diff
stable/fvnlib.f90
Diff suppressed. Click to show
1 | - | |
2 | -module fvn | |
3 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
4 | -! | |
5 | -! fvn : a f95 module replacement for some imsl routines | |
6 | -! it uses lapack for linear algebra | |
7 | -! it uses modified quadpack for integration | |
8 | -! | |
9 | -! William Daniau 2007 | |
10 | -! william.daniau@femto-st.fr | |
11 | -! | |
12 | -! Routines naming scheme : | |
13 | -! | |
14 | -! fvn_x_name | |
15 | -! where x can be s : real | |
16 | -! d : real double precision | |
17 | -! c : complex | |
18 | -! z : double complex | |
19 | -! | |
20 | -! | |
21 | -! This piece of code is totally free! Do whatever you want with it. However | |
22 | -! if you find it usefull it would be kind to give credits ;-) Nevertheless, you | |
23 | -! may give credits to quadpack authors. | |
24 | -! | |
25 | -! Version 1.1 | |
26 | -! | |
27 | -! TO DO LIST : | |
28 | -! + Order eigenvalues and vectors in decreasing eigenvalue's modulus order -> atm | |
29 | -! eigenvalues are given with no particular order. | |
30 | -! + Generic interface for fvn_x_name family -> fvn_name | |
31 | -! + Make some parameters optional, status for example | |
32 | -! + use f95 kinds "double complex" -> complex(kind=8) | |
33 | -! + unify quadpack routines | |
34 | -! + ... | |
35 | -! | |
36 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
37 | - | |
38 | -implicit none | |
39 | -! All quadpack routines are private to the module | |
40 | -private :: d1mach,dqag,dqag_2d_inner,dqag_2d_outer,dqage,dqage_2d_inner, & | |
41 | - dqage_2d_outer,dqk15,dqk15_2d_inner,dqk15_2d_outer,dqk21,dqk21_2d_inner,dqk21_2d_outer, & | |
42 | - dqk31,dqk31_2d_inner,dqk31_2d_outer,dqk41,dqk41_2d_inner,dqk41_2d_outer, & | |
43 | - dqk51,dqk51_2d_inner,dqk51_2d_outer,dqk61,dqk61_2d_inner,dqk61_2d_outer,dqpsrt | |
44 | - | |
45 | - | |
46 | -contains | |
47 | - | |
48 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
49 | -! | |
50 | -! Matrix inversion subroutines | |
51 | -! | |
52 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
53 | -subroutine fvn_s_matinv(d,a,inva,status) | |
54 | - ! | |
55 | - ! Matrix inversion of a real matrix using BLAS and LAPACK | |
56 | - ! | |
57 | - ! d (in) : matrix rank | |
58 | - ! a (in) : input matrix | |
59 | - ! inva (out) : inversed matrix | |
60 | - ! status (ou) : =0 if something failed | |
61 | - ! | |
62 | - integer, intent(in) :: d | |
63 | - real, intent(in) :: a(d,d) | |
64 | - real, intent(out) :: inva(d,d) | |
65 | - integer, intent(out) :: status | |
66 | - | |
67 | - integer, allocatable :: ipiv(:) | |
68 | - real, allocatable :: work(:) | |
69 | - real twork(1) | |
70 | - integer :: info | |
71 | - integer :: lwork | |
72 | - | |
73 | - status=1 | |
74 | - | |
75 | - allocate(ipiv(d)) | |
76 | - ! copy a into inva using BLAS | |
77 | - !call scopy(d*d,a,1,inva,1) | |
78 | - inva(:,:)=a(:,:) | |
79 | - ! LU factorization using LAPACK | |
80 | - call sgetrf(d,d,inva,d,ipiv,info) | |
81 | - ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
82 | - if (info /= 0) then | |
83 | - status=0 | |
84 | - deallocate(ipiv) | |
85 | - return | |
86 | - end if | |
87 | - ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
88 | - call sgetri(d,inva,d,ipiv,twork,-1,info) | |
89 | - lwork=int(twork(1)) | |
90 | - allocate(work(lwork)) | |
91 | - ! Matrix inversion using LAPACK | |
92 | - call sgetri(d,inva,d,ipiv,work,lwork,info) | |
93 | - ! again if info is not equal to 0, we exit setting status to 0 | |
94 | - if (info /= 0) then | |
95 | - status=0 | |
96 | - end if | |
97 | - deallocate(work) | |
98 | - deallocate(ipiv) | |
99 | -end subroutine | |
100 | - | |
101 | -subroutine fvn_d_matinv(d,a,inva,status) | |
102 | - ! | |
103 | - ! Matrix inversion of a double precision matrix using BLAS and LAPACK | |
104 | - ! | |
105 | - ! d (in) : matrix rank | |
106 | - ! a (in) : input matrix | |
107 | - ! inva (out) : inversed matrix | |
108 | - ! status (ou) : =0 if something failed | |
109 | - ! | |
110 | - integer, intent(in) :: d | |
111 | - double precision, intent(in) :: a(d,d) | |
112 | - double precision, intent(out) :: inva(d,d) | |
113 | - integer, intent(out) :: status | |
114 | - | |
115 | - integer, allocatable :: ipiv(:) | |
116 | - double precision, allocatable :: work(:) | |
117 | - double precision :: twork(1) | |
118 | - integer :: info | |
119 | - integer :: lwork | |
120 | - | |
121 | - status=1 | |
122 | - | |
123 | - allocate(ipiv(d)) | |
124 | - ! copy a into inva using BLAS | |
125 | - !call dcopy(d*d,a,1,inva,1) | |
126 | - inva(:,:)=a(:,:) | |
127 | - ! LU factorization using LAPACK | |
128 | - call dgetrf(d,d,inva,d,ipiv,info) | |
129 | - ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
130 | - if (info /= 0) then | |
131 | - status=0 | |
132 | - deallocate(ipiv) | |
133 | - return | |
134 | - end if | |
135 | - ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
136 | - call dgetri(d,inva,d,ipiv,twork,-1,info) | |
137 | - lwork=int(twork(1)) | |
138 | - allocate(work(lwork)) | |
139 | - ! Matrix inversion using LAPACK | |
140 | - call dgetri(d,inva,d,ipiv,work,lwork,info) | |
141 | - ! again if info is not equal to 0, we exit setting status to 0 | |
142 | - if (info /= 0) then | |
143 | - status=0 | |
144 | - end if | |
145 | - deallocate(work) | |
146 | - deallocate(ipiv) | |
147 | -end subroutine | |
148 | - | |
149 | -subroutine fvn_c_matinv(d,a,inva,status) | |
150 | - ! | |
151 | - ! Matrix inversion of a complex matrix using BLAS and LAPACK | |
152 | - ! | |
153 | - ! d (in) : matrix rank | |
154 | - ! a (in) : input matrix | |
155 | - ! inva (out) : inversed matrix | |
156 | - ! status (ou) : =0 if something failed | |
157 | - ! | |
158 | - integer, intent(in) :: d | |
159 | - complex, intent(in) :: a(d,d) | |
160 | - complex, intent(out) :: inva(d,d) | |
161 | - integer, intent(out) :: status | |
162 | - | |
163 | - integer, allocatable :: ipiv(:) | |
164 | - complex, allocatable :: work(:) | |
165 | - complex :: twork(1) | |
166 | - integer :: info | |
167 | - integer :: lwork | |
168 | - | |
169 | - status=1 | |
170 | - | |
171 | - allocate(ipiv(d)) | |
172 | - ! copy a into inva using BLAS | |
173 | - !call ccopy(d*d,a,1,inva,1) | |
174 | - inva(:,:)=a(:,:) | |
175 | - | |
176 | - ! LU factorization using LAPACK | |
177 | - call cgetrf(d,d,inva,d,ipiv,info) | |
178 | - ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
179 | - if (info /= 0) then | |
180 | - status=0 | |
181 | - deallocate(ipiv) | |
182 | - return | |
183 | - end if | |
184 | - ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
185 | - call cgetri(d,inva,d,ipiv,twork,-1,info) | |
186 | - lwork=int(twork(1)) | |
187 | - allocate(work(lwork)) | |
188 | - ! Matrix inversion using LAPACK | |
189 | - call cgetri(d,inva,d,ipiv,work,lwork,info) | |
190 | - ! again if info is not equal to 0, we exit setting status to 0 | |
191 | - if (info /= 0) then | |
192 | - status=0 | |
193 | - end if | |
194 | - deallocate(work) | |
195 | - deallocate(ipiv) | |
196 | -end subroutine | |
197 | - | |
198 | -subroutine fvn_z_matinv(d,a,inva,status) | |
199 | - ! | |
200 | - ! Matrix inversion of a double complex matrix using BLAS and LAPACK | |
201 | - ! | |
202 | - ! d (in) : matrix rank | |
203 | - ! a (in) : input matrix | |
204 | - ! inva (out) : inversed matrix | |
205 | - ! status (ou) : =0 if something failed | |
206 | - ! | |
207 | - integer, intent(in) :: d | |
208 | - double complex, intent(in) :: a(d,d) | |
209 | - double complex, intent(out) :: inva(d,d) | |
210 | - integer, intent(out) :: status | |
211 | - | |
212 | - integer, allocatable :: ipiv(:) | |
213 | - double complex, allocatable :: work(:) | |
214 | - double complex :: twork(1) | |
215 | - integer :: info | |
216 | - integer :: lwork | |
217 | - | |
218 | - status=1 | |
219 | - | |
220 | - allocate(ipiv(d)) | |
221 | - ! copy a into inva using BLAS | |
222 | - !call zcopy(d*d,a,1,inva,1) | |
223 | - inva(:,:)=a(:,:) | |
224 | - | |
225 | - ! LU factorization using LAPACK | |
226 | - call zgetrf(d,d,inva,d,ipiv,info) | |
227 | - ! if info is not equal to 0, something went wrong we exit setting status to 0 | |
228 | - if (info /= 0) then | |
229 | - status=0 | |
230 | - deallocate(ipiv) | |
231 | - return | |
232 | - end if | |
233 | - ! we use the query fonction of xxxtri to obtain the optimal workspace size | |
234 | - call zgetri(d,inva,d,ipiv,twork,-1,info) | |
235 | - lwork=int(twork(1)) | |
236 | - allocate(work(lwork)) | |
237 | - ! Matrix inversion using LAPACK | |
238 | - call zgetri(d,inva,d,ipiv,work,lwork,info) | |
239 | - ! again if info is not equal to 0, we exit setting status to 0 | |
240 | - if (info /= 0) then | |
241 | - status=0 | |
242 | - end if | |
243 | - deallocate(work) | |
244 | - deallocate(ipiv) | |
245 | -end subroutine | |
246 | - | |
247 | - | |
248 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
249 | -! | |
250 | -! Determinants | |
251 | -! | |
252 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
253 | -function fvn_s_det(d,a,status) | |
254 | - ! | |
255 | - ! Evaluate the determinant of a square matrix using lapack LU factorization | |
256 | - ! | |
257 | - ! d (in) : matrix rank | |
258 | - ! a (in) : The Matrix | |
259 | - ! status (out) : =0 if LU factorization failed | |
260 | - ! | |
261 | - integer, intent(in) :: d | |
262 | - real, intent(in) :: a(d,d) | |
263 | - integer, intent(out) :: status | |
264 | - real :: fvn_s_det | |
265 | - | |
266 | - real, allocatable :: wc_a(:,:) | |
267 | - integer, allocatable :: ipiv(:) | |
268 | - integer :: info,i | |
269 | - | |
270 | - status=1 | |
271 | - allocate(wc_a(d,d)) | |
272 | - allocate(ipiv(d)) | |
273 | - wc_a(:,:)=a(:,:) | |
274 | - call sgetrf(d,d,wc_a,d,ipiv,info) | |
275 | - if (info/= 0) then | |
276 | - status=0 | |
277 | - fvn_s_det=0.e0 | |
278 | - deallocate(ipiv) | |
279 | - deallocate(wc_a) | |
280 | - return | |
281 | - end if | |
282 | - fvn_s_det=1.e0 | |
283 | - do i=1,d | |
284 | - if (ipiv(i)==i) then | |
285 | - fvn_s_det=fvn_s_det*wc_a(i,i) | |
286 | - else | |
287 | - fvn_s_det=-fvn_s_det*wc_a(i,i) | |
288 | - end if | |
289 | - end do | |
290 | - deallocate(ipiv) | |
291 | - deallocate(wc_a) | |
292 | - | |
293 | -end function | |
294 | - | |
295 | -function fvn_d_det(d,a,status) | |
296 | - ! | |
297 | - ! Evaluate the determinant of a square matrix using lapack LU factorization | |
298 | - ! | |
299 | - ! d (in) : matrix rank | |
300 | - ! a (in) : The Matrix | |
301 | - ! status (out) : =0 if LU factorization failed | |
302 | - ! | |
303 | - integer, intent(in) :: d | |
304 | - double precision, intent(in) :: a(d,d) | |
305 | - integer, intent(out) :: status | |
306 | - double precision :: fvn_d_det | |
307 | - | |
308 | - double precision, allocatable :: wc_a(:,:) | |
309 | - integer, allocatable :: ipiv(:) | |
310 | - integer :: info,i | |
311 | - | |
312 | - status=1 | |
313 | - allocate(wc_a(d,d)) | |
314 | - allocate(ipiv(d)) | |
315 | - wc_a(:,:)=a(:,:) | |
316 | - call dgetrf(d,d,wc_a,d,ipiv,info) | |
317 | - if (info/= 0) then | |
318 | - status=0 | |
319 | - fvn_d_det=0.d0 | |
320 | - deallocate(ipiv) | |
321 | - deallocate(wc_a) | |
322 | - return | |
323 | - end if | |
324 | - fvn_d_det=1.d0 | |
325 | - do i=1,d | |
326 | - if (ipiv(i)==i) then | |
327 | - fvn_d_det=fvn_d_det*wc_a(i,i) | |
328 | - else | |
329 | - fvn_d_det=-fvn_d_det*wc_a(i,i) | |
330 | - end if | |
331 | - end do | |
332 | - deallocate(ipiv) | |
333 | - deallocate(wc_a) | |
334 | - | |
335 | -end function | |
336 | - | |
337 | -function fvn_c_det(d,a,status) ! | |
338 | - ! Evaluate the determinant of a square matrix using lapack LU factorization | |
339 | - ! | |
340 | - ! d (in) : matrix rank | |
341 | - ! a (in) : The Matrix | |
342 | - ! status (out) : =0 if LU factorization failed | |
343 | - ! | |
344 | - integer, intent(in) :: d | |
345 | - complex, intent(in) :: a(d,d) | |
346 | - integer, intent(out) :: status | |
347 | - complex :: fvn_c_det | |
348 | - | |
349 | - complex, allocatable :: wc_a(:,:) | |
350 | - integer, allocatable :: ipiv(:) | |
351 | - integer :: info,i | |
352 | - | |
353 | - status=1 | |
354 | - allocate(wc_a(d,d)) | |
355 | - allocate(ipiv(d)) | |
356 | - wc_a(:,:)=a(:,:) | |
357 | - call cgetrf(d,d,wc_a,d,ipiv,info) | |
358 | - if (info/= 0) then | |
359 | - status=0 | |
360 | - fvn_c_det=(0.e0,0.e0) | |
361 | - deallocate(ipiv) | |
362 | - deallocate(wc_a) | |
363 | - return | |
364 | - end if | |
365 | - fvn_c_det=(1.e0,0.e0) | |
366 | - do i=1,d | |
367 | - if (ipiv(i)==i) then | |
368 | - fvn_c_det=fvn_c_det*wc_a(i,i) | |
369 | - else | |
370 | - fvn_c_det=-fvn_c_det*wc_a(i,i) | |
371 | - end if | |
372 | - end do | |
373 | - deallocate(ipiv) | |
374 | - deallocate(wc_a) | |
375 | - | |
376 | -end function | |
377 | - | |
378 | -function fvn_z_det(d,a,status) | |
379 | - ! | |
380 | - ! Evaluate the determinant of a square matrix using lapack LU factorization | |
381 | - ! | |
382 | - ! d (in) : matrix rank | |
383 | - ! a (in) : The Matrix | |
384 | - ! det (out) : determinant | |
385 | - ! status (out) : =0 if LU factorization failed | |
386 | - ! | |
387 | - integer, intent(in) :: d | |
388 | - double complex, intent(in) :: a(d,d) | |
389 | - integer, intent(out) :: status | |
390 | - double complex :: fvn_z_det | |
391 | - | |
392 | - double complex, allocatable :: wc_a(:,:) | |
393 | - integer, allocatable :: ipiv(:) | |
394 | - integer :: info,i | |
395 | - | |
396 | - status=1 | |
397 | - allocate(wc_a(d,d)) | |
398 | - allocate(ipiv(d)) | |
399 | - wc_a(:,:)=a(:,:) | |
400 | - call zgetrf(d,d,wc_a,d,ipiv,info) | |
401 | - if (info/= 0) then | |
402 | - status=0 | |
403 | - fvn_z_det=(0.d0,0.d0) | |
404 | - deallocate(ipiv) | |
405 | - deallocate(wc_a) | |
406 | - return | |
407 | - end if | |
408 | - fvn_z_det=(1.d0,0.d0) | |
409 | - do i=1,d | |
410 | - if (ipiv(i)==i) then | |
411 | - fvn_z_det=fvn_z_det*wc_a(i,i) | |
412 | - else | |
413 | - fvn_z_det=-fvn_z_det*wc_a(i,i) | |
414 | - end if | |
415 | - end do | |
416 | - deallocate(ipiv) | |
417 | - deallocate(wc_a) | |
418 | - | |
419 | -end function | |
420 | - | |
421 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
422 | -! | |
423 | -! Condition test | |
424 | -! | |
425 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
426 | -! 1-norm | |
427 | -! fonction lapack slange,dlange,clange,zlange pour obtenir la 1-norm | |
428 | -! fonction lapack sgecon,dgecon,cgecon,zgecon pour calculer la rcond | |
429 | -! | |
430 | -subroutine fvn_s_matcon(d,a,rcond,status) | |
431 | - ! Matrix condition (reciprocal of condition number) | |
432 | - ! | |
433 | - ! d (in) : matrix rank | |
434 | - ! a (in) : The Matrix | |
435 | - ! rcond (out) : guess what | |
436 | - ! status (out) : =0 if something went wrong | |
437 | - ! | |
438 | - integer, intent(in) :: d | |
439 | - real, intent(in) :: a(d,d) | |
440 | - real, intent(out) :: rcond | |
441 | - integer, intent(out) :: status | |
442 | - | |
443 | - real, allocatable :: work(:) | |
444 | - integer, allocatable :: iwork(:) | |
445 | - real :: anorm | |
446 | - real, allocatable :: wc_a(:,:) ! working copy of a | |
447 | - integer :: info | |
448 | - integer, allocatable :: ipiv(:) | |
449 | - | |
450 | - real, external :: slange | |
451 | - | |
452 | - | |
453 | - status=1 | |
454 | - | |
455 | - anorm=slange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | |
456 | - | |
457 | - allocate(wc_a(d,d)) | |
458 | - !call scopy(d*d,a,1,wc_a,1) | |
459 | - wc_a(:,:)=a(:,:) | |
460 | - | |
461 | - allocate(ipiv(d)) | |
462 | - call sgetrf(d,d,wc_a,d,ipiv,info) | |
463 | - if (info /= 0) then | |
464 | - status=0 | |
465 | - deallocate(ipiv) | |
466 | - deallocate(wc_a) | |
467 | - return | |
468 | - end if | |
469 | - allocate(work(4*d)) | |
470 | - allocate(iwork(d)) | |
471 | - call sgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | |
472 | - if (info /= 0) then | |
473 | - status=0 | |
474 | - end if | |
475 | - deallocate(iwork) | |
476 | - deallocate(work) | |
477 | - deallocate(ipiv) | |
478 | - deallocate(wc_a) | |
479 | - | |
480 | -end subroutine | |
481 | - | |
482 | -subroutine fvn_d_matcon(d,a,rcond,status) | |
483 | - ! Matrix condition (reciprocal of condition number) | |
484 | - ! | |
485 | - ! d (in) : matrix rank | |
486 | - ! a (in) : The Matrix | |
487 | - ! rcond (out) : guess what | |
488 | - ! status (out) : =0 if something went wrong | |
489 | - ! | |
490 | - integer, intent(in) :: d | |
491 | - double precision, intent(in) :: a(d,d) | |
492 | - double precision, intent(out) :: rcond | |
493 | - integer, intent(out) :: status | |
494 | - | |
495 | - double precision, allocatable :: work(:) | |
496 | - integer, allocatable :: iwork(:) | |
497 | - double precision :: anorm | |
498 | - double precision, allocatable :: wc_a(:,:) ! working copy of a | |
499 | - integer :: info | |
500 | - integer, allocatable :: ipiv(:) | |
501 | - | |
502 | - double precision, external :: dlange | |
503 | - | |
504 | - | |
505 | - status=1 | |
506 | - | |
507 | - anorm=dlange('1',d,d,a,d,work) ! work is unallocated as it is only used when computing infinity norm | |
508 | - | |
509 | - allocate(wc_a(d,d)) | |
510 | - !call dcopy(d*d,a,1,wc_a,1) | |
511 | - wc_a(:,:)=a(:,:) | |
512 | - | |
513 | - allocate(ipiv(d)) | |
514 | - call dgetrf(d,d,wc_a,d,ipiv,info) | |
515 | - if (info /= 0) then | |
516 | - status=0 | |
517 | - deallocate(ipiv) | |
518 | - deallocate(wc_a) | |
519 | - return | |
520 | - end if | |
521 | - | |
522 | - allocate(work(4*d)) | |
523 | - allocate(iwork(d)) | |
524 | - call dgecon('1',d,wc_a,d,anorm,rcond,work,iwork,info) | |
525 | - if (info /= 0) then | |
526 | - status=0 | |
527 | - end if | |
528 | - deallocate(iwork) | |
529 | - deallocate(work) | |
530 | - deallocate(ipiv) | |
531 | - deallocate(wc_a) | |
532 | - | |
533 | -end subroutine | |
534 | - | |
535 | -subroutine fvn_c_matcon(d,a,rcond,status) | |
536 | - ! Matrix condition (reciprocal of condition number) | |
537 | - ! | |
538 | - ! d (in) : matrix rank | |
539 | - ! a (in) : The Matrix | |
540 | - ! rcond (out) : guess what | |
541 | - ! status (out) : =0 if something went wrong | |
542 | - ! | |
543 | - integer, intent(in) :: d | |
544 | - complex, intent(in) :: a(d,d) | |
545 | - real, intent(out) :: rcond | |
546 | - integer, intent(out) :: status | |
547 | - | |
548 | - real, allocatable :: rwork(:) | |
549 | - complex, allocatable :: work(:) | |
550 | - integer, allocatable :: iwork(:) | |
551 | - real :: anorm | |
552 | - complex, allocatable :: wc_a(:,:) ! working copy of a | |
553 | - integer :: info | |
554 | - integer, allocatable :: ipiv(:) | |
555 | - | |
556 | - real, external :: clange | |
557 | - | |
558 | - | |
559 | - status=1 | |
560 | - | |
561 | - anorm=clange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | |
562 | - | |
563 | - allocate(wc_a(d,d)) | |
564 | - !call ccopy(d*d,a,1,wc_a,1) | |
565 | - wc_a(:,:)=a(:,:) | |
566 | - | |
567 | - allocate(ipiv(d)) | |
568 | - call cgetrf(d,d,wc_a,d,ipiv,info) | |
569 | - if (info /= 0) then | |
570 | - status=0 | |
571 | - deallocate(ipiv) | |
572 | - deallocate(wc_a) | |
573 | - return | |
574 | - end if | |
575 | - allocate(work(2*d)) | |
576 | - allocate(rwork(2*d)) | |
577 | - call cgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | |
578 | - if (info /= 0) then | |
579 | - status=0 | |
580 | - end if | |
581 | - deallocate(rwork) | |
582 | - deallocate(work) | |
583 | - deallocate(ipiv) | |
584 | - deallocate(wc_a) | |
585 | -end subroutine | |
586 | - | |
587 | -subroutine fvn_z_matcon(d,a,rcond,status) | |
588 | - ! Matrix condition (reciprocal of condition number) | |
589 | - ! | |
590 | - ! d (in) : matrix rank | |
591 | - ! a (in) : The Matrix | |
592 | - ! rcond (out) : guess what | |
593 | - ! status (out) : =0 if something went wrong | |
594 | - ! | |
595 | - integer, intent(in) :: d | |
596 | - double complex, intent(in) :: a(d,d) | |
597 | - double precision, intent(out) :: rcond | |
598 | - integer, intent(out) :: status | |
599 | - | |
600 | - double complex, allocatable :: work(:) | |
601 | - double precision, allocatable :: rwork(:) | |
602 | - double precision :: anorm | |
603 | - double complex, allocatable :: wc_a(:,:) ! working copy of a | |
604 | - integer :: info | |
605 | - integer, allocatable :: ipiv(:) | |
606 | - | |
607 | - double precision, external :: zlange | |
608 | - | |
609 | - | |
610 | - status=1 | |
611 | - | |
612 | - anorm=zlange('1',d,d,a,d,rwork) ! rwork is unallocated as it is only used when computing infinity norm | |
613 | - | |
614 | - allocate(wc_a(d,d)) | |
615 | - !call zcopy(d*d,a,1,wc_a,1) | |
616 | - wc_a(:,:)=a(:,:) | |
617 | - | |
618 | - allocate(ipiv(d)) | |
619 | - call zgetrf(d,d,wc_a,d,ipiv,info) | |
620 | - if (info /= 0) then | |
621 | - status=0 | |
622 | - deallocate(ipiv) | |
623 | - deallocate(wc_a) | |
624 | - return | |
625 | - end if | |
626 | - | |
627 | - allocate(work(2*d)) | |
628 | - allocate(rwork(2*d)) | |
629 | - call zgecon('1',d,wc_a,d,anorm,rcond,work,rwork,info) | |
630 | - if (info /= 0) then | |
631 | - status=0 | |
632 | - end if | |
633 | - deallocate(rwork) | |
634 | - deallocate(work) | |
635 | - deallocate(ipiv) | |
636 | - deallocate(wc_a) | |
637 | -end subroutine | |
638 | - | |
639 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
640 | -! | |
641 | -! Valeurs propres/ Vecteurs propre | |
642 | -! | |
643 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
644 | - | |
645 | -subroutine fvn_s_matev(d,a,evala,eveca,status) | |
646 | - ! | |
647 | - ! integer d (in) : matrice rank | |
648 | - ! real a(d,d) (in) : The Matrix | |
649 | - ! complex evala(d) (out) : eigenvalues | |
650 | - ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
651 | - ! integer (out) : status =0 if something went wrong | |
652 | - ! | |
653 | - ! interfacing Lapack routine SGEEV | |
654 | - | |
655 | - integer, intent(in) :: d | |
656 | - real, intent(in) :: a(d,d) | |
657 | - complex, intent(out) :: evala(d) | |
658 | - complex, intent(out) :: eveca(d,d) | |
659 | - integer, intent(out) :: status | |
660 | - | |
661 | - real, allocatable :: wc_a(:,:) ! a working copy of a | |
662 | - integer :: info | |
663 | - integer :: lwork | |
664 | - real, allocatable :: wr(:),wi(:) | |
665 | - real :: vl ! unused but necessary for the call | |
666 | - real, allocatable :: vr(:,:) | |
667 | - real, allocatable :: work(:) | |
668 | - real :: twork(1) | |
669 | - integer i | |
670 | - integer j | |
671 | - | |
672 | - ! making a working copy of a | |
673 | - allocate(wc_a(d,d)) | |
674 | - !call scopy(d*d,a,1,wc_a,1) | |
675 | - wc_a(:,:)=a(:,:) | |
676 | - | |
677 | - allocate(wr(d)) | |
678 | - allocate(wi(d)) | |
679 | - allocate(vr(d,d)) | |
680 | - ! query optimal work size | |
681 | - call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | |
682 | - lwork=int(twork(1)) | |
683 | - allocate(work(lwork)) | |
684 | - call sgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | |
685 | - | |
686 | - if (info /= 0) then | |
687 | - status=0 | |
688 | - deallocate(work) | |
689 | - deallocate(vr) | |
690 | - deallocate(wi) | |
691 | - deallocate(wr) | |
692 | - deallocate(wc_a) | |
693 | - return | |
694 | - end if | |
695 | - | |
696 | - ! now fill in the results | |
697 | - i=1 | |
698 | - do while(i<=d) | |
699 | - evala(i)=cmplx(wr(i),wi(i)) | |
700 | - if (wi(i) == 0.) then ! eigenvalue is real | |
701 | - eveca(:,i)=cmplx(vr(:,i),0.) | |
702 | - else ! eigenvalue is complex | |
703 | - evala(i+1)=cmplx(wr(i+1),wi(i+1)) | |
704 | - eveca(:,i)=cmplx(vr(:,i),vr(:,i+1)) | |
705 | - eveca(:,i+1)=cmplx(vr(:,i),-vr(:,i+1)) | |
706 | - i=i+1 | |
707 | - end if | |
708 | - i=i+1 | |
709 | - enddo | |
710 | - deallocate(work) | |
711 | - deallocate(vr) | |
712 | - deallocate(wi) | |
713 | - deallocate(wr) | |
714 | - deallocate(wc_a) | |
715 | - | |
716 | -end subroutine | |
717 | - | |
718 | -subroutine fvn_d_matev(d,a,evala,eveca,status) | |
719 | - ! | |
720 | - ! integer d (in) : matrice rank | |
721 | - ! double precision a(d,d) (in) : The Matrix | |
722 | - ! double complex evala(d) (out) : eigenvalues | |
723 | - ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
724 | - ! integer (out) : status =0 if something went wrong | |
725 | - ! | |
726 | - ! interfacing Lapack routine DGEEV | |
727 | - integer, intent(in) :: d | |
728 | - double precision, intent(in) :: a(d,d) | |
729 | - double complex, intent(out) :: evala(d) | |
730 | - double complex, intent(out) :: eveca(d,d) | |
731 | - integer, intent(out) :: status | |
732 | - | |
733 | - double precision, allocatable :: wc_a(:,:) ! a working copy of a | |
734 | - integer :: info | |
735 | - integer :: lwork | |
736 | - double precision, allocatable :: wr(:),wi(:) | |
737 | - double precision :: vl ! unused but necessary for the call | |
738 | - double precision, allocatable :: vr(:,:) | |
739 | - double precision, allocatable :: work(:) | |
740 | - double precision :: twork(1) | |
741 | - integer i | |
742 | - integer j | |
743 | - | |
744 | - ! making a working copy of a | |
745 | - allocate(wc_a(d,d)) | |
746 | - !call dcopy(d*d,a,1,wc_a,1) | |
747 | - wc_a(:,:)=a(:,:) | |
748 | - | |
749 | - allocate(wr(d)) | |
750 | - allocate(wi(d)) | |
751 | - allocate(vr(d,d)) | |
752 | - ! query optimal work size | |
753 | - call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,twork,-1,info) | |
754 | - lwork=int(twork(1)) | |
755 | - allocate(work(lwork)) | |
756 | - call dgeev('N','V',d,wc_a,d,wr,wi,vl,1,vr,d,work,lwork,info) | |
757 | - | |
758 | - if (info /= 0) then | |
759 | - status=0 | |
760 | - deallocate(work) | |
761 | - deallocate(vr) | |
762 | - deallocate(wi) | |
763 | - deallocate(wr) | |
764 | - deallocate(wc_a) | |
765 | - return | |
766 | - end if | |
767 | - | |
768 | - ! now fill in the results | |
769 | - i=1 | |
770 | - do while(i<=d) | |
771 | - evala(i)=dcmplx(wr(i),wi(i)) | |
772 | - if (wi(i) == 0.) then ! eigenvalue is real | |
773 | - eveca(:,i)=dcmplx(vr(:,i),0.) | |
774 | - else ! eigenvalue is complex | |
775 | - evala(i+1)=dcmplx(wr(i+1),wi(i+1)) | |
776 | - eveca(:,i)=dcmplx(vr(:,i),vr(:,i+1)) | |
777 | - eveca(:,i+1)=dcmplx(vr(:,i),-vr(:,i+1)) | |
778 | - i=i+1 | |
779 | - end if | |
780 | - i=i+1 | |
781 | - enddo | |
782 | - | |
783 | - deallocate(work) | |
784 | - deallocate(vr) | |
785 | - deallocate(wi) | |
786 | - deallocate(wr) | |
787 | - deallocate(wc_a) | |
788 | - | |
789 | -end subroutine | |
790 | - | |
791 | -subroutine fvn_c_matev(d,a,evala,eveca,status) | |
792 | - ! | |
793 | - ! integer d (in) : matrice rank | |
794 | - ! complex a(d,d) (in) : The Matrix | |
795 | - ! complex evala(d) (out) : eigenvalues | |
796 | - ! complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
797 | - ! integer (out) : status =0 if something went wrong | |
798 | - ! | |
799 | - ! interfacing Lapack routine CGEEV | |
800 | - | |
801 | - integer, intent(in) :: d | |
802 | - complex, intent(in) :: a(d,d) | |
803 | - complex, intent(out) :: evala(d) | |
804 | - complex, intent(out) :: eveca(d,d) | |
805 | - integer, intent(out) :: status | |
806 | - | |
807 | - complex, allocatable :: wc_a(:,:) ! a working copy of a | |
808 | - integer :: info | |
809 | - integer :: lwork | |
810 | - complex, allocatable :: work(:) | |
811 | - complex :: twork(1) | |
812 | - real, allocatable :: rwork(:) | |
813 | - complex :: vl ! unused but necessary for the call | |
814 | - | |
815 | - status=1 | |
816 | - | |
817 | - ! making a working copy of a | |
818 | - allocate(wc_a(d,d)) | |
819 | - !call ccopy(d*d,a,1,wc_a,1) | |
820 | - wc_a(:,:)=a(:,:) | |
821 | - | |
822 | - | |
823 | - ! query optimal work size | |
824 | - call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | |
825 | - lwork=int(twork(1)) | |
826 | - allocate(work(lwork)) | |
827 | - allocate(rwork(2*d)) | |
828 | - call cgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | |
829 | - | |
830 | - if (info /= 0) then | |
831 | - status=0 | |
832 | - end if | |
833 | - deallocate(rwork) | |
834 | - deallocate(work) | |
835 | - deallocate(wc_a) | |
836 | - | |
837 | -end subroutine | |
838 | - | |
839 | -subroutine fvn_z_matev(d,a,evala,eveca,status) | |
840 | - ! | |
841 | - ! integer d (in) : matrice rank | |
842 | - ! double complex a(d,d) (in) : The Matrix | |
843 | - ! double complex evala(d) (out) : eigenvalues | |
844 | - ! double complex eveca(d,d) (out) : eveca(:,j) = jth eigenvector | |
845 | - ! integer (out) : status =0 if something went wrong | |
846 | - ! | |
847 | - ! interfacing Lapack routine ZGEEV | |
848 | - | |
849 | - integer, intent(in) :: d | |
850 | - double complex, intent(in) :: a(d,d) | |
851 | - double complex, intent(out) :: evala(d) | |
852 | - double complex, intent(out) :: eveca(d,d) | |
853 | - integer, intent(out) :: status | |
854 | - | |
855 | - double complex, allocatable :: wc_a(:,:) ! a working copy of a | |
856 | - integer :: info | |
857 | - integer :: lwork | |
858 | - double complex, allocatable :: work(:) | |
859 | - double complex :: twork(1) | |
860 | - double precision, allocatable :: rwork(:) | |
861 | - double complex :: vl ! unused but necessary for the call | |
862 | - | |
863 | - status=1 | |
864 | - | |
865 | - ! making a working copy of a | |
866 | - allocate(wc_a(d,d)) | |
867 | - !call zcopy(d*d,a,1,wc_a,1) | |
868 | - wc_a(:,:)=a(:,:) | |
869 | - | |
870 | - ! query optimal work size | |
871 | - call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,twork,-1,rwork,info) | |
872 | - lwork=int(twork(1)) | |
873 | - allocate(work(lwork)) | |
874 | - allocate(rwork(2*d)) | |
875 | - call zgeev('N','V',d,wc_a,d,evala,vl,1,eveca,d,work,lwork,rwork,info) | |
876 | - | |
877 | - if (info /= 0) then | |
878 | - status=0 | |
879 | - end if | |
880 | - deallocate(rwork) | |
881 | - deallocate(work) | |
882 | - deallocate(wc_a) | |
883 | - | |
884 | -end subroutine | |
885 | - | |
886 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
887 | -! | |
888 | -! Akima spline interpolation and spline evaluation | |
889 | -! | |
890 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
891 | - | |
892 | -! Single precision | |
893 | -subroutine fvn_s_akima(n,x,y,br,co) | |
894 | - implicit none | |
895 | - integer, intent(in) :: n | |
896 | - real, intent(in) :: x(n) | |
897 | - real, intent(in) :: y(n) | |
898 | - real, intent(out) :: br(n) | |
899 | - real, intent(out) :: co(4,n) | |
900 | - | |
901 | - real, allocatable :: var(:),z(:) | |
902 | - real :: wi_1,wi | |
903 | - integer :: i | |
904 | - real :: dx,a,b | |
905 | - | |
906 | - ! br is just a copy of x | |
907 | - br(:)=x(:) | |
908 | - | |
909 | - allocate(var(n)) | |
910 | - allocate(z(n)) | |
911 | - ! evaluate the variations | |
912 | - do i=1, n-1 | |
913 | - var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | |
914 | - end do | |
915 | - var(n+2)=2.e0*var(n+1)-var(n) | |
916 | - var(n+3)=2.e0*var(n+2)-var(n+1) | |
917 | - var(2)=2.e0*var(3)-var(4) | |
918 | - var(1)=2.e0*var(2)-var(3) | |
919 | - | |
920 | - do i = 1, n | |
921 | - wi_1=abs(var(i+3)-var(i+2)) | |
922 | - wi=abs(var(i+1)-var(i)) | |
923 | - if ((wi_1+wi).eq.0.e0) then | |
924 | - z(i)=(var(i+2)+var(i+1))/2.e0 | |
925 | - else | |
926 | - z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | |
927 | - end if | |
928 | - end do | |
929 | - | |
930 | - do i=1, n-1 | |
931 | - dx=x(i+1)-x(i) | |
932 | - a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | |
933 | - b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | |
934 | - co(1,i)=y(i) | |
935 | - co(2,i)=z(i) | |
936 | - !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | |
937 | - !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | |
938 | - co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | |
939 | - co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! | |
940 | - ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | |
941 | - ! etrangement la fonction csval corrige et donne la bonne valeur ... | |
942 | - end do | |
943 | - co(1,n)=y(n) | |
944 | - co(2,n)=z(n) | |
945 | - co(3,n)=0.e0 | |
946 | - co(4,n)=0.e0 | |
947 | - | |
948 | - deallocate(z) | |
949 | - deallocate(var) | |
950 | - | |
951 | -end subroutine | |
952 | - | |
953 | -! Double precision | |
954 | -subroutine fvn_d_akima(n,x,y,br,co) | |
955 | - | |
956 | - implicit none | |
957 | - integer, intent(in) :: n | |
958 | - double precision, intent(in) :: x(n) | |
959 | - double precision, intent(in) :: y(n) | |
960 | - double precision, intent(out) :: br(n) | |
961 | - double precision, intent(out) :: co(4,n) | |
962 | - | |
963 | - double precision, allocatable :: var(:),z(:) | |
964 | - double precision :: wi_1,wi | |
965 | - integer :: i | |
966 | - double precision :: dx,a,b | |
967 | - | |
968 | - ! br is just a copy of x | |
969 | - br(:)=x(:) | |
970 | - | |
971 | - allocate(var(n)) | |
972 | - allocate(z(n)) | |
973 | - ! evaluate the variations | |
974 | - do i=1, n-1 | |
975 | - var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) | |
976 | - end do | |
977 | - var(n+2)=2.d0*var(n+1)-var(n) | |
978 | - var(n+3)=2.d0*var(n+2)-var(n+1) | |
979 | - var(2)=2.d0*var(3)-var(4) | |
980 | - var(1)=2.d0*var(2)-var(3) | |
981 | - | |
982 | - do i = 1, n | |
983 | - wi_1=dabs(var(i+3)-var(i+2)) | |
984 | - wi=dabs(var(i+1)-var(i)) | |
985 | - if ((wi_1+wi).eq.0.d0) then | |
986 | - z(i)=(var(i+2)+var(i+1))/2.d0 | |
987 | - else | |
988 | - z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) | |
989 | - end if | |
990 | - end do | |
991 | - | |
992 | - do i=1, n-1 | |
993 | - dx=x(i+1)-x(i) | |
994 | - a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd | |
995 | - b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd | |
996 | - co(1,i)=y(i) | |
997 | - co(2,i)=z(i) | |
998 | - !co(3,i)=-(a-3.*b)/dx**2 ! mรฉthode wd | |
999 | - !co(4,i)=(a-2.*b)/dx**3 ! mรฉthode wd | |
1000 | - co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! mรฉthode JP Moreau | |
1001 | - co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! | |
1002 | - ! les coefficients donnรฉs par imsl sont co(3,i)*2 et co(4,i)*6 | |
1003 | - ! etrangement la fonction csval corrige et donne la bonne valeur ... | |
1004 | - end do | |
1005 | - co(1,n)=y(n) | |
1006 | - co(2,n)=z(n) | |
1007 | - co(3,n)=0.d0 | |
1008 | - co(4,n)=0.d0 | |
1009 | - | |
1010 | - deallocate(z) | |
1011 | - deallocate(var) | |
1012 | - | |
1013 | -end subroutine | |
1014 | - | |
1015 | -! | |
1016 | -! Single precision spline evaluation | |
1017 | -! | |
1018 | -function fvn_s_spline_eval(x,n,br,co) | |
1019 | - implicit none | |
1020 | - real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | |
1021 | - integer, intent(in) :: n ! number of intervals | |
1022 | - real, intent(in) :: br(n+1) ! breakpoints | |
1023 | - real, intent(in) :: co(4,n+1) ! spline coeeficients | |
1024 | - real :: fvn_s_spline_eval | |
1025 | - | |
1026 | - integer :: i | |
1027 | - real :: dx | |
1028 | - | |
1029 | - if (x<=br(1)) then | |
1030 | - i=1 | |
1031 | - else if (x>=br(n+1)) then | |
1032 | - i=n | |
1033 | - else | |
1034 | - i=1 | |
1035 | - do while(x>=br(i)) | |
1036 | - i=i+1 | |
1037 | - end do | |
1038 | - i=i-1 | |
1039 | - end if | |
1040 | - dx=x-br(i) | |
1041 | - fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | |
1042 | - | |
1043 | -end function | |
1044 | - | |
1045 | -! Double precision spline evaluation | |
1046 | -function fvn_d_spline_eval(x,n,br,co) | |
1047 | - implicit none | |
1048 | - double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated | |
1049 | - integer, intent(in) :: n ! number of intervals | |
1050 | - double precision, intent(in) :: br(n+1) ! breakpoints | |
1051 | - double precision, intent(in) :: co(4,n+1) ! spline coeeficients | |
1052 | - double precision :: fvn_d_spline_eval | |
1053 | - | |
1054 | - integer :: i | |
1055 | - double precision :: dx | |
1056 | - | |
1057 | - | |
1058 | - if (x<=br(1)) then | |
1059 | - i=1 | |
1060 | - else if (x>=br(n+1)) then | |
1061 | - i=n | |
1062 | - else | |
1063 | - i=1 | |
1064 | - do while(x>=br(i)) | |
1065 | - i=i+1 | |
1066 | - end do | |
1067 | - i=i-1 | |
1068 | - end if | |
1069 | - | |
1070 | - dx=x-br(i) | |
1071 | - fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 | |
1072 | - | |
1073 | -end function | |
1074 | - | |
1075 | - | |
1076 | -! | |
1077 | -! Muller | |
1078 | -! | |
1079 | -! | |
1080 | -! | |
1081 | -! William Daniau 2007 | |
1082 | -! | |
1083 | -! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | |
1084 | -! http://plato.asu.edu/ftp/other_software/muller.f | |
1085 | -! | |
1086 | -! it can be used as a replacement for imsl routine dzanly with minor changes | |
1087 | -! | |
1088 | -!----------------------------------------------------------------------- | |
1089 | -! | |
1090 | -! purpose - zeros of an analytic complex function | |
1091 | -! using the muller method with deflation | |
1092 | -! | |
1093 | -! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | |
1094 | -! infer,ier) | |
1095 | -! | |
1096 | -! arguments f - a complex function subprogram, f(z), written | |
1097 | -! by the user specifying the equation whose | |
1098 | -! roots are to be found. f must appear in | |
1099 | -! an external statement in the calling pro- | |
1100 | -! gram. | |
1101 | -! eps - 1st stopping criterion. let fp(z)=f(z)/p | |
1102 | -! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | |
1103 | -! and z(1),...,z(k-1) are previously found | |
1104 | -! roots. if ((cdabs(f(z)).le.eps) .and. | |
1105 | -! (cdabs(fp(z)).le.eps)), then z is accepted | |
1106 | -! as a root. (input) | |
1107 | -! eps1 - 2nd stopping criterion. a root is accepted | |
1108 | -! if two successive approximations to a given | |
1109 | -! root agree within eps1. (input) | |
1110 | -! note. if either or both of the stopping | |
1111 | -! criteria are fulfilled, the root is | |
1112 | -! accepted. | |
1113 | -! kn - the number of known roots which must be stored | |
1114 | -! in x(1),...,x(kn), prior to entry to muller | |
1115 | -! nguess - the number of initial guesses provided. these | |
1116 | -! guesses must be stored in x(kn+1),..., | |
1117 | -! x(kn+nguess). nguess must be set equal | |
1118 | -! to zero if no guesses are provided. (input) | |
1119 | -! n - the number of new roots to be found by | |
1120 | -! muller (input) | |
1121 | -! x - a complex vector of length kn+n. x(1),..., | |
1122 | -! x(kn) on input must contain any known | |
1123 | -! roots. x(kn+1),..., x(kn+n) on input may, | |
1124 | -! on user option, contain initial guesses for | |
1125 | -! the n new roots which are to be computed. | |
1126 | -! if the user does not provide an initial | |
1127 | -! guess, zero is used. | |
1128 | -! on output, x(kn+1),...,x(kn+n) contain the | |
1129 | -! approximate roots found by muller. | |
1130 | -! itmax - the maximum allowable number of iterations | |
1131 | -! per root (input) | |
1132 | -! infer - an integer vector of length kn+n. on | |
1133 | -! output infer(j) contains the number of | |
1134 | -! iterations used in finding the j-th root | |
1135 | -! when convergence was achieved. if | |
1136 | -! convergence was not obtained in itmax | |
1137 | -! iterations, infer(j) will be greater than | |
1138 | -! itmax (output). | |
1139 | -! ier - error parameter (output) | |
1140 | -! warning error | |
1141 | -! ier = 33 indicates failure to converge with- | |
1142 | -! in itmax iterations for at least one of | |
1143 | -! the (n) new roots. | |
1144 | -! | |
1145 | -! | |
1146 | -! remarks muller always returns the last approximation for root j | |
1147 | -! in x(j). if the convergence criterion is satisfied, | |
1148 | -! then infer(j) is less than or equal to itmax. if the | |
1149 | -! convergence criterion is not satisified, then infer(j) | |
1150 | -! is set to either itmax+1 or itmax+k, with k greater | |
1151 | -! than 1. infer(j) = itmax+1 indicates that muller did | |
1152 | -! not obtain convergence in the allowed number of iter- | |
1153 | -! ations. in this case, the user may wish to set itmax | |
1154 | -! to a larger value. infer(j) = itmax+k means that con- | |
1155 | -! vergence was obtained (on iteration k) for the defla- | |
1156 | -! ted function | |
1157 | -! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | |
1158 | -! | |
1159 | -! but failed for f(z). in this case, better initial | |
1160 | -! guesses might help or, it might be necessary to relax | |
1161 | -! the convergence criterion. | |
1162 | -! | |
1163 | -!----------------------------------------------------------------------- | |
1164 | -! | |
1165 | -subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | |
1166 | - implicit none | |
1167 | - double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq | |
1168 | - double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | |
1169 | - tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | |
1170 | - zero,p1,one,four,p5 | |
1171 | - | |
1172 | - double complex, external :: f | |
1173 | - integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | |
1174 | - knpng,jk,ick,nn,lm1,errcode | |
1175 | - double complex :: x(kn+n) | |
1176 | - integer :: infer(kn+n) | |
1177 | - | |
1178 | - | |
1179 | - data zero/(0.0,0.0)/,p1/(0.1,0.0)/, & | |
1180 | - one/(1.0,0.0)/,four/(4.0,0.0)/, & | |
1181 | - p5/(0.5,0.0)/, & | |
1182 | - rzero/0.0/,rten/10.0/,rhun/100.0/, & | |
1183 | - ax/0.1/,ickmax/3/,rp01/0.01/ | |
1184 | - | |
1185 | - ier = 0 | |
1186 | - if (n .lt. 1) then ! What the hell are doing here then ... | |
1187 | - return | |
1188 | - end if | |
1189 | - !eps1 = rten **(-nsig) | |
1190 | - eps1 = min(eps1,rp01) | |
1191 | - | |
1192 | - knp1 = kn+1 | |
1193 | - knpn = kn+n | |
1194 | - knpng = kn+nguess | |
1195 | - do i=1,knpn | |
1196 | - infer(i) = 0 | |
1197 | - if (i .gt. knpng) x(i) = zero | |
1198 | - end do | |
1199 | - l= knp1 | |
1200 | - | |
1201 | - ic=0 | |
1202 | -rloop: do while (l<=knpn) ! Main loop over new roots | |
1203 | - jk = 0 | |
1204 | - ick = 0 | |
1205 | - xl = x(l) | |
1206 | -icloop: do | |
1207 | - ic = 0 | |
1208 | - h = ax | |
1209 | - h = p1*h | |
1210 | - if (cdabs(xl) .gt. ax) h = p1*xl | |
1211 | -! first three points are | |
1212 | -! xl+h, xl-h, xl | |
1213 | - rt = xl+h | |
1214 | - call deflated_work(errcode) | |
1215 | - if (errcode == 1) then | |
1216 | - exit icloop | |
1217 | - end if | |
1218 | - | |
1219 | - z0 = fprt | |
1220 | - y0 = frt | |
1221 | - x0 = rt | |
1222 | - rt = xl-h | |
1223 | - call deflated_work(errcode) | |
1224 | - if (errcode == 1) then | |
1225 | - exit icloop | |
1226 | - end if | |
1227 | - | |
1228 | - z1 = fprt | |
1229 | - y1 = frt | |
1230 | - h = xl-rt | |
1231 | - d = h/(rt-x0) | |
1232 | - rt = xl | |
1233 | - | |
1234 | - call deflated_work(errcode) | |
1235 | - if (errcode == 1) then | |
1236 | - exit icloop | |
1237 | - end if | |
1238 | - | |
1239 | - | |
1240 | - z2 = fprt | |
1241 | - y2 = frt | |
1242 | -! begin main algorithm | |
1243 | - iloop: do | |
1244 | - dd = one + d | |
1245 | - t1 = z0*d*d | |
1246 | - t2 = z1*dd*dd | |
1247 | - xx = z2*dd | |
1248 | - t3 = z2*d | |
1249 | - bi = t1-t2+xx+t3 | |
1250 | - den = bi*bi-four*(xx*t1-t3*(t2-xx)) | |
1251 | -! use denominator of maximum amplitude | |
1252 | - t1 = cdsqrt(den) | |
1253 | - qz = rhun*max(cdabs(bi),cdabs(t1)) | |
1254 | - t2 = bi + t1 | |
1255 | - tpq = cdabs(t2)+qz | |
1256 | - if (tpq .eq. qz) t2 = zero | |
1257 | - t3 = bi - t1 | |
1258 | - tpq = cdabs(t3) + qz | |
1259 | - if (tpq .eq. qz) t3 = zero | |
1260 | - den = t2 | |
1261 | - qz = cdabs(t3)-cdabs(t2) | |
1262 | - if (qz .gt. rzero) den = t3 | |
1263 | -! test for zero denominator | |
1264 | - if (cdabs(den) .eq. rzero) then | |
1265 | - call trans_rt() | |
1266 | - call deflated_work(errcode) | |
1267 | - if (errcode == 1) then | |
1268 | - exit icloop | |
1269 | - end if | |
1270 | - z2 = fprt | |
1271 | - y2 = frt | |
1272 | - cycle iloop | |
1273 | - end if | |
1274 | - | |
1275 | - | |
1276 | - d = -xx/den | |
1277 | - d = d+d | |
1278 | - h = d*h | |
1279 | - rt = rt + h | |
1280 | -! check convergence of the first kind | |
1281 | - if (cdabs(h) .le. eps1*max(cdabs(rt),ax)) then | |
1282 | - if (ic .ne. 0) then | |
1283 | - exit icloop | |
1284 | - end if | |
1285 | - ic = 1 | |
1286 | - z0 = y1 | |
1287 | - z1 = y2 | |
1288 | - z2 = f(rt) | |
1289 | - xl = rt | |
1290 | - ick = ick+1 | |
1291 | - if (ick .le. ickmax) then | |
1292 | - cycle iloop | |
1293 | - end if | |
1294 | -! warning error, itmax = maximum | |
1295 | - jk = itmax + jk | |
1296 | - ier = 33 | |
1297 | - end if | |
1298 | - if (ic .ne. 0) then | |
1299 | - cycle icloop | |
1300 | - end if | |
1301 | - call deflated_work(errcode) | |
1302 | - if (errcode == 1) then | |
1303 | - exit icloop | |
1304 | - end if | |
1305 | - | |
1306 | - do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | |
1307 | - ! take remedial action to induce | |
1308 | - ! convergence | |
1309 | - d = d*p5 | |
1310 | - h = h*p5 | |
1311 | - rt = rt-h | |
1312 | - call deflated_work(errcode) | |
1313 | - if (errcode == 1) then | |
1314 | - exit icloop | |
1315 | - end if | |
1316 | - end do | |
1317 | - z0 = z1 | |
1318 | - z1 = z2 | |
1319 | - z2 = fprt | |
1320 | - y0 = y1 | |
1321 | - y1 = y2 | |
1322 | - y2 = frt | |
1323 | - end do iloop | |
1324 | - end do icloop | |
1325 | - x(l) = rt | |
1326 | - infer(l) = jk | |
1327 | - l = l+1 | |
1328 | - end do rloop | |
1329 | - | |
1330 | - contains | |
1331 | - subroutine trans_rt() | |
1332 | - tem = rten*eps1 | |
1333 | - if (cdabs(rt) .gt. ax) tem = tem*rt | |
1334 | - rt = rt+tem | |
1335 | - d = (h+tem)*d/h | |
1336 | - h = h+tem | |
1337 | - end subroutine trans_rt | |
1338 | - | |
1339 | - subroutine deflated_work(errcode) | |
1340 | - ! errcode=0 => no errors | |
1341 | - ! errcode=1 => jk>itmax or convergence of second kind achieved | |
1342 | - integer :: errcode,flag | |
1343 | - | |
1344 | - flag=1 | |
1345 | - loop1: do while(flag==1) | |
1346 | - errcode=0 | |
1347 | - jk = jk+1 | |
1348 | - if (jk .gt. itmax) then | |
1349 | - ier=33 | |
1350 | - errcode=1 | |
1351 | - return | |
1352 | - end if | |
1353 | - frt = f(rt) | |
1354 | - fprt = frt | |
1355 | - if (l /= 1) then | |
1356 | - lm1 = l-1 | |
1357 | - do i=1,lm1 | |
1358 | - tem = rt - x(i) | |
1359 | - if (cdabs(tem) .eq. rzero) then | |
1360 | - !if (ic .ne. 0) go to 15 !! ?? possible? | |
1361 | - call trans_rt() | |
1362 | - cycle loop1 | |
1363 | - end if | |
1364 | - fprt = fprt/tem | |
1365 | - end do | |
1366 | - end if | |
1367 | - flag=0 | |
1368 | - end do loop1 | |
1369 | - | |
1370 | - if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | |
1371 | - errcode=1 | |
1372 | - return | |
1373 | - end if | |
1374 | - | |
1375 | - end subroutine deflated_work | |
1376 | - | |
1377 | - end subroutine | |
1378 | - | |
1379 | - | |
1380 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1381 | -! | |
1382 | -! Integration | |
1383 | -! | |
1384 | -! Only double precision coded atm | |
1385 | -! | |
1386 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1387 | - | |
1388 | - | |
1389 | -subroutine fvn_d_gauss_legendre(n,qx,qw) | |
1390 | -! | |
1391 | -! This routine compute the n Gauss Legendre abscissas and weights | |
1392 | -! Adapted from Numerical Recipes routine gauleg | |
1393 | -! | |
1394 | -! n (in) : number of points | |
1395 | -! qx(out) : abscissas | |
1396 | -! qw(out) : weights | |
1397 | -! | |
1398 | -implicit none | |
1399 | -double precision,parameter :: pi=3.141592653589793d0 | |
1400 | -integer, intent(in) :: n | |
1401 | -double precision, intent(out) :: qx(n),qw(n) | |
1402 | - | |
1403 | -integer :: m,i,j | |
1404 | -double precision :: z,z1,p1,p2,p3,pp | |
1405 | -m=(n+1)/2 | |
1406 | -do i=1,m | |
1407 | - z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0)) | |
1408 | -iloop: do | |
1409 | - p1=1.d0 | |
1410 | - p2=0.d0 | |
1411 | - do j=1,n | |
1412 | - p3=p2 | |
1413 | - p2=p1 | |
1414 | - p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j) | |
1415 | - end do | |
1416 | - pp=dble(n)*(z*p1-p2)/(z*z-1.d0) | |
1417 | - z1=z | |
1418 | - z=z1-p1/pp | |
1419 | - if (dabs(z-z1)<=epsilon(z)) then | |
1420 | - exit iloop | |
1421 | - end if | |
1422 | - end do iloop | |
1423 | - qx(i)=-z | |
1424 | - qx(n+1-i)=z | |
1425 | - qw(i)=2.d0/((1.d0-z*z)*pp*pp) | |
1426 | - qw(n+1-i)=qw(i) | |
1427 | -end do | |
1428 | -end subroutine | |
1429 | - | |
1430 | - | |
1431 | - | |
1432 | -subroutine fvn_d_gl_integ(f,a,b,n,res) | |
1433 | -! | |
1434 | -! This is a simple non adaptative integration routine | |
1435 | -! using n gauss legendre abscissas and weights | |
1436 | -! | |
1437 | -! f(in) : the function to integrate | |
1438 | -! a(in) : lower bound | |
1439 | -! b(in) : higher bound | |
1440 | -! n(in) : number of gauss legendre pairs | |
1441 | -! res(out): the evaluation of the integral | |
1442 | -! | |
1443 | -double precision,external :: f | |
1444 | -double precision, intent(in) :: a,b | |
1445 | -integer, intent(in):: n | |
1446 | -double precision, intent(out) :: res | |
1447 | - | |
1448 | -double precision, allocatable :: qx(:),qw(:) | |
1449 | -double precision :: xm,xr | |
1450 | -integer :: i | |
1451 | - | |
1452 | -! First compute n gauss legendre abs and weight | |
1453 | -allocate(qx(n)) | |
1454 | -allocate(qw(n)) | |
1455 | -call fvn_d_gauss_legendre(n,qx,qw) | |
1456 | - | |
1457 | -xm=0.5d0*(b+a) | |
1458 | -xr=0.5d0*(b-a) | |
1459 | - | |
1460 | -res=0.d0 | |
1461 | - | |
1462 | -do i=1,n | |
1463 | - res=res+qw(i)*f(xm+xr*qx(i)) | |
1464 | -end do | |
1465 | - | |
1466 | -res=xr*res | |
1467 | - | |
1468 | -deallocate(qw) | |
1469 | -deallocate(qx) | |
1470 | - | |
1471 | -end subroutine | |
1472 | - | |
1473 | -!!!!!!!!!!!!!!!!!!!!!!!! | |
1474 | -! | |
1475 | -! Simple and double adaptative Gauss Kronrod integration based on | |
1476 | -! a modified version of quadpack ( http://www.netlib.org/quadpack | |
1477 | -! | |
1478 | -! Common parameters : | |
1479 | -! | |
1480 | -! key (in) | |
1481 | -! epsabs | |
1482 | -! epsrel | |
1483 | -! | |
1484 | -! | |
1485 | -!!!!!!!!!!!!!!!!!!!!!!!! | |
1486 | - | |
1487 | -subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | |
1488 | -! | |
1489 | -! Evaluate the integral of function f(x) between a and b | |
1490 | -! | |
1491 | -! f(in) : the function | |
1492 | -! a(in) : lower bound | |
1493 | -! b(in) : higher bound | |
1494 | -! epsabs(in) : desired absolute error | |
1495 | -! epsrel(in) : desired relative error | |
1496 | -! key(in) : gauss kronrod rule | |
1497 | -! 1: 7 - 15 points | |
1498 | -! 2: 10 - 21 points | |
1499 | -! 3: 15 - 31 points | |
1500 | -! 4: 20 - 41 points | |
1501 | -! 5: 25 - 51 points | |
1502 | -! 6: 30 - 61 points | |
1503 | -! | |
1504 | -! limit(in) : maximum number of subintervals in the partition of the | |
1505 | -! given integration interval (a,b). A value of 500 will give the same | |
1506 | -! behaviour as the imsl routine dqdag | |
1507 | -! | |
1508 | -! res(out) : estimated integral value | |
1509 | -! abserr(out) : estimated absolute error | |
1510 | -! ier(out) : error flag from quadpack routines | |
1511 | -! 0 : no error | |
1512 | -! 1 : maximum number of subdivisions allowed | |
1513 | -! has been achieved. one can allow more | |
1514 | -! subdivisions by increasing the value of | |
1515 | -! limit (and taking the according dimension | |
1516 | -! adjustments into account). however, if | |
1517 | -! this yield no improvement it is advised | |
1518 | -! to analyze the integrand in order to | |
1519 | -! determine the integration difficulaties. | |
1520 | -! if the position of a local difficulty can | |
1521 | -! be determined (i.e.singularity, | |
1522 | -! discontinuity within the interval) one | |
1523 | -! will probably gain from splitting up the | |
1524 | -! interval at this point and calling the | |
1525 | -! integrator on the subranges. if possible, | |
1526 | -! an appropriate special-purpose integrator | |
1527 | -! should be used which is designed for | |
1528 | -! handling the type of difficulty involved. | |
1529 | -! 2 : the occurrence of roundoff error is | |
1530 | -! detected, which prevents the requested | |
1531 | -! tolerance from being achieved. | |
1532 | -! 3 : extremely bad integrand behaviour occurs | |
1533 | -! at some points of the integration | |
1534 | -! interval. | |
1535 | -! 6 : the input is invalid, because | |
1536 | -! (epsabs.le.0 and | |
1537 | -! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
1538 | -! or limit.lt.1 or lenw.lt.limit*4. | |
1539 | -! result, abserr, neval, last are set | |
1540 | -! to zero. | |
1541 | -! except when lenw is invalid, iwork(1), | |
1542 | -! work(limit*2+1) and work(limit*3+1) are | |
1543 | -! set to zero, work(1) is set to a and | |
1544 | -! work(limit+1) to b. | |
1545 | - | |
1546 | -implicit none | |
1547 | -double precision, external :: f | |
1548 | -double precision, intent(in) :: a,b,epsabs,epsrel | |
1549 | -integer, intent(in) :: key | |
1550 | -integer, intent(in) :: limit | |
1551 | -double precision, intent(out) :: res,abserr | |
1552 | -integer, intent(out) :: ier | |
1553 | - | |
1554 | -double precision, allocatable :: work(:) | |
1555 | -integer, allocatable :: iwork(:) | |
1556 | -integer :: lenw,neval,last | |
1557 | - | |
1558 | -! imsl value for limit is 500 | |
1559 | -lenw=limit*4 | |
1560 | - | |
1561 | -allocate(iwork(limit)) | |
1562 | -allocate(work(lenw)) | |
1563 | - | |
1564 | -call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1565 | - | |
1566 | -deallocate(work) | |
1567 | -deallocate(iwork) | |
1568 | - | |
1569 | -end subroutine | |
1570 | - | |
1571 | - | |
1572 | - | |
1573 | -subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit) | |
1574 | -! | |
1575 | -! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x) | |
1576 | -! | |
1577 | -! f(in) : the function | |
1578 | -! a(in) : lower bound | |
1579 | -! b(in) : higher bound | |
1580 | -! g(in) : external function describing lower bound for y | |
1581 | -! h(in) : external function describing higher bound for y | |
1582 | -! epsabs(in) : desired absolute error | |
1583 | -! epsrel(in) : desired relative error | |
1584 | -! key(in) : gauss kronrod rule | |
1585 | -! 1: 7 - 15 points | |
1586 | -! 2: 10 - 21 points | |
1587 | -! 3: 15 - 31 points | |
1588 | -! 4: 20 - 41 points | |
1589 | -! 5: 25 - 51 points | |
1590 | -! 6: 30 - 61 points | |
1591 | -! | |
1592 | -! limit(in) : maximum number of subintervals in the partition of the | |
1593 | -! given integration interval (a,b). A value of 500 will give the same | |
1594 | -! behaviour as the imsl routine dqdag | |
1595 | -! | |
1596 | -! res(out) : estimated integral value | |
1597 | -! abserr(out) : estimated absolute error | |
1598 | -! ier(out) : error flag from quadpack routines | |
1599 | -! 0 : no error | |
1600 | -! 1 : maximum number of subdivisions allowed | |
1601 | -! has been achieved. one can allow more | |
1602 | -! subdivisions by increasing the value of | |
1603 | -! limit (and taking the according dimension | |
1604 | -! adjustments into account). however, if | |
1605 | -! this yield no improvement it is advised | |
1606 | -! to analyze the integrand in order to | |
1607 | -! determine the integration difficulaties. | |
1608 | -! if the position of a local difficulty can | |
1609 | -! be determined (i.e.singularity, | |
1610 | -! discontinuity within the interval) one | |
1611 | -! will probably gain from splitting up the | |
1612 | -! interval at this point and calling the | |
1613 | -! integrator on the subranges. if possible, | |
1614 | -! an appropriate special-purpose integrator | |
1615 | -! should be used which is designed for | |
1616 | -! handling the type of difficulty involved. | |
1617 | -! 2 : the occurrence of roundoff error is | |
1618 | -! detected, which prevents the requested | |
1619 | -! tolerance from being achieved. | |
1620 | -! 3 : extremely bad integrand behaviour occurs | |
1621 | -! at some points of the integration | |
1622 | -! interval. | |
1623 | -! 6 : the input is invalid, because | |
1624 | -! (epsabs.le.0 and | |
1625 | -! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
1626 | -! or limit.lt.1 or lenw.lt.limit*4. | |
1627 | -! result, abserr, neval, last are set | |
1628 | -! to zero. | |
1629 | -! except when lenw is invalid, iwork(1), | |
1630 | -! work(limit*2+1) and work(limit*3+1) are | |
1631 | -! set to zero, work(1) is set to a and | |
1632 | -! work(limit+1) to b. | |
1633 | - | |
1634 | -implicit none | |
1635 | -double precision, external:: f,g,h | |
1636 | -double precision, intent(in) :: a,b,epsabs,epsrel | |
1637 | -integer, intent(in) :: key,limit | |
1638 | -integer, intent(out) :: ier | |
1639 | -double precision, intent(out) :: res,abserr | |
1640 | - | |
1641 | - | |
1642 | -double precision, allocatable :: work(:) | |
1643 | -integer, allocatable :: iwork(:) | |
1644 | -integer :: lenw,neval,last | |
1645 | - | |
1646 | -! imsl value for limit is 500 | |
1647 | -lenw=limit*4 | |
1648 | -allocate(work(lenw)) | |
1649 | -allocate(iwork(limit)) | |
1650 | - | |
1651 | -call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1652 | - | |
1653 | -deallocate(iwork) | |
1654 | -deallocate(work) | |
1655 | -end subroutine | |
1656 | - | |
1657 | - | |
1658 | - | |
1659 | -subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit) | |
1660 | -! | |
1661 | -! Evaluate the single integral of function f(x,y) for y between a and b with a | |
1662 | -! given x value | |
1663 | -! | |
1664 | -! This function is used for the evaluation of the double integral fvn_d_integ_2_gk | |
1665 | -! | |
1666 | -! f(in) : the function | |
1667 | -! x(in) : x | |
1668 | -! a(in) : lower bound | |
1669 | -! b(in) : higher bound | |
1670 | -! epsabs(in) : desired absolute error | |
1671 | -! epsrel(in) : desired relative error | |
1672 | -! key(in) : gauss kronrod rule | |
1673 | -! 1: 7 - 15 points | |
1674 | -! 2: 10 - 21 points | |
1675 | -! 3: 15 - 31 points | |
1676 | -! 4: 20 - 41 points | |
1677 | -! 5: 25 - 51 points | |
1678 | -! 6: 30 - 61 points | |
1679 | -! | |
1680 | -! limit(in) : maximum number of subintervals in the partition of the | |
1681 | -! given integration interval (a,b). A value of 500 will give the same | |
1682 | -! behaviour as the imsl routine dqdag | |
1683 | -! | |
1684 | -! res(out) : estimated integral value | |
1685 | -! abserr(out) : estimated absolute error | |
1686 | -! ier(out) : error flag from quadpack routines | |
1687 | -! 0 : no error | |
1688 | -! 1 : maximum number of subdivisions allowed | |
1689 | -! has been achieved. one can allow more | |
1690 | -! subdivisions by increasing the value of | |
1691 | -! limit (and taking the according dimension | |
1692 | -! adjustments into account). however, if | |
1693 | -! this yield no improvement it is advised | |
1694 | -! to analyze the integrand in order to | |
1695 | -! determine the integration difficulaties. | |
1696 | -! if the position of a local difficulty can | |
1697 | -! be determined (i.e.singularity, | |
1698 | -! discontinuity within the interval) one | |
1699 | -! will probably gain from splitting up the | |
1700 | -! interval at this point and calling the | |
1701 | -! integrator on the subranges. if possible, | |
1702 | -! an appropriate special-purpose integrator | |
1703 | -! should be used which is designed for | |
1704 | -! handling the type of difficulty involved. | |
1705 | -! 2 : the occurrence of roundoff error is | |
1706 | -! detected, which prevents the requested | |
1707 | -! tolerance from being achieved. | |
1708 | -! 3 : extremely bad integrand behaviour occurs | |
1709 | -! at some points of the integration | |
1710 | -! interval. | |
1711 | -! 6 : the input is invalid, because | |
1712 | -! (epsabs.le.0 and | |
1713 | -! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) | |
1714 | -! or limit.lt.1 or lenw.lt.limit*4. | |
1715 | -! result, abserr, neval, last are set | |
1716 | -! to zero. | |
1717 | -! except when lenw is invalid, iwork(1), | |
1718 | -! work(limit*2+1) and work(limit*3+1) are | |
1719 | -! set to zero, work(1) is set to a and | |
1720 | -! work(limit+1) to b. | |
1721 | - | |
1722 | -implicit none | |
1723 | -double precision, external:: f | |
1724 | -double precision, intent(in) :: x,a,b,epsabs,epsrel | |
1725 | -integer, intent(in) :: key,limit | |
1726 | -integer, intent(out) :: ier | |
1727 | -double precision, intent(out) :: res,abserr | |
1728 | - | |
1729 | - | |
1730 | -double precision, allocatable :: work(:) | |
1731 | -integer, allocatable :: iwork(:) | |
1732 | -integer :: lenw,neval,last | |
1733 | - | |
1734 | -! imsl value for limit is 500 | |
1735 | -lenw=limit*4 | |
1736 | -allocate(work(lenw)) | |
1737 | -allocate(iwork(limit)) | |
1738 | - | |
1739 | -call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limit,lenw,last,iwork,work) | |
1740 | - | |
1741 | -deallocate(iwork) | |
1742 | -deallocate(work) | |
1743 | -end subroutine | |
1744 | - | |
1745 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1746 | -! Include the modified quadpack files | |
1747 | -!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
1748 | -include "fvn_quadpack/dqag_2d_inner.f" | |
1749 | -include "fvn_quadpack/dqk15_2d_inner.f" | |
1750 | -include "fvn_quadpack/dqk31_2d_outer.f" | |
1751 | -include "fvn_quadpack/d1mach.f" | |
1752 | -include "fvn_quadpack/dqk31_2d_inner.f" | |
1753 | -include "fvn_quadpack/dqage.f" | |
1754 | -include "fvn_quadpack/dqk15.f" | |
1755 | -include "fvn_quadpack/dqk21.f" | |
1756 | -include "fvn_quadpack/dqk31.f" | |
1757 | -include "fvn_quadpack/dqk41.f" | |
1758 | -include "fvn_quadpack/dqk51.f" | |
1759 | -include "fvn_quadpack/dqk61.f" | |
1760 | -include "fvn_quadpack/dqk41_2d_outer.f" | |
1761 | -include "fvn_quadpack/dqk41_2d_inner.f" | |
1762 | -include "fvn_quadpack/dqag_2d_outer.f" | |
1763 | -include "fvn_quadpack/dqpsrt.f" | |
1764 | -include "fvn_quadpack/dqag.f" | |
1765 | -include "fvn_quadpack/dqage_2d_outer.f" | |
1766 | -include "fvn_quadpack/dqage_2d_inner.f" | |
1767 | -include "fvn_quadpack/dqk51_2d_outer.f" | |
1768 | -include "fvn_quadpack/dqk51_2d_inner.f" | |
1769 | -include "fvn_quadpack/dqk61_2d_outer.f" | |
1770 | -include "fvn_quadpack/dqk21_2d_outer.f" | |
1771 | -include "fvn_quadpack/dqk61_2d_inner.f" | |
1772 | -include "fvn_quadpack/dqk21_2d_inner.f" | |
1773 | -include "fvn_quadpack/dqk15_2d_outer.f" | |
1774 | - | |
1775 | - | |
1776 | - | |
1777 | - | |
1778 | - | |
1779 | -end module fvn |