Commit 24e196930f286ab193de13c9236783662dc75b7d

Authored by daniau
1 parent 422234dc32

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@18 b657c933-2333-4658-acf2-d3c7c2708721

Showing 2 changed files with 6 additions and 6 deletions Inline Diff

fvn_sparse/UMFPACK/Demo/my_umfpack_zi_demo.out
1 1
UMFPACK V5.1 (May 31, 2007) demo: _zi_ version 2 2 UMFPACK V5.1 (May 31, 2007) demo: _zi_ version
3 3
UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. 4 4 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.
5 5
6 6
UMFPACK License: 7 7 UMFPACK License:
8 8
UMFPACK is available under alternate licenses, 9 9 UMFPACK is available under alternate licenses,
contact T. Davis for details. 10 10 contact T. Davis for details.
11 11
Your use or distribution of UMFPACK or any modified version of 12 12 Your use or distribution of UMFPACK or any modified version of
UMFPACK implies that you agree to this License. 13 13 UMFPACK implies that you agree to this License.
14 14
This library is free software; you can redistribute it and/or 15 15 This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public 16 16 modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either 17 17 License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. 18 18 version 2.1 of the License, or (at your option) any later version.
19 19
This library is distributed in the hope that it will be useful, 20 20 This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of 21 21 but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. 23 23 Lesser General Public License for more details.
24 24
You should have received a copy of the GNU Lesser General Public 25 25 You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software 26 26 License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 27 27 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA 28 28 USA
29 29
Permission is hereby granted to use or copy this program under the 30 30 Permission is hereby granted to use or copy this program under the
terms of the GNU LGPL, provided that the Copyright, this License, 31 31 terms of the GNU LGPL, provided that the Copyright, this License,
and the Availability of the original version is retained on all copies. 32 32 and the Availability of the original version is retained on all copies.
User documentation of any code that uses this code or any modified 33 33 User documentation of any code that uses this code or any modified
version of this code must cite the Copyright, this License, the 34 34 version of this code must cite the Copyright, this License, the
Availability note, and "Used by permission." Permission to modify 35 35 Availability note, and "Used by permission." Permission to modify
the code and to distribute modified code is granted, provided the 36 36 the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, 37 37 Copyright, this License, and the Availability note are retained,
and a notice that the code was modified is included. 38 38 and a notice that the code was modified is included.
39 39
Availability: http://www.cise.ufl.edu/research/sparse/umfpack 40 40 Availability: http://www.cise.ufl.edu/research/sparse/umfpack
41 41
UMFPACK V5.1.0 (May 31, 2007): OK 42 42 UMFPACK V5.1.0 (May 31, 2007): OK
43 43
UMFPACK V5.1.0 (May 31, 2007), Control: 44 44 UMFPACK V5.1.0 (May 31, 2007), Control:
Matrix entry defined as: double complex 45 45 Matrix entry defined as: double complex
Int (generic integer) defined as: int 46 46 Int (generic integer) defined as: int
47 47
0: print level: 5 48 48 0: print level: 5
1: dense row parameter: 0.2 49 49 1: dense row parameter: 0.2
"dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 50 50 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries)
2: dense column parameter: 0.2 51 51 2: dense column parameter: 0.2
"dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 52 52 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
3: pivot tolerance: 0.1 53 53 3: pivot tolerance: 0.1
4: block size for dense matrix kernels: 32 54 54 4: block size for dense matrix kernels: 32
5: strategy: 0 (auto) 55 55 5: strategy: 0 (auto)
6: initial allocation ratio: 0.7 56 56 6: initial allocation ratio: 0.7
7: max iterative refinement steps: 2 57 57 7: max iterative refinement steps: 2
12: 2-by-2 pivot tolerance: 0.01 58 58 12: 2-by-2 pivot tolerance: 0.01
13: Q fixed during numerical factorization: 0 (auto) 59 59 13: Q fixed during numerical factorization: 0 (auto)
14: AMD dense row/col parameter: 10 60 60 14: AMD dense row/col parameter: 10
"dense" rows/columns have > max (16, (10)*sqrt(n)) entries 61 61 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
Only used if the AMD ordering is used. 62 62 Only used if the AMD ordering is used.
15: diagonal pivot tolerance: 0.001 63 63 15: diagonal pivot tolerance: 0.001
Only used if diagonal pivoting is attempted. 64 64 Only used if diagonal pivoting is attempted.
16: scaling: 1 (divide each row by sum of abs. values in each row) 65 65 16: scaling: 1 (divide each row by sum of abs. values in each row)
17: frontal matrix allocation ratio: 0.5 66 66 17: frontal matrix allocation ratio: 0.5
18: drop tolerance: 0 67 67 18: drop tolerance: 0
19: AMD and COLAMD aggressive absorption: 1 (yes) 68 68 19: AMD and COLAMD aggressive absorption: 1 (yes)
69 69
The following options can only be changed at compile-time: 70 70 The following options can only be changed at compile-time:
8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 71 71 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4
9: compiled for ANSI C 72 72 9: compiled for ANSI C
10: CPU timer is POSIX times ( ) routine. 73 73 10: CPU timer is POSIX times ( ) routine.
11: compiled for normal operation (debugging disabled) 74 74 11: compiled for normal operation (debugging disabled)
computer/operating system: Linux 75 75 computer/operating system: Linux
size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 16 (in bytes) 76 76 size of int: 4 UF_long: 8 Int: 4 pointer: 8 double: 8 Entry: 16 (in bytes)
77 77
78 78
b: dense vector, n = 5. 79 79 b: dense vector, n = 5.
0 : (8 + 1i) 80 80 0 : (8 + 1i)
1 : (45 - 5i) 81 81 1 : (45 - 5i)
2 : (-3 - 2i) 82 82 2 : (-3 - 2i)
3 : (3 + 0i) 83 83 3 : (3 + 0i)
4 : (19 + 2.2i) 84 84 4 : (19 + 2.2i)
dense vector OK 85 85 dense vector OK
86 86
87 87
A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12. 88 88 A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12.
0 : 0 0 (2 + 1i) 89 89 0 : 0 0 (2 + 1i)
1 : 4 4 (1 + 0.4i) 90 90 1 : 4 4 (1 + 0.4i)
2 : 1 0 (3 + 0.1i) 91 91 2 : 1 0 (3 + 0.1i)
3 : 1 2 (4 + 0.2i) 92 92 3 : 1 2 (4 + 0.2i)
4 : 2 1 (-1 - 1i) 93 93 4 : 2 1 (-1 - 1i)
5 : 2 2 (-3 - 0.2i) 94 94 5 : 2 2 (-3 - 0.2i)
6 : 0 1 (3 + 0i) 95 95 6 : 0 1 (3 + 0i)
7 : 1 4 (6 + 6i) 96 96 7 : 1 4 (6 + 6i)
8 : 2 3 (2 + 3i) 97 97 8 : 2 3 (2 + 3i)
9 : 3 2 (1 + 0i) 98 98 9 : 3 2 (1 + 0i)
10 : 4 1 (4 + 0.3i) 99 99 10 : 4 1 (4 + 0.3i)
11 : 4 2 (2 + 0.3i) 100 100 11 : 4 2 (2 + 0.3i)
triplet-form matrix OK 101 101 triplet-form matrix OK
102 102
103 103
A: column-form matrix, n_row 5 n_col 5, nz = 12. 104 104 A: column-form matrix, n_row 5 n_col 5, nz = 12.
105 105
column 0: start: 0 end: 1 entries: 2 106 106 column 0: start: 0 end: 1 entries: 2
row 0 : (2 + 1i) 107 107 row 0 : (2 + 1i)
row 1 : (3 + 0.1i) 108 108 row 1 : (3 + 0.1i)
109 109
column 1: start: 2 end: 4 entries: 3 110 110 column 1: start: 2 end: 4 entries: 3
row 0 : (3 + 0i) 111 111 row 0 : (3 + 0i)
row 2 : (-1 - 1i) 112 112 row 2 : (-1 - 1i)
row 4 : (4 + 0.3i) 113 113 row 4 : (4 + 0.3i)
114 114
column 2: start: 5 end: 8 entries: 4 115 115 column 2: start: 5 end: 8 entries: 4
row 1 : (4 + 0.2i) 116 116 row 1 : (4 + 0.2i)
row 2 : (-3 - 0.2i) 117 117 row 2 : (-3 - 0.2i)
row 3 : (1 + 0i) 118 118 row 3 : (1 + 0i)
row 4 : (2 + 0.3i) 119 119 row 4 : (2 + 0.3i)
120 120
column 3: start: 9 end: 9 entries: 1 121 121 column 3: start: 9 end: 9 entries: 1
row 2 : (2 + 3i) 122 122 row 2 : (2 + 3i)
123 123
column 4: start: 10 end: 11 entries: 2 124 124 column 4: start: 10 end: 11 entries: 2
row 1 : (6 + 6i) 125 125 row 1 : (6 + 6i)
row 4 : (1 + 0.4i) 126 126 row 4 : (1 + 0.4i)
column-form matrix OK 127 127 column-form matrix OK
128 128
129 129
Symbolic factorization of A: Symbolic object: 130 130 Symbolic factorization of A: Symbolic object:
matrix to be factorized: 131 131 matrix to be factorized:
n_row: 5 n_col: 5 132 132 n_row: 5 n_col: 5
number of entries: 12 133 133 number of entries: 12
block size used for dense matrix kernels: 32 134 134 block size used for dense matrix kernels: 32
strategy used: unsymmetric 135 135 strategy used: unsymmetric
ordering used: colamd on A 136 136 ordering used: colamd on A
137 137
performn column etree postorder: yes 138 138 performn column etree postorder: yes
prefer diagonal pivoting (attempt P=Q): no 139 139 prefer diagonal pivoting (attempt P=Q): no
variable-size part of Numeric object: 140 140 variable-size part of Numeric object:
minimum initial size (Units): 90 (MBytes): 0.0 141 141 minimum initial size (Units): 90 (MBytes): 0.0
estimated peak size (Units): 2542 (MBytes): 0.0 142 142 estimated peak size (Units): 2542 (MBytes): 0.0
estimated final size (Units): 25 (MBytes): 0.0 143 143 estimated final size (Units): 25 (MBytes): 0.0
symbolic factorization memory usage (Units): 151 (MBytes): 0.0 144 144 symbolic factorization memory usage (Units): 151 (MBytes): 0.0
frontal matrices / supercolumns: 145 145 frontal matrices / supercolumns:
number of frontal chains: 1 146 146 number of frontal chains: 1
number of frontal matrices: 1 147 147 number of frontal matrices: 1
largest frontal matrix row dimension: 3 148 148 largest frontal matrix row dimension: 3
largest frontal matrix column dimension: 3 149 149 largest frontal matrix column dimension: 3
150 150
Frontal chain: 0. Frontal matrices 0 to 0 151 151 Frontal chain: 0. Frontal matrices 0 to 0
Largest frontal matrix in Frontal chain: 3-by-3 152 152 Largest frontal matrix in Frontal chain: 3-by-3
Front: 0 pivot cols: 3 (pivot columns 0 to 2) 153 153 Front: 0 pivot cols: 3 (pivot columns 0 to 2)
pivot row candidates: 2 to 4 154 154 pivot row candidates: 2 to 4
leftmost descendant: 0 155 155 leftmost descendant: 0
1st new candidate row : 2 156 156 1st new candidate row : 2
parent: (none) 157 157 parent: (none)
158 158
Initial column permutation, Q1: permutation vector, n = 5. 159 159 Initial column permutation, Q1: permutation vector, n = 5.
0 : 3 160 160 0 : 3
1 : 2 161 161 1 : 2
2 : 0 162 162 2 : 0
3 : 4 163 163 3 : 4
4 : 1 164 164 4 : 1
permutation vector OK 165 165 permutation vector OK
166 166
167 167
Initial row permutation, P1: permutation vector, n = 5. 168 168 Initial row permutation, P1: permutation vector, n = 5.
0 : 2 169 169 0 : 2
1 : 3 170 170 1 : 3
2 : 0 171 171 2 : 0
3 : 1 172 172 3 : 1
4 : 4 173 173 4 : 4
permutation vector OK 174 174 permutation vector OK
175 175
Symbolic object: OK 176 176 Symbolic object: OK
177 177
178 178
Numeric factorization of A: Numeric object: 179 179 Numeric factorization of A: Numeric object:
n_row: 5 n_col: 5 180 180 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 181 181 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 182 182 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 183 183 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 1.00000e+00 184 184 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.93000e+01 185 185 maximum sum (abs (rows of A)): 1.93000e+01
initial allocation parameter used: 0.7 186 186 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 187 187 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 106 188 188 final total size of Numeric object (Units): 106
final total size of Numeric object (MBytes): 0.0 189 189 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 2527 190 190 peak size of variable-size part (Units): 2527
peak size of variable-size part (MBytes): 0.0 191 191 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 192 192 largest actual frontal matrix size: 4
memory defragmentations: 1 193 193 memory defragmentations: 1
memory reallocations: 1 194 194 memory reallocations: 1
costly memory reallocations: 0 195 195 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 196 196 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 4 197 197 number of nonzeros in L (excl diag): 4
number of entries stored in L (excl diag): 2 198 198 number of entries stored in L (excl diag): 2
number of nonzeros in U (excl diag): 4 199 199 number of nonzeros in U (excl diag): 4
number of entries stored in U (excl diag): 2 200 200 number of entries stored in U (excl diag): 2
factorization floating-point operations: 34 201 201 factorization floating-point operations: 34
number of nonzeros on diagonal of U: 5 202 202 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.34629e-01 203 203 min abs. value on diagonal of U: 1.34629e-01
max abs. value on diagonal of U: 1.77313e+00 204 204 max abs. value on diagonal of U: 1.77313e+00
reciprocal condition number estimate: 7.59e-02 205 205 reciprocal condition number estimate: 7.59e-02
206 206
Scale factors applied via multiplication 207 207 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 208 208 Scale factors, Rs: dense vector, n = 5.
0 : (0.166667) 209 209 0 : (0.166667)
1 : (0.0518135) 210 210 1 : (0.0518135)
2 : (0.0980392) 211 211 2 : (0.0980392)
3 : (1) 212 212 3 : (1)
4 : (0.125) 213 213 4 : (0.125)
dense vector OK 214 214 dense vector OK
215 215
216 216
P: row permutation vector, n = 5. 217 217 P: row permutation vector, n = 5.
0 : 2 218 218 0 : 2
1 : 3 219 219 1 : 3
2 : 0 220 220 2 : 0
3 : 4 221 221 3 : 4
4 : 1 222 222 4 : 1
permutation vector OK 223 223 permutation vector OK
224 224
225 225
Q: column permutation vector, n = 5. 226 226 Q: column permutation vector, n = 5.
0 : 3 227 227 0 : 3
1 : 2 228 228 1 : 2
2 : 0 229 229 2 : 0
3 : 4 230 230 3 : 4
4 : 1 231 231 4 : 1
permutation vector OK 232 232 permutation vector OK
233 233
234 234
L in Numeric object, in column-oriented compressed-pattern form: 235 235 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 236 236 Diagonal entries are all equal to 1.0 (not stored)
237 237
column 0: length 0. 238 238 column 0: length 0.
239 239
column 1: length 2. 240 240 column 1: length 2.
row 4 : (0.207254 + 0.0103627i) 241 241 row 4 : (0.207254 + 0.0103627i)
row 3 : (0.25 + 0.0375i) 242 242 row 3 : (0.25 + 0.0375i)
243 243
column 2: add 1 entries. length 1. Start of Lchain. 244 244 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (0.379275 - 0.174093i) 245 245 row 4 : (0.379275 - 0.174093i)
246 246
column 3: length 1. 247 247 column 3: length 1.
row 4 : (3.00161 + 1.2864i) 248 248 row 4 : (3.00161 + 1.2864i)
249 249
column 4: length 0. Start of Lchain. 250 250 column 4: length 0. Start of Lchain.
251 251
252 252
U in Numeric object, in row-oriented compressed-pattern form: 253 253 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 254 254 Diagonal is stored separately.
255 255
row 4: length 0. End of Uchain. 256 256 row 4: length 0. End of Uchain.
257 257
row 3: length 1. End of Uchain. 258 258 row 3: length 1. End of Uchain.
col 4 : (0.5 + 0.0375i) 259 259 col 4 : (0.5 + 0.0375i)
260 260
row 2: length 1. 261 261 row 2: length 1.
col 4 : (0.5 + 0i) 262 262 col 4 : (0.5 + 0i)
263 263
row 1: length 0. End of Uchain. 264 264 row 1: length 0. End of Uchain.
265 265
row 1: length 0. 266 266 row 1: length 0.
267 267
row 0: length 2. 268 268 row 0: length 2.
col 1 : (-0.294118 - 0.0196078i) 269 269 col 1 : (-0.294118 - 0.0196078i)
col 4 : (-0.0980392 - 0.0980392i) 270 270 col 4 : (-0.0980392 - 0.0980392i)
271 271
272 272
diagonal of U: dense vector, n = 5. 273 273 diagonal of U: dense vector, n = 5.
0 : (0.196078 + 0.294118i) 274 274 0 : (0.196078 + 0.294118i)
1 : (1 + 0i) 275 275 1 : (1 + 0i)
2 : (0.333333 + 0.166667i) 276 276 2 : (0.333333 + 0.166667i)
3 : (0.125 + 0.05i) 277 277 3 : (0.125 + 0.05i)
4 : (-1.6422 - 0.668715i) 278 278 4 : (-1.6422 - 0.668715i)
dense vector OK 279 279 dense vector OK
280 280
Numeric object: OK 281 281 Numeric object: OK
282 282
UMFPACK V5.1.0 (May 31, 2007), Info: 283 283 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 284 284 matrix entry defined as: double complex
Int (generic integer) defined as: int 285 285 Int (generic integer) defined as: int
BLAS library used: Fortran BLAS. size of BLAS integer: 4 286 286 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 287 287 MATLAB: no.
CPU timer: POSIX times ( ) routine. 288 288 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 289 289 number of rows in matrix A: 5
number of columns in matrix A: 5 290 290 number of columns in matrix A: 5
entries in matrix A: 12 291 291 entries in matrix A: 12
memory usage reported in: 8-byte Units 292 292 memory usage reported in: 8-byte Units
size of int: 4 bytes 293 293 size of int: 4 bytes
size of UF_long: 8 bytes 294 294 size of UF_long: 8 bytes
size of pointer: 8 bytes 295 295 size of pointer: 8 bytes
size of numerical entry: 16 bytes 296 296 size of numerical entry: 16 bytes
297 297
strategy used: unsymmetric 298 298 strategy used: unsymmetric
ordering used: colamd on A 299 299 ordering used: colamd on A
modify Q during factorization: yes 300 300 modify Q during factorization: yes
prefer diagonal pivoting: no 301 301 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 302 302 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 303 303 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 304 304 number of "dense" rows: 0
number of "dense" columns: 0 305 305 number of "dense" columns: 0
number of empty rows: 0 306 306 number of empty rows: 0
number of empty columns 0 307 307 number of empty columns 0
submatrix S square and diagonal preserved 308 308 submatrix S square and diagonal preserved
pattern of square submatrix S: 309 309 pattern of square submatrix S:
number rows and columns 3 310 310 number rows and columns 3
symmetry of nonzero pattern: 1.000000 311 311 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 312 312 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 313 313 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 314 314 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 315 315 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 316 316 # of small diagonal entries of S: 1
# unmatched: 0 317 317 # unmatched: 0
symmetry of P2*S: 0.000000 318 318 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 319 319 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 320 320 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 321 321 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 322 322 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 151 323 323 symbolic memory usage (Units): 151
symbolic memory usage (MBytes): 0.0 324 324 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 52 325 325 Symbolic size (Units): 52
Symbolic size (MBytes): 0 326 326 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 327 327 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 328 328 symbolic factorization wallclock time(sec): 0.00
329 329
matrix scaled: yes (divided each row by sum of abs values in each row) 330 330 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.00000e+00 331 331 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.93000e+01 332 332 maximum sum (abs (rows of A)): 1.93000e+01
333 333
symbolic/numeric factorization: upper bound actual % 334 334 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 335 335 variable-sized part of Numeric object:
initial size (Units) 90 80 89% 336 336 initial size (Units) 90 80 89%
peak size (Units) 2542 2527 99% 337 337 peak size (Units) 2542 2527 99%
final size (Units) 25 21 84% 338 338 final size (Units) 25 21 84%
Numeric final size (Units) 113 107 95% 339 339 Numeric final size (Units) 113 107 95%
Numeric final size (MBytes) 0.0 0.0 95% 340 340 Numeric final size (MBytes) 0.0 0.0 95%
peak memory usage (Units) 2751 2736 99% 341 341 peak memory usage (Units) 2751 2736 99%
peak memory usage (MBytes) 0.0 0.0 99% 342 342 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 3.40000e+01 51% 343 343 numeric factorization flops 6.70000e+01 3.40000e+01 51%
nz in L (incl diagonal) 10 9 90% 344 344 nz in L (incl diagonal) 10 9 90%
nz in U (incl diagonal) 10 9 90% 345 345 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 13 87% 346 346 nz in L+U (incl diagonal) 15 13 87%
largest front (# entries) 9 4 44% 347 347 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 348 348 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 349 349 largest # columns in front 3 2 67%
350 350
initial allocation ratio used: 0.7 351 351 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 352 352 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 9 353 353 nz in L (incl diagonal), if none dropped 9
nz in U (incl diagonal), if none dropped 9 354 354 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 355 355 number of small entries dropped 0
nonzeros on diagonal of U: 5 356 356 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.35e-01 357 357 min abs. value on diagonal of U: 1.35e-01
max abs. value on diagonal of U: 1.77e+00 358 358 max abs. value on diagonal of U: 1.77e+00
estimate of reciprocal of condition number: 7.59e-02 359 359 estimate of reciprocal of condition number: 7.59e-02
indices in compressed pattern: 2 360 360 indices in compressed pattern: 2
numerical values stored in Numeric object: 9 361 361 numerical values stored in Numeric object: 9
numeric factorization defragmentations: 1 362 362 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 363 363 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 364 364 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 365 365 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 366 366 numeric factorization wallclock time (sec): 0.00
367 367
solve flops: 1.02800e+03 368 368 solve flops: 1.02800e+03
iterative refinement steps taken: 1 369 369 iterative refinement steps taken: 1
iterative refinement steps attempted: 1 370 370 iterative refinement steps attempted: 1
sparse backward error omega1: 5.28e-17 371 371 sparse backward error omega1: 5.28e-17
sparse backward error omega2: 0.00e+00 372 372 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 373 373 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 374 374 solve wall clock time (sec): 0.00
375 375
total symbolic + numeric + solve flops: 1.06200e+03 376 376 total symbolic + numeric + solve flops: 1.06200e+03
377 377
378 378
UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. 379 379 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.
380 380
UMFPACK V5.1.0 (May 31, 2007): OK 381 381 UMFPACK V5.1.0 (May 31, 2007): OK
382 382
383 383
x (solution of Ax=b): dense vector, n = 5. 384 384 x (solution of Ax=b): dense vector, n = 5.
0 : (0.121188 - 0.561001i) 385 385 0 : (0.121188 - 0.561001i)
1 : (2.39887 + 0.666938i) 386 386 1 : (2.39887 + 0.666938i)
2 : (3 + 0i) 387 387 2 : (3 + 0i)
3 : (1.57395 - 1.52801i) 388 388 3 : (1.57395 - 1.52801i)
4 : (2.3876 - 3.04245i) 389 389 4 : (2.3876 - 3.04245i)
dense vector OK 390 390 dense vector OK
391 391
maxnorm of residual: 1.77636e-15 392 392 maxnorm of residual: 1.77636e-15
393 393
394 394
UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. 395 395 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.
396 396
UMFPACK V5.1.0 (May 31, 2007): OK 397 397 UMFPACK V5.1.0 (May 31, 2007): OK
398 398
determinant: (-1.7814+ (2.3784)i) * 10^(2) 399 399 determinant: (-1.7814+ (2.3784)i) * 10^(2)
400 400
x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5. 401 401 x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5.
0 : (0.121188 - 0.561001i) 402 402 0 : (0.121188 - 0.561001i)
1 : (2.39887 + 0.666938i) 403 403 1 : (2.39887 + 0.666938i)
2 : (3 + 0i) 404 404 2 : (3 + 0i)
3 : (1.57395 - 1.52801i) 405 405 3 : (1.57395 - 1.52801i)
4 : (2.3876 - 3.04245i) 406 406 4 : (2.3876 - 3.04245i)
dense vector OK 407 407 dense vector OK
408 408
maxnorm of residual: 1.77636e-14 409 409 maxnorm of residual: 1.77636e-14
410 410
UMFPACK V5.1.0 (May 31, 2007), Info: 411 411 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 412 412 matrix entry defined as: double complex
Int (generic integer) defined as: int 413 413 Int (generic integer) defined as: int
BLAS library used: Fortran BLAS. size of BLAS integer: 4 414 414 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 415 415 MATLAB: no.
CPU timer: POSIX times ( ) routine. 416 416 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 417 417 number of rows in matrix A: 5
number of columns in matrix A: 5 418 418 number of columns in matrix A: 5
entries in matrix A: 12 419 419 entries in matrix A: 12
memory usage reported in: 8-byte Units 420 420 memory usage reported in: 8-byte Units
size of int: 4 bytes 421 421 size of int: 4 bytes
size of UF_long: 8 bytes 422 422 size of UF_long: 8 bytes
size of pointer: 8 bytes 423 423 size of pointer: 8 bytes
size of numerical entry: 16 bytes 424 424 size of numerical entry: 16 bytes
425 425
strategy used: unsymmetric 426 426 strategy used: unsymmetric
ordering used: colamd on A 427 427 ordering used: colamd on A
modify Q during factorization: yes 428 428 modify Q during factorization: yes
prefer diagonal pivoting: no 429 429 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 430 430 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 431 431 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 432 432 number of "dense" rows: 0
number of "dense" columns: 0 433 433 number of "dense" columns: 0
number of empty rows: 0 434 434 number of empty rows: 0
number of empty columns 0 435 435 number of empty columns 0
submatrix S square and diagonal preserved 436 436 submatrix S square and diagonal preserved
pattern of square submatrix S: 437 437 pattern of square submatrix S:
number rows and columns 3 438 438 number rows and columns 3
symmetry of nonzero pattern: 1.000000 439 439 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 440 440 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 441 441 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 442 442 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 443 443 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 444 444 # of small diagonal entries of S: 1
# unmatched: 0 445 445 # unmatched: 0
symmetry of P2*S: 0.000000 446 446 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 447 447 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 448 448 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 449 449 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 450 450 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 151 451 451 symbolic memory usage (Units): 151
symbolic memory usage (MBytes): 0.0 452 452 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 52 453 453 Symbolic size (Units): 52
Symbolic size (MBytes): 0 454 454 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 455 455 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 456 456 symbolic factorization wallclock time(sec): 0.00
457 457
matrix scaled: yes (divided each row by sum of abs values in each row) 458 458 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.00000e+00 459 459 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.93000e+01 460 460 maximum sum (abs (rows of A)): 1.93000e+01
461 461
symbolic/numeric factorization: upper bound actual % 462 462 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 463 463 variable-sized part of Numeric object:
initial size (Units) 90 80 89% 464 464 initial size (Units) 90 80 89%
peak size (Units) 2542 2527 99% 465 465 peak size (Units) 2542 2527 99%
final size (Units) 25 21 84% 466 466 final size (Units) 25 21 84%
Numeric final size (Units) 113 107 95% 467 467 Numeric final size (Units) 113 107 95%
Numeric final size (MBytes) 0.0 0.0 95% 468 468 Numeric final size (MBytes) 0.0 0.0 95%
peak memory usage (Units) 2751 2736 99% 469 469 peak memory usage (Units) 2751 2736 99%
peak memory usage (MBytes) 0.0 0.0 99% 470 470 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 3.40000e+01 51% 471 471 numeric factorization flops 6.70000e+01 3.40000e+01 51%
nz in L (incl diagonal) 10 9 90% 472 472 nz in L (incl diagonal) 10 9 90%
nz in U (incl diagonal) 10 9 90% 473 473 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 13 87% 474 474 nz in L+U (incl diagonal) 15 13 87%
largest front (# entries) 9 4 44% 475 475 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 476 476 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 477 477 largest # columns in front 3 2 67%
478 478
initial allocation ratio used: 0.7 479 479 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 480 480 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 9 481 481 nz in L (incl diagonal), if none dropped 9
nz in U (incl diagonal), if none dropped 9 482 482 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 483 483 number of small entries dropped 0
nonzeros on diagonal of U: 5 484 484 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.35e-01 485 485 min abs. value on diagonal of U: 1.35e-01
max abs. value on diagonal of U: 1.77e+00 486 486 max abs. value on diagonal of U: 1.77e+00
estimate of reciprocal of condition number: 7.59e-02 487 487 estimate of reciprocal of condition number: 7.59e-02
indices in compressed pattern: 2 488 488 indices in compressed pattern: 2
numerical values stored in Numeric object: 9 489 489 numerical values stored in Numeric object: 9
numeric factorization defragmentations: 1 490 490 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 491 491 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 492 492 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 493 493 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 494 494 numeric factorization wallclock time (sec): 0.00
495 495
solve flops: 4.80000e+02 496 496 solve flops: 4.80000e+02
iterative refinement steps taken: 0 497 497 iterative refinement steps taken: 0
iterative refinement steps attempted: 0 498 498 iterative refinement steps attempted: 0
sparse backward error omega1: 7.82e-17 499 499 sparse backward error omega1: 7.82e-17
sparse backward error omega2: 0.00e+00 500 500 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 501 501 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 502 502 solve wall clock time (sec): 0.00
503 503
total symbolic + numeric + solve flops: 5.14000e+02 504 504 total symbolic + numeric + solve flops: 5.14000e+02
505 505
506 506
x (solution of A'x=b): dense vector, n = 5. 507 507 x (solution of A'x=b): dense vector, n = 5.
0 : (3.39246 + 0.13257i) 508 508 0 : (3.39246 + 0.13257i)
1 : (0.31463 + 1.38626i) 509 509 1 : (0.31463 + 1.38626i)
2 : (0.461538 + 0.692308i) 510 510 2 : (0.461538 + 0.692308i)
3 : (-20.9089 - 1.55801i) 511 511 3 : (-20.9089 - 1.55801i)
4 : (9.04015 - 0.613724i) 512 512 4 : (9.04015 - 0.613724i)
dense vector OK 513 513 dense vector OK
514 514
maxnorm of residual: 4.52416e-15 515 515 maxnorm of residual: 4.52416e-15
516 516
517 517
changing A (1,4) to zero 518 518 changing A (1,4) to zero
519 519
modified A: column-form matrix, n_row 5 n_col 5, nz = 12. 520 520 modified A: column-form matrix, n_row 5 n_col 5, nz = 12.
521 521
column 0: start: 0 end: 1 entries: 2 522 522 column 0: start: 0 end: 1 entries: 2
row 0 : (2 + 1i) 523 523 row 0 : (2 + 1i)
row 1 : (3 + 0.1i) 524 524 row 1 : (3 + 0.1i)
525 525
column 1: start: 2 end: 4 entries: 3 526 526 column 1: start: 2 end: 4 entries: 3
row 0 : (3 + 0i) 527 527 row 0 : (3 + 0i)
row 2 : (-1 - 1i) 528 528 row 2 : (-1 - 1i)
row 4 : (4 + 0.3i) 529 529 row 4 : (4 + 0.3i)
530 530
column 2: start: 5 end: 8 entries: 4 531 531 column 2: start: 5 end: 8 entries: 4
row 1 : (4 + 0.2i) 532 532 row 1 : (4 + 0.2i)
row 2 : (-3 - 0.2i) 533 533 row 2 : (-3 - 0.2i)
row 3 : (1 + 0i) 534 534 row 3 : (1 + 0i)
row 4 : (2 + 0.3i) 535 535 row 4 : (2 + 0.3i)
536 536
column 3: start: 9 end: 9 entries: 1 537 537 column 3: start: 9 end: 9 entries: 1
row 2 : (2 + 3i) 538 538 row 2 : (2 + 3i)
539 539
column 4: start: 10 end: 11 entries: 2 540 540 column 4: start: 10 end: 11 entries: 2
row 1 : (0 + 0i) 541 541 row 1 : (0 + 0i)
row 4 : (1 + 0.4i) 542 542 row 4 : (1 + 0.4i)
column-form matrix OK 543 543 column-form matrix OK
544 544
545 545
Numeric factorization of modified A: Numeric object: 546 546 Numeric factorization of modified A: Numeric object:
n_row: 5 n_col: 5 547 547 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 548 548 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 549 549 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 550 550 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 1.00000e+00 551 551 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.02000e+01 552 552 maximum sum (abs (rows of A)): 1.02000e+01
initial allocation parameter used: 0.7 553 553 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 554 554 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 104 555 555 final total size of Numeric object (Units): 104
final total size of Numeric object (MBytes): 0.0 556 556 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 2527 557 557 peak size of variable-size part (Units): 2527
peak size of variable-size part (MBytes): 0.0 558 558 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 559 559 largest actual frontal matrix size: 4
memory defragmentations: 1 560 560 memory defragmentations: 1
memory reallocations: 1 561 561 memory reallocations: 1
costly memory reallocations: 0 562 562 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 563 563 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 3 564 564 number of nonzeros in L (excl diag): 3
number of entries stored in L (excl diag): 1 565 565 number of entries stored in L (excl diag): 1
number of nonzeros in U (excl diag): 4 566 566 number of nonzeros in U (excl diag): 4
number of entries stored in U (excl diag): 2 567 567 number of entries stored in U (excl diag): 2
factorization floating-point operations: 17 568 568 factorization floating-point operations: 17
number of nonzeros on diagonal of U: 5 569 569 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.34629e-01 570 570 min abs. value on diagonal of U: 1.34629e-01
max abs. value on diagonal of U: 1.00000e+00 571 571 max abs. value on diagonal of U: 1.00000e+00
reciprocal condition number estimate: 1.35e-01 572 572 reciprocal condition number estimate: 1.35e-01
573 573
Scale factors applied via multiplication 574 574 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 575 575 Scale factors, Rs: dense vector, n = 5.
0 : (0.166667) 576 576 0 : (0.166667)
1 : (0.136986) 577 577 1 : (0.136986)
2 : (0.0980392) 578 578 2 : (0.0980392)
3 : (1) 579 579 3 : (1)
4 : (0.125) 580 580 4 : (0.125)
dense vector OK 581 581 dense vector OK
582 582
583 583
P: row permutation vector, n = 5. 584 584 P: row permutation vector, n = 5.
0 : 2 585 585 0 : 2
1 : 3 586 586 1 : 3
2 : 0 587 587 2 : 0
3 : 4 588 588 3 : 4
4 : 1 589 589 4 : 1
permutation vector OK 590 590 permutation vector OK
591 591
592 592
Q: column permutation vector, n = 5. 593 593 Q: column permutation vector, n = 5.
0 : 3 594 594 0 : 3
1 : 2 595 595 1 : 2
2 : 0 596 596 2 : 0
3 : 4 597 597 3 : 4
4 : 1 598 598 4 : 1
permutation vector OK 599 599 permutation vector OK
600 600
601 601
L in Numeric object, in column-oriented compressed-pattern form: 602 602 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 603 603 Diagonal entries are all equal to 1.0 (not stored)
604 604
column 0: length 0. 605 605 column 0: length 0.
606 606
column 1: length 2. 607 607 column 1: length 2.
row 4 : (0.547945 + 0.0273973i) 608 608 row 4 : (0.547945 + 0.0273973i)
row 3 : (0.25 + 0.0375i) 609 609 row 3 : (0.25 + 0.0375i)
610 610
column 2: add 1 entries. length 1. Start of Lchain. 611 611 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (1.00274 - 0.460274i) 612 612 row 4 : (1.00274 - 0.460274i)
613 613
column 3: length 0. Start of Lchain. 614 614 column 3: length 0. Start of Lchain.
615 615
column 4: length 0. Start of Lchain. 616 616 column 4: length 0. Start of Lchain.
617 617
618 618
U in Numeric object, in row-oriented compressed-pattern form: 619 619 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 620 620 Diagonal is stored separately.
621 621
row 4: length 0. End of Uchain. 622 622 row 4: length 0. End of Uchain.
623 623
row 3: length 1. End of Uchain. 624 624 row 3: length 1. End of Uchain.
col 4 : (0.5 + 0.0375i) 625 625 col 4 : (0.5 + 0.0375i)
626 626
row 2: length 1. 627 627 row 2: length 1.
col 4 : (0.5 + 0i) 628 628 col 4 : (0.5 + 0i)
629 629
row 1: length 0. End of Uchain. 630 630 row 1: length 0. End of Uchain.
631 631
row 1: length 0. 632 632 row 1: length 0.
633 633
row 0: length 2. 634 634 row 0: length 2.
col 1 : (-0.294118 - 0.0196078i) 635 635 col 1 : (-0.294118 - 0.0196078i)
col 4 : (-0.0980392 - 0.0980392i) 636 636 col 4 : (-0.0980392 - 0.0980392i)
637 637
638 638
diagonal of U: dense vector, n = 5. 639 639 diagonal of U: dense vector, n = 5.
0 : (0.196078 + 0.294118i) 640 640 0 : (0.196078 + 0.294118i)
1 : (1 + 0i) 641 641 1 : (1 + 0i)
2 : (0.333333 + 0.166667i) 642 642 2 : (0.333333 + 0.166667i)
3 : (0.125 + 0.05i) 643 643 3 : (0.125 + 0.05i)
4 : (-0.50137 + 0.230137i) 644 644 4 : (-0.50137 + 0.230137i)
dense vector OK 645 645 dense vector OK
646 646
Numeric object: OK 647 647 Numeric object: OK
648 648
UMFPACK V5.1.0 (May 31, 2007), Info: 649 649 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 650 650 matrix entry defined as: double complex
Int (generic integer) defined as: int 651 651 Int (generic integer) defined as: int
BLAS library used: Fortran BLAS. size of BLAS integer: 4 652 652 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 653 653 MATLAB: no.
CPU timer: POSIX times ( ) routine. 654 654 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 655 655 number of rows in matrix A: 5
number of columns in matrix A: 5 656 656 number of columns in matrix A: 5
entries in matrix A: 12 657 657 entries in matrix A: 12
memory usage reported in: 8-byte Units 658 658 memory usage reported in: 8-byte Units
size of int: 4 bytes 659 659 size of int: 4 bytes
size of UF_long: 8 bytes 660 660 size of UF_long: 8 bytes
size of pointer: 8 bytes 661 661 size of pointer: 8 bytes
size of numerical entry: 16 bytes 662 662 size of numerical entry: 16 bytes
663 663
strategy used: unsymmetric 664 664 strategy used: unsymmetric
ordering used: colamd on A 665 665 ordering used: colamd on A
modify Q during factorization: yes 666 666 modify Q during factorization: yes
prefer diagonal pivoting: no 667 667 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 668 668 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 669 669 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 670 670 number of "dense" rows: 0
number of "dense" columns: 0 671 671 number of "dense" columns: 0
number of empty rows: 0 672 672 number of empty rows: 0
number of empty columns 0 673 673 number of empty columns 0
submatrix S square and diagonal preserved 674 674 submatrix S square and diagonal preserved
pattern of square submatrix S: 675 675 pattern of square submatrix S:
number rows and columns 3 676 676 number rows and columns 3
symmetry of nonzero pattern: 1.000000 677 677 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 678 678 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 679 679 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 680 680 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 681 681 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 682 682 # of small diagonal entries of S: 1
# unmatched: 0 683 683 # unmatched: 0
symmetry of P2*S: 0.000000 684 684 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 685 685 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 686 686 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 687 687 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 688 688 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 151 689 689 symbolic memory usage (Units): 151
symbolic memory usage (MBytes): 0.0 690 690 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 52 691 691 Symbolic size (Units): 52
Symbolic size (MBytes): 0 692 692 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 693 693 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 694 694 symbolic factorization wallclock time(sec): 0.00
695 695
matrix scaled: yes (divided each row by sum of abs values in each row) 696 696 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.00000e+00 697 697 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.02000e+01 698 698 maximum sum (abs (rows of A)): 1.02000e+01
699 699
symbolic/numeric factorization: upper bound actual % 700 700 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 701 701 variable-sized part of Numeric object:
initial size (Units) 90 80 89% 702 702 initial size (Units) 90 80 89%
peak size (Units) 2542 2527 99% 703 703 peak size (Units) 2542 2527 99%
final size (Units) 25 19 76% 704 704 final size (Units) 25 19 76%
Numeric final size (Units) 113 105 93% 705 705 Numeric final size (Units) 113 105 93%
Numeric final size (MBytes) 0.0 0.0 93% 706 706 Numeric final size (MBytes) 0.0 0.0 93%
peak memory usage (Units) 2751 2736 99% 707 707 peak memory usage (Units) 2751 2736 99%
peak memory usage (MBytes) 0.0 0.0 99% 708 708 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 1.70000e+01 25% 709 709 numeric factorization flops 6.70000e+01 1.70000e+01 25%
nz in L (incl diagonal) 10 8 80% 710 710 nz in L (incl diagonal) 10 8 80%
nz in U (incl diagonal) 10 9 90% 711 711 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 12 80% 712 712 nz in L+U (incl diagonal) 15 12 80%
largest front (# entries) 9 4 44% 713 713 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 714 714 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 715 715 largest # columns in front 3 2 67%
716 716
initial allocation ratio used: 0.7 717 717 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 718 718 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 8 719 719 nz in L (incl diagonal), if none dropped 8
nz in U (incl diagonal), if none dropped 9 720 720 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 721 721 number of small entries dropped 0
nonzeros on diagonal of U: 5 722 722 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.35e-01 723 723 min abs. value on diagonal of U: 1.35e-01
max abs. value on diagonal of U: 1.00e+00 724 724 max abs. value on diagonal of U: 1.00e+00
estimate of reciprocal of condition number: 1.35e-01 725 725 estimate of reciprocal of condition number: 1.35e-01
indices in compressed pattern: 2 726 726 indices in compressed pattern: 2
numerical values stored in Numeric object: 8 727 727 numerical values stored in Numeric object: 8
numeric factorization defragmentations: 1 728 728 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 729 729 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 730 730 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 731 731 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 732 732 numeric factorization wallclock time (sec): 0.00
733 733
solve flops: 5.15000e+02 734 734 solve flops: 5.15000e+02
iterative refinement steps taken: 0 735 735 iterative refinement steps taken: 0
iterative refinement steps attempted: 0 736 736 iterative refinement steps attempted: 0
sparse backward error omega1: 6.01e-17 737 737 sparse backward error omega1: 6.01e-17
sparse backward error omega2: 0.00e+00 738 738 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 739 739 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 740 740 solve wall clock time (sec): 0.00
741 741
total symbolic + numeric + solve flops: 5.32000e+02 742 742 total symbolic + numeric + solve flops: 5.32000e+02
743 743
744 744
x (with modified A): dense vector, n = 5. 745 745 x (with modified A): dense vector, n = 5.
0 : (10.9256 - 2.23085i) 746 746 0 : (10.9256 - 2.23085i)
1 : (-5.36071 - 1.82131i) 747 747 1 : (-5.36071 - 1.82131i)
2 : (3 + 0i) 748 748 2 : (3 + 0i)
3 : (-1.60191 - 1.88814i) 749 749 3 : (-1.60191 - 1.88814i)
4 : (32.7361 - 2.90097i) 750 750 4 : (32.7361 - 2.90097i)
dense vector OK 751 751 dense vector OK
752 752
maxnorm of residual: 4.66294e-15 753 753 maxnorm of residual: 4.66294e-15
754 754
changing real part of A (0,0) from 2 to 2 755 755 changing real part of A (0,0) from 2 to 2
changing real part of A (1,0) from 3 to 2 756 756 changing real part of A (1,0) from 3 to 2
changing real part of A (0,1) from 3 to 13 757 757 changing real part of A (0,1) from 3 to 13
changing real part of A (2,1) from -1 to 7 758 758 changing real part of A (2,1) from -1 to 7
changing real part of A (4,1) from 4 to 10 759 759 changing real part of A (4,1) from 4 to 10
changing real part of A (1,2) from 4 to 23 760 760 changing real part of A (1,2) from 4 to 23
changing real part of A (2,2) from -3 to 15 761 761 changing real part of A (2,2) from -3 to 15
changing real part of A (3,2) from 1 to 18 762 762 changing real part of A (3,2) from 1 to 18
changing real part of A (4,2) from 2 to 18 763 763 changing real part of A (4,2) from 2 to 18
changing real part of A (2,3) from 2 to 30 764 764 changing real part of A (2,3) from 2 to 30
changing real part of A (1,4) from 0 to 39 765 765 changing real part of A (1,4) from 0 to 39
changing real part of A (4,4) from 1 to 37 766 766 changing real part of A (4,4) from 1 to 37
767 767
completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12. 768 768 completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12.
769 769
column 0: start: 0 end: 1 entries: 2 770 770 column 0: start: 0 end: 1 entries: 2
row 0 : (2 + 1i) 771 771 row 0 : (2 + 1i)
row 1 : (2 + 0.1i) 772 772 row 1 : (2 + 0.1i)
773 773
column 1: start: 2 end: 4 entries: 3 774 774 column 1: start: 2 end: 4 entries: 3
row 0 : (13 + 0i) 775 775 row 0 : (13 + 0i)
row 2 : (7 - 1i) 776 776 row 2 : (7 - 1i)
row 4 : (10 + 0.3i) 777 777 row 4 : (10 + 0.3i)
778 778
column 2: start: 5 end: 8 entries: 4 779 779 column 2: start: 5 end: 8 entries: 4
row 1 : (23 + 0.2i) 780 780 row 1 : (23 + 0.2i)
row 2 : (15 - 0.2i) 781 781 row 2 : (15 - 0.2i)
row 3 : (18 + 0i) 782 782 row 3 : (18 + 0i)
row 4 : (18 + 0.3i) 783 783 row 4 : (18 + 0.3i)
784 784
column 3: start: 9 end: 9 entries: 1 785 785 column 3: start: 9 end: 9 entries: 1
row 2 : (30 + 3i) 786 786 row 2 : (30 + 3i)
787 787
column 4: start: 10 end: 11 entries: 2 788 788 column 4: start: 10 end: 11 entries: 2
row 1 : (39 + 0i) 789 789 row 1 : (39 + 0i)
row 4 : (37 + 0.4i) 790 790 row 4 : (37 + 0.4i)
column-form matrix OK 791 791 column-form matrix OK
792 792
793 793
Saving symbolic object: 794 794 Saving symbolic object:
795 795
Freeing symbolic object: 796 796 Freeing symbolic object:
797 797
Loading symbolic object: 798 798 Loading symbolic object:
799 799
Done loading symbolic object 800 800 Done loading symbolic object
801 801
Numeric factorization of completely modified A: Numeric object: 802 802 Numeric factorization of completely modified A: Numeric object:
n_row: 5 n_col: 5 803 803 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 804 804 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 805 805 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 806 806 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 1.60000e+01 807 807 minimum sum (abs (rows of A)): 1.60000e+01
maximum sum (abs (rows of A)): 6.60000e+01 808 808 maximum sum (abs (rows of A)): 6.60000e+01
initial allocation parameter used: 0.7 809 809 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 810 810 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 106 811 811 final total size of Numeric object (Units): 106
final total size of Numeric object (MBytes): 0.0 812 812 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 2527 813 813 peak size of variable-size part (Units): 2527
peak size of variable-size part (MBytes): 0.0 814 814 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 815 815 largest actual frontal matrix size: 4
memory defragmentations: 1 816 816 memory defragmentations: 1
memory reallocations: 1 817 817 memory reallocations: 1
costly memory reallocations: 0 818 818 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 819 819 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 4 820 820 number of nonzeros in L (excl diag): 4
number of entries stored in L (excl diag): 2 821 821 number of entries stored in L (excl diag): 2
number of nonzeros in U (excl diag): 4 822 822 number of nonzeros in U (excl diag): 4
number of entries stored in U (excl diag): 2 823 823 number of entries stored in U (excl diag): 2
factorization floating-point operations: 34 824 824 factorization floating-point operations: 34
number of nonzeros on diagonal of U: 5 825 825 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.39754e-01 826 826 min abs. value on diagonal of U: 1.39754e-01
max abs. value on diagonal of U: 1.00000e+00 827 827 max abs. value on diagonal of U: 1.00000e+00
reciprocal condition number estimate: 1.40e-01 828 828 reciprocal condition number estimate: 1.40e-01
829 829
Scale factors applied via multiplication 830 830 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 831 831 Scale factors, Rs: dense vector, n = 5.
0 : (0.0625) 832 832 0 : (0.0625)
1 : (0.0155521) 833 833 1 : (0.0155521)
2 : (0.0177936) 834 834 2 : (0.0177936)
3 : (0.0555556) 835 835 3 : (0.0555556)
4 : (0.0151515) 836 836 4 : (0.0151515)
dense vector OK 837 837 dense vector OK
838 838
839 839
P: row permutation vector, n = 5. 840 840 P: row permutation vector, n = 5.
0 : 2 841 841 0 : 2
1 : 3 842 842 1 : 3
2 : 0 843 843 2 : 0
3 : 4 844 844 3 : 4
4 : 1 845 845 4 : 1
permutation vector OK 846 846 permutation vector OK
847 847
848 848
Q: column permutation vector, n = 5. 849 849 Q: column permutation vector, n = 5.
0 : 3 850 850 0 : 3
1 : 2 851 851 1 : 2
2 : 0 852 852 2 : 0
3 : 4 853 853 3 : 4
4 : 1 854 854 4 : 1
permutation vector OK 855 855 permutation vector OK
856 856
857 857
L in Numeric object, in column-oriented compressed-pattern form: 858 858 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 859 859 Diagonal entries are all equal to 1.0 (not stored)
860 860
column 0: length 0. 861 861 column 0: length 0.
862 862
column 1: length 2. 863 863 column 1: length 2.
row 4 : (0.357698 + 0.00311042i) 864 864 row 4 : (0.357698 + 0.00311042i)
row 3 : (0.272727 + 0.00454545i) 865 865 row 3 : (0.272727 + 0.00454545i)
866 866
column 2: add 1 entries. length 1. Start of Lchain. 867 867 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (0.204044 - 0.0895801i) 868 868 row 4 : (0.204044 - 0.0895801i)
869 869
column 3: length 1. 870 870 column 3: length 1.
row 4 : (1.0818 - 0.0116951i) 871 871 row 4 : (1.0818 - 0.0116951i)
872 872
column 4: length 0. Start of Lchain. 873 873 column 4: length 0. Start of Lchain.
874 874
875 875
U in Numeric object, in row-oriented compressed-pattern form: 876 876 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 877 877 Diagonal is stored separately.
878 878
row 4: length 0. End of Uchain. 879 879 row 4: length 0. End of Uchain.
880 880
row 3: length 1. End of Uchain. 881 881 row 3: length 1. End of Uchain.
col 4 : (0.151515 + 0.00454545i) 882 882 col 4 : (0.151515 + 0.00454545i)
883 883
row 2: length 1. 884 884 row 2: length 1.
col 4 : (0.8125 + 0i) 885 885 col 4 : (0.8125 + 0i)
886 886
row 1: length 0. End of Uchain. 887 887 row 1: length 0. End of Uchain.
888 888
row 1: length 0. 889 889 row 1: length 0.
890 890
row 0: length 2. 891 891 row 0: length 2.
col 1 : (0.266904 - 0.00355872i) 892 892 col 1 : (0.266904 - 0.00355872i)
col 4 : (0.124555 - 0.0177936i) 893 893 col 4 : (0.124555 - 0.0177936i)
894 894
895 895
diagonal of U: dense vector, n = 5. 896 896 diagonal of U: dense vector, n = 5.
0 : (0.533808 + 0.0533808i) 897 897 0 : (0.533808 + 0.0533808i)
1 : (1 + 0i) 898 898 1 : (1 + 0i)
2 : (0.125 + 0.0625i) 899 899 2 : (0.125 + 0.0625i)
3 : (0.560606 + 0.00606061i) 900 900 3 : (0.560606 + 0.00606061i)
4 : (-0.329747 + 0.0696386i) 901 901 4 : (-0.329747 + 0.0696386i)
dense vector OK 902 902 dense vector OK
903 903
Numeric object: OK 904 904 Numeric object: OK
905 905
UMFPACK V5.1.0 (May 31, 2007), Info: 906 906 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 907 907 matrix entry defined as: double complex
Int (generic integer) defined as: int 908 908 Int (generic integer) defined as: int
BLAS library used: Fortran BLAS. size of BLAS integer: 4 909 909 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 910 910 MATLAB: no.
CPU timer: POSIX times ( ) routine. 911 911 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 912 912 number of rows in matrix A: 5
number of columns in matrix A: 5 913 913 number of columns in matrix A: 5
entries in matrix A: 12 914 914 entries in matrix A: 12
memory usage reported in: 8-byte Units 915 915 memory usage reported in: 8-byte Units
size of int: 4 bytes 916 916 size of int: 4 bytes
size of UF_long: 8 bytes 917 917 size of UF_long: 8 bytes
size of pointer: 8 bytes 918 918 size of pointer: 8 bytes
size of numerical entry: 16 bytes 919 919 size of numerical entry: 16 bytes
920 920
strategy used: unsymmetric 921 921 strategy used: unsymmetric
ordering used: colamd on A 922 922 ordering used: colamd on A
modify Q during factorization: yes 923 923 modify Q during factorization: yes
prefer diagonal pivoting: no 924 924 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 925 925 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 926 926 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 927 927 number of "dense" rows: 0
number of "dense" columns: 0 928 928 number of "dense" columns: 0
number of empty rows: 0 929 929 number of empty rows: 0
number of empty columns 0 930 930 number of empty columns 0
submatrix S square and diagonal preserved 931 931 submatrix S square and diagonal preserved
pattern of square submatrix S: 932 932 pattern of square submatrix S:
number rows and columns 3 933 933 number rows and columns 3
symmetry of nonzero pattern: 1.000000 934 934 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 935 935 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 936 936 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 937 937 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 938 938 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 939 939 # of small diagonal entries of S: 1
# unmatched: 0 940 940 # unmatched: 0
symmetry of P2*S: 0.000000 941 941 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 942 942 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 943 943 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 944 944 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 945 945 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 151 946 946 symbolic memory usage (Units): 151
symbolic memory usage (MBytes): 0.0 947 947 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 52 948 948 Symbolic size (Units): 52
Symbolic size (MBytes): 0 949 949 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 950 950 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 951 951 symbolic factorization wallclock time(sec): 0.00
952 952
matrix scaled: yes (divided each row by sum of abs values in each row) 953 953 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.60000e+01 954 954 minimum sum (abs (rows of A)): 1.60000e+01
maximum sum (abs (rows of A)): 6.60000e+01 955 955 maximum sum (abs (rows of A)): 6.60000e+01
956 956
symbolic/numeric factorization: upper bound actual % 957 957 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 958 958 variable-sized part of Numeric object:
initial size (Units) 90 80 89% 959 959 initial size (Units) 90 80 89%
peak size (Units) 2542 2527 99% 960 960 peak size (Units) 2542 2527 99%
final size (Units) 25 21 84% 961 961 final size (Units) 25 21 84%
Numeric final size (Units) 113 107 95% 962 962 Numeric final size (Units) 113 107 95%
Numeric final size (MBytes) 0.0 0.0 95% 963 963 Numeric final size (MBytes) 0.0 0.0 95%
peak memory usage (Units) 2751 2736 99% 964 964 peak memory usage (Units) 2751 2736 99%
peak memory usage (MBytes) 0.0 0.0 99% 965 965 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 3.40000e+01 51% 966 966 numeric factorization flops 6.70000e+01 3.40000e+01 51%
nz in L (incl diagonal) 10 9 90% 967 967 nz in L (incl diagonal) 10 9 90%
nz in U (incl diagonal) 10 9 90% 968 968 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 13 87% 969 969 nz in L+U (incl diagonal) 15 13 87%
largest front (# entries) 9 4 44% 970 970 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 971 971 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 972 972 largest # columns in front 3 2 67%
973 973
initial allocation ratio used: 0.7 974 974 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 975 975 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 9 976 976 nz in L (incl diagonal), if none dropped 9
nz in U (incl diagonal), if none dropped 9 977 977 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 978 978 number of small entries dropped 0
nonzeros on diagonal of U: 5 979 979 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.40e-01 980 980 min abs. value on diagonal of U: 1.40e-01
max abs. value on diagonal of U: 1.00e+00 981 981 max abs. value on diagonal of U: 1.00e+00
estimate of reciprocal of condition number: 1.40e-01 982 982 estimate of reciprocal of condition number: 1.40e-01
indices in compressed pattern: 2 983 983 indices in compressed pattern: 2
numerical values stored in Numeric object: 9 984 984 numerical values stored in Numeric object: 9
numeric factorization defragmentations: 1 985 985 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 986 986 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 987 987 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 988 988 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 989 989 numeric factorization wallclock time (sec): 0.00
990 990
solve flops: 5.23000e+02 991 991 solve flops: 5.23000e+02
iterative refinement steps taken: 0 992 992 iterative refinement steps taken: 0
iterative refinement steps attempted: 0 993 993 iterative refinement steps attempted: 0
sparse backward error omega1: 8.05e-17 994 994 sparse backward error omega1: 8.05e-17
sparse backward error omega2: 0.00e+00 995 995 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 996 996 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 997 997 solve wall clock time (sec): 0.00
998 998
total symbolic + numeric + solve flops: 5.57000e+02 999 999 total symbolic + numeric + solve flops: 5.57000e+02
1000 1000
1001 1001
x (with completely modified A): dense vector, n = 5. 1002 1002 x (with completely modified A): dense vector, n = 5.
0 : (7.56307 - 3.68974i) 1003 1003 0 : (7.56307 - 3.68974i)
1 : (-0.831991 + 0.0627998i) 1004 1004 1 : (-0.831991 + 0.0627998i)
2 : (0.166667 + 0i) 1005 1005 2 : (0.166667 + 0i)
3 : (-0.00206892 - 0.107735i) 1006 1006 3 : (-0.00206892 - 0.107735i)
4 : (0.658245 + 0.0407649i) 1007 1007 4 : (0.658245 + 0.0407649i)
dense vector OK 1008 1008 dense vector OK
1009 1009
maxnorm of residual: 9.10383e-15 1010 1010 maxnorm of residual: 9.10383e-15
1011 1011
1012 1012
C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12. 1013 1013 C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12.
1014 1014
column 0: start: 0 end: 1 entries: 2 1015 1015 column 0: start: 0 end: 1 entries: 2
row 0 : (2 - 1i) 1016 1016 row 0 : (2 - 1i)
row 1 : (13 + 0i) 1017 1017 row 1 : (13 + 0i)
1018 1018
column 1: start: 2 end: 4 entries: 3 1019 1019 column 1: start: 2 end: 4 entries: 3
row 0 : (2 - 0.1i) 1020 1020 row 0 : (2 - 0.1i)
row 2 : (23 - 0.2i) 1021 1021 row 2 : (23 - 0.2i)
row 4 : (39 + 0i) 1022 1022 row 4 : (39 + 0i)
1023 1023
column 2: start: 5 end: 7 entries: 3 1024 1024 column 2: start: 5 end: 7 entries: 3
row 1 : (7 + 1i) 1025 1025 row 1 : (7 + 1i)
row 2 : (15 + 0.2i) 1026 1026 row 2 : (15 + 0.2i)
row 3 : (30 - 3i) 1027 1027 row 3 : (30 - 3i)
1028 1028
column 3: start: 8 end: 8 entries: 1 1029 1029 column 3: start: 8 end: 8 entries: 1
row 2 : (18 + 0i) 1030 1030 row 2 : (18 + 0i)
1031 1031
column 4: start: 9 end: 11 entries: 3 1032 1032 column 4: start: 9 end: 11 entries: 3
row 1 : (10 - 0.3i) 1033 1033 row 1 : (10 - 0.3i)
row 2 : (18 - 0.3i) 1034 1034 row 2 : (18 - 0.3i)
row 4 : (37 - 0.4i) 1035 1035 row 4 : (37 - 0.4i)
column-form matrix OK 1036 1036 column-form matrix OK
1037 1037
1038 1038
Symbolic factorization of C: Symbolic object: 1039 1039 Symbolic factorization of C: Symbolic object:
matrix to be factorized: 1040 1040 matrix to be factorized:
n_row: 5 n_col: 5 1041 1041 n_row: 5 n_col: 5
number of entries: 12 1042 1042 number of entries: 12
block size used for dense matrix kernels: 32 1043 1043 block size used for dense matrix kernels: 32
strategy used: unsymmetric 1044 1044 strategy used: unsymmetric
ordering used: colamd on A 1045 1045 ordering used: colamd on A
1046 1046
performn column etree postorder: yes 1047 1047 performn column etree postorder: yes
prefer diagonal pivoting (attempt P=Q): no 1048 1048 prefer diagonal pivoting (attempt P=Q): no
variable-size part of Numeric object: 1049 1049 variable-size part of Numeric object:
minimum initial size (Units): 91 (MBytes): 0.0 1050 1050 minimum initial size (Units): 91 (MBytes): 0.0
estimated peak size (Units): 2543 (MBytes): 0.0 1051 1051 estimated peak size (Units): 2543 (MBytes): 0.0
estimated final size (Units): 26 (MBytes): 0.0 1052 1052 estimated final size (Units): 26 (MBytes): 0.0
symbolic factorization memory usage (Units): 151 (MBytes): 0.0 1053 1053 symbolic factorization memory usage (Units): 151 (MBytes): 0.0
frontal matrices / supercolumns: 1054 1054 frontal matrices / supercolumns:
number of frontal chains: 1 1055 1055 number of frontal chains: 1
number of frontal matrices: 1 1056 1056 number of frontal matrices: 1
largest frontal matrix row dimension: 3 1057 1057 largest frontal matrix row dimension: 3
largest frontal matrix column dimension: 3 1058 1058 largest frontal matrix column dimension: 3
1059 1059
Frontal chain: 0. Frontal matrices 0 to 0 1060 1060 Frontal chain: 0. Frontal matrices 0 to 0
Largest frontal matrix in Frontal chain: 3-by-3 1061 1061 Largest frontal matrix in Frontal chain: 3-by-3
Front: 0 pivot cols: 3 (pivot columns 0 to 2) 1062 1062 Front: 0 pivot cols: 3 (pivot columns 0 to 2)
pivot row candidates: 2 to 4 1063 1063 pivot row candidates: 2 to 4
leftmost descendant: 0 1064 1064 leftmost descendant: 0
1st new candidate row : 2 1065 1065 1st new candidate row : 2
parent: (none) 1066 1066 parent: (none)
1067 1067
Initial column permutation, Q1: permutation vector, n = 5. 1068 1068 Initial column permutation, Q1: permutation vector, n = 5.
0 : 3 1069 1069 0 : 3
1 : 2 1070 1070 1 : 2
2 : 0 1071 1071 2 : 0
3 : 4 1072 1072 3 : 4
4 : 1 1073 1073 4 : 1
permutation vector OK 1074 1074 permutation vector OK
1075 1075
1076 1076
Initial row permutation, P1: permutation vector, n = 5. 1077 1077 Initial row permutation, P1: permutation vector, n = 5.
0 : 2 1078 1078 0 : 2
1 : 3 1079 1079 1 : 3
2 : 0 1080 1080 2 : 0
3 : 1 1081 1081 3 : 1
4 : 4 1082 1082 4 : 4
permutation vector OK 1083 1083 permutation vector OK
1084 1084
Symbolic object: OK 1085 1085 Symbolic object: OK
1086 1086
1087 1087
Get the contents of the Symbolic object for C: 1088 1088 Get the contents of the Symbolic object for C:
(compare with umfpack_zi_report_symbolic output, above) 1089 1089 (compare with umfpack_zi_report_symbolic output, above)
From the Symbolic object, C is of dimension 5-by-5 1090 1090 From the Symbolic object, C is of dimension 5-by-5
with nz = 12, number of fronts = 1, 1091 1091 with nz = 12, number of fronts = 1,
number of frontal matrix chains = 1 1092 1092 number of frontal matrix chains = 1
1093 1093
Pivot columns in each front, and parent of each front: 1094 1094 Pivot columns in each front, and parent of each front:
Front 0: parent front: -1 number of pivot cols: 3 1095 1095 Front 0: parent front: -1 number of pivot cols: 3
0-th pivot column is column 3 in original matrix 1096 1096 0-th pivot column is column 3 in original matrix
1-th pivot column is column 2 in original matrix 1097 1097 1-th pivot column is column 2 in original matrix
2-th pivot column is column 0 in original matrix 1098 1098 2-th pivot column is column 0 in original matrix
1099 1099
Note that the column ordering, above, will be refined 1100 1100 Note that the column ordering, above, will be refined
in the numeric factorization below. The assignment of pivot 1101 1101 in the numeric factorization below. The assignment of pivot
columns to frontal matrices will always remain unchanged. 1102 1102 columns to frontal matrices will always remain unchanged.
1103 1103
Total number of pivot columns in frontal matrices: 3 1104 1104 Total number of pivot columns in frontal matrices: 3
1105 1105
Frontal matrix chains: 1106 1106 Frontal matrix chains:
Frontal matrices 0 to 0 are factorized in a single 1107 1107 Frontal matrices 0 to 0 are factorized in a single
working array of size 3-by-3 1108 1108 working array of size 3-by-3
1109 1109
Numeric factorization of C: Numeric object: 1110 1110 Numeric factorization of C: Numeric object:
n_row: 5 n_col: 5 1111 1111 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 1112 1112 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 1113 1113 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 1114 1114 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 5.10000e+00 1115 1115 minimum sum (abs (rows of A)): 5.10000e+00
maximum sum (abs (rows of A)): 7.64000e+01 1116 1116 maximum sum (abs (rows of A)): 7.64000e+01
initial allocation parameter used: 0.7 1117 1117 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 1118 1118 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 107 1119 1119 final total size of Numeric object (Units): 107
final total size of Numeric object (MBytes): 0.0 1120 1120 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 2528 1121 1121 peak size of variable-size part (Units): 2528
peak size of variable-size part (MBytes): 0.0 1122 1122 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 1123 1123 largest actual frontal matrix size: 4
memory defragmentations: 1 1124 1124 memory defragmentations: 1
memory reallocations: 1 1125 1125 memory reallocations: 1
costly memory reallocations: 0 1126 1126 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 1127 1127 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 3 1128 1128 number of nonzeros in L (excl diag): 3
number of entries stored in L (excl diag): 2 1129 1129 number of entries stored in L (excl diag): 2
number of nonzeros in U (excl diag): 5 1130 1130 number of nonzeros in U (excl diag): 5
number of entries stored in U (excl diag): 2 1131 1131 number of entries stored in U (excl diag): 2
factorization floating-point operations: 34 1132 1132 factorization floating-point operations: 34
number of nonzeros on diagonal of U: 5 1133 1133 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 2.40964e-01 1134 1134 min abs. value on diagonal of U: 2.40964e-01
max abs. value on diagonal of U: 9.13625e-01 1135 1135 max abs. value on diagonal of U: 9.13625e-01
reciprocal condition number estimate: 2.64e-01 1136 1136 reciprocal condition number estimate: 2.64e-01
1137 1137
Scale factors applied via multiplication 1138 1138 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 1139 1139 Scale factors, Rs: dense vector, n = 5.
0 : (0.196078) 1140 1140 0 : (0.196078)
1 : (0.0319489) 1141 1141 1 : (0.0319489)
2 : (0.0133869) 1142 1142 2 : (0.0133869)
3 : (0.030303) 1143 1143 3 : (0.030303)
4 : (0.013089) 1144 1144 4 : (0.013089)
dense vector OK 1145 1145 dense vector OK
1146 1146
1147 1147
P: row permutation vector, n = 5. 1148 1148 P: row permutation vector, n = 5.
0 : 2 1149 1149 0 : 2
1 : 3 1150 1150 1 : 3
2 : 0 1151 1151 2 : 0
3 : 4 1152 1152 3 : 4
4 : 1 1153 1153 4 : 1
permutation vector OK 1154 1154 permutation vector OK
1155 1155
1156 1156
Q: column permutation vector, n = 5. 1157 1157 Q: column permutation vector, n = 5.
0 : 3 1158 1158 0 : 3
1 : 2 1159 1159 1 : 2
2 : 0 1160 1160 2 : 0
3 : 4 1161 1161 3 : 4
4 : 1 1162 1162 4 : 1
permutation vector OK 1163 1163 permutation vector OK
1164 1164
1165 1165
L in Numeric object, in column-oriented compressed-pattern form: 1166 1166 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 1167 1167 Diagonal entries are all equal to 1.0 (not stored)
1168 1168
column 0: length 0. 1169 1169 column 0: length 0.
1170 1170
column 1: length 1. 1171 1171 column 1: length 1.
row 4 : (0.240091 + 0.0591529i) 1172 1172 row 4 : (0.240091 + 0.0591529i)
1173 1173
column 2: add 1 entries. length 1. Start of Lchain. 1174 1174 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (0.847284 + 0.423642i) 1175 1175 row 4 : (0.847284 + 0.423642i)
1176 1176
column 3: length 1. 1177 1177 column 3: length 1.
row 4 : (0.659838 - 0.0126577i) 1178 1178 row 4 : (0.659838 - 0.0126577i)
1179 1179
column 4: length 0. Start of Lchain. 1180 1180 column 4: length 0. Start of Lchain.
1181 1181
1182 1182
U in Numeric object, in row-oriented compressed-pattern form: 1183 1183 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 1184 1184 Diagonal is stored separately.
1185 1185
row 4: length 0. End of Uchain. 1186 1186 row 4: length 0. End of Uchain.
1187 1187
row 3: length 1. End of Uchain. 1188 1188 row 3: length 1. End of Uchain.
col 4 : (0.510471 + 0i) 1189 1189 col 4 : (0.510471 + 0i)
1190 1190
row 2: length 1. 1191 1191 row 2: length 1.
col 4 : (0.392157 - 0.0196078i) 1192 1192 col 4 : (0.392157 - 0.0196078i)
1193 1193
row 1: length 0. End of Uchain. 1194 1194 row 1: length 0. End of Uchain.
1195 1195
row 1: length 0. 1196 1196 row 1: length 0.
1197 1197
row 0: length 3. 1198 1198 row 0: length 3.
col 1 : (0.200803 + 0.00267738i) 1199 1199 col 1 : (0.200803 + 0.00267738i)
col 3 : (0.240964 - 0.00401606i) 1200 1200 col 3 : (0.240964 - 0.00401606i)
col 4 : (0.307898 - 0.00267738i) 1201 1201 col 4 : (0.307898 - 0.00267738i)
1202 1202
1203 1203
diagonal of U: dense vector, n = 5. 1204 1204 diagonal of U: dense vector, n = 5.
0 : (0.240964 + 0i) 1205 1205 0 : (0.240964 + 0i)
1 : (0.909091 - 0.0909091i) 1206 1206 1 : (0.909091 - 0.0909091i)
2 : (0.392157 - 0.196078i) 1207 1207 2 : (0.392157 - 0.196078i)
3 : (0.484293 - 0.0052356i) 1208 1208 3 : (0.484293 - 0.0052356i)
4 : (-0.677403 - 0.143059i) 1209 1209 4 : (-0.677403 - 0.143059i)
dense vector OK 1210 1210 dense vector OK
1211 1211
Numeric object: OK 1212 1212 Numeric object: OK
1213 1213
1214 1214
L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8. 1215 1215 L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8.
1216 1216
row 0: start: 0 end: 0 entries: 1 1217 1217 row 0: start: 0 end: 0 entries: 1
column 0 : (1 + 0i) 1218 1218 column 0 : (1 + 0i)
1219 1219
row 1: start: 1 end: 1 entries: 1 1220 1220 row 1: start: 1 end: 1 entries: 1
column 1 : (1 + 0i) 1221 1221 column 1 : (1 + 0i)
1222 1222
row 2: start: 2 end: 2 entries: 1 1223 1223 row 2: start: 2 end: 2 entries: 1
column 2 : (1 + 0i) 1224 1224 column 2 : (1 + 0i)
1225 1225
row 3: start: 3 end: 3 entries: 1 1226 1226 row 3: start: 3 end: 3 entries: 1
column 3 : (1 + 0i) 1227 1227 column 3 : (1 + 0i)
1228 1228
row 4: start: 4 end: 7 entries: 4 1229 1229 row 4: start: 4 end: 7 entries: 4
column 1 : (0.240091 + 0.0591529i) 1230 1230 column 1 : (0.240091 + 0.0591529i)
column 2 : (0.847284 + 0.423642i) 1231 1231 column 2 : (0.847284 + 0.423642i)
column 3 : (0.659838 - 0.0126577i) 1232 1232 column 3 : (0.659838 - 0.0126577i)
column 4 : (1 + 0i) 1233 1233 column 4 : (1 + 0i)
row-form matrix OK 1234 1234 row-form matrix OK
1235 1235
1236 1236
U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10. 1237 1237 U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10.
1238 1238
column 0: start: 0 end: 0 entries: 1 1239 1239 column 0: start: 0 end: 0 entries: 1
row 0 : (0.240964 + 0i) 1240 1240 row 0 : (0.240964 + 0i)
1241 1241
column 1: start: 1 end: 2 entries: 2 1242 1242 column 1: start: 1 end: 2 entries: 2
row 0 : (0.200803 + 0.00267738i) 1243 1243 row 0 : (0.200803 + 0.00267738i)
row 1 : (0.909091 - 0.0909091i) 1244 1244 row 1 : (0.909091 - 0.0909091i)
1245 1245
column 2: start: 3 end: 3 entries: 1 1246 1246 column 2: start: 3 end: 3 entries: 1
row 2 : (0.392157 - 0.196078i) 1247 1247 row 2 : (0.392157 - 0.196078i)
1248 1248
column 3: start: 4 end: 5 entries: 2 1249 1249 column 3: start: 4 end: 5 entries: 2
row 0 : (0.240964 - 0.00401606i) 1250 1250 row 0 : (0.240964 - 0.00401606i)
row 3 : (0.484293 - 0.0052356i) 1251 1251 row 3 : (0.484293 - 0.0052356i)
1252 1252
column 4: start: 6 end: 9 entries: 4 1253 1253 column 4: start: 6 end: 9 entries: 4
fvn_sparse/UMFPACK/Demo/my_umfpack_zl_demo.out
1 1
UMFPACK V5.1 (May 31, 2007) demo: _zl_ version 2 2 UMFPACK V5.1 (May 31, 2007) demo: _zl_ version
3 3
UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. 4 4 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.
5 5
6 6
UMFPACK License: 7 7 UMFPACK License:
8 8
UMFPACK is available under alternate licenses, 9 9 UMFPACK is available under alternate licenses,
contact T. Davis for details. 10 10 contact T. Davis for details.
11 11
Your use or distribution of UMFPACK or any modified version of 12 12 Your use or distribution of UMFPACK or any modified version of
UMFPACK implies that you agree to this License. 13 13 UMFPACK implies that you agree to this License.
14 14
This library is free software; you can redistribute it and/or 15 15 This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public 16 16 modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either 17 17 License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. 18 18 version 2.1 of the License, or (at your option) any later version.
19 19
This library is distributed in the hope that it will be useful, 20 20 This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of 21 21 but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details. 23 23 Lesser General Public License for more details.
24 24
You should have received a copy of the GNU Lesser General Public 25 25 You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software 26 26 License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 27 27 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA 28 28 USA
29 29
Permission is hereby granted to use or copy this program under the 30 30 Permission is hereby granted to use or copy this program under the
terms of the GNU LGPL, provided that the Copyright, this License, 31 31 terms of the GNU LGPL, provided that the Copyright, this License,
and the Availability of the original version is retained on all copies. 32 32 and the Availability of the original version is retained on all copies.
User documentation of any code that uses this code or any modified 33 33 User documentation of any code that uses this code or any modified
version of this code must cite the Copyright, this License, the 34 34 version of this code must cite the Copyright, this License, the
Availability note, and "Used by permission." Permission to modify 35 35 Availability note, and "Used by permission." Permission to modify
the code and to distribute modified code is granted, provided the 36 36 the code and to distribute modified code is granted, provided the
Copyright, this License, and the Availability note are retained, 37 37 Copyright, this License, and the Availability note are retained,
and a notice that the code was modified is included. 38 38 and a notice that the code was modified is included.
39 39
Availability: http://www.cise.ufl.edu/research/sparse/umfpack 40 40 Availability: http://www.cise.ufl.edu/research/sparse/umfpack
41 41
UMFPACK V5.1.0 (May 31, 2007): OK 42 42 UMFPACK V5.1.0 (May 31, 2007): OK
43 43
UMFPACK V5.1.0 (May 31, 2007), Control: 44 44 UMFPACK V5.1.0 (May 31, 2007), Control:
Matrix entry defined as: double complex 45 45 Matrix entry defined as: double complex
Int (generic integer) defined as: UF_long 46 46 Int (generic integer) defined as: UF_long
47 47
0: print level: 5 48 48 0: print level: 5
1: dense row parameter: 0.2 49 49 1: dense row parameter: 0.2
"dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries) 50 50 "dense" rows have > max (16, (0.2)*16*sqrt(n_col) entries)
2: dense column parameter: 0.2 51 51 2: dense column parameter: 0.2
"dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries) 52 52 "dense" columns have > max (16, (0.2)*16*sqrt(n_row) entries)
3: pivot tolerance: 0.1 53 53 3: pivot tolerance: 0.1
4: block size for dense matrix kernels: 32 54 54 4: block size for dense matrix kernels: 32
5: strategy: 0 (auto) 55 55 5: strategy: 0 (auto)
6: initial allocation ratio: 0.7 56 56 6: initial allocation ratio: 0.7
7: max iterative refinement steps: 2 57 57 7: max iterative refinement steps: 2
12: 2-by-2 pivot tolerance: 0.01 58 58 12: 2-by-2 pivot tolerance: 0.01
13: Q fixed during numerical factorization: 0 (auto) 59 59 13: Q fixed during numerical factorization: 0 (auto)
14: AMD dense row/col parameter: 10 60 60 14: AMD dense row/col parameter: 10
"dense" rows/columns have > max (16, (10)*sqrt(n)) entries 61 61 "dense" rows/columns have > max (16, (10)*sqrt(n)) entries
Only used if the AMD ordering is used. 62 62 Only used if the AMD ordering is used.
15: diagonal pivot tolerance: 0.001 63 63 15: diagonal pivot tolerance: 0.001
Only used if diagonal pivoting is attempted. 64 64 Only used if diagonal pivoting is attempted.
16: scaling: 1 (divide each row by sum of abs. values in each row) 65 65 16: scaling: 1 (divide each row by sum of abs. values in each row)
17: frontal matrix allocation ratio: 0.5 66 66 17: frontal matrix allocation ratio: 0.5
18: drop tolerance: 0 67 67 18: drop tolerance: 0
19: AMD and COLAMD aggressive absorption: 1 (yes) 68 68 19: AMD and COLAMD aggressive absorption: 1 (yes)
69 69
The following options can only be changed at compile-time: 70 70 The following options can only be changed at compile-time:
8: BLAS library used: Fortran BLAS. size of BLAS integer: 4 71 71 8: BLAS library used: Fortran BLAS. size of BLAS integer: 4
9: compiled for ANSI C 72 72 9: compiled for ANSI C
10: CPU timer is POSIX times ( ) routine. 73 73 10: CPU timer is POSIX times ( ) routine.
11: compiled for normal operation (debugging disabled) 74 74 11: compiled for normal operation (debugging disabled)
computer/operating system: Linux 75 75 computer/operating system: Linux
size of int: 4 UF_long: 8 Int: 8 pointer: 8 double: 8 Entry: 16 (in bytes) 76 76 size of int: 4 UF_long: 8 Int: 8 pointer: 8 double: 8 Entry: 16 (in bytes)
77 77
78 78
b: dense vector, n = 5. 79 79 b: dense vector, n = 5.
0 : (8 + 1i) 80 80 0 : (8 + 1i)
1 : (45 - 5i) 81 81 1 : (45 - 5i)
2 : (-3 - 2i) 82 82 2 : (-3 - 2i)
3 : (3 + 0i) 83 83 3 : (3 + 0i)
4 : (19 + 2.2i) 84 84 4 : (19 + 2.2i)
dense vector OK 85 85 dense vector OK
86 86
87 87
A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12. 88 88 A: triplet-form matrix, n_row = 5, n_col = 5 nz = 12.
0 : 0 0 (2 + 1i) 89 89 0 : 0 0 (2 + 1i)
1 : 4 4 (1 + 0.4i) 90 90 1 : 4 4 (1 + 0.4i)
2 : 1 0 (3 + 0.1i) 91 91 2 : 1 0 (3 + 0.1i)
3 : 1 2 (4 + 0.2i) 92 92 3 : 1 2 (4 + 0.2i)
4 : 2 1 (-1 - 1i) 93 93 4 : 2 1 (-1 - 1i)
5 : 2 2 (-3 - 0.2i) 94 94 5 : 2 2 (-3 - 0.2i)
6 : 0 1 (3 + 0i) 95 95 6 : 0 1 (3 + 0i)
7 : 1 4 (6 + 6i) 96 96 7 : 1 4 (6 + 6i)
8 : 2 3 (2 + 3i) 97 97 8 : 2 3 (2 + 3i)
9 : 3 2 (1 + 0i) 98 98 9 : 3 2 (1 + 0i)
10 : 4 1 (4 + 0.3i) 99 99 10 : 4 1 (4 + 0.3i)
11 : 4 2 (2 + 0.3i) 100 100 11 : 4 2 (2 + 0.3i)
triplet-form matrix OK 101 101 triplet-form matrix OK
102 102
103 103
A: column-form matrix, n_row 5 n_col 5, nz = 12. 104 104 A: column-form matrix, n_row 5 n_col 5, nz = 12.
105 105
column 0: start: 0 end: 1 entries: 2 106 106 column 0: start: 0 end: 1 entries: 2
row 0 : (2 + 1i) 107 107 row 0 : (2 + 1i)
row 1 : (3 + 0.1i) 108 108 row 1 : (3 + 0.1i)
109 109
column 1: start: 2 end: 4 entries: 3 110 110 column 1: start: 2 end: 4 entries: 3
row 0 : (3 + 0i) 111 111 row 0 : (3 + 0i)
row 2 : (-1 - 1i) 112 112 row 2 : (-1 - 1i)
row 4 : (4 + 0.3i) 113 113 row 4 : (4 + 0.3i)
114 114
column 2: start: 5 end: 8 entries: 4 115 115 column 2: start: 5 end: 8 entries: 4
row 1 : (4 + 0.2i) 116 116 row 1 : (4 + 0.2i)
row 2 : (-3 - 0.2i) 117 117 row 2 : (-3 - 0.2i)
row 3 : (1 + 0i) 118 118 row 3 : (1 + 0i)
row 4 : (2 + 0.3i) 119 119 row 4 : (2 + 0.3i)
120 120
column 3: start: 9 end: 9 entries: 1 121 121 column 3: start: 9 end: 9 entries: 1
row 2 : (2 + 3i) 122 122 row 2 : (2 + 3i)
123 123
column 4: start: 10 end: 11 entries: 2 124 124 column 4: start: 10 end: 11 entries: 2
row 1 : (6 + 6i) 125 125 row 1 : (6 + 6i)
row 4 : (1 + 0.4i) 126 126 row 4 : (1 + 0.4i)
column-form matrix OK 127 127 column-form matrix OK
128 128
129 129
Symbolic factorization of A: Symbolic object: 130 130 Symbolic factorization of A: Symbolic object:
matrix to be factorized: 131 131 matrix to be factorized:
n_row: 5 n_col: 5 132 132 n_row: 5 n_col: 5
number of entries: 12 133 133 number of entries: 12
block size used for dense matrix kernels: 32 134 134 block size used for dense matrix kernels: 32
strategy used: unsymmetric 135 135 strategy used: unsymmetric
ordering used: colamd on A 136 136 ordering used: colamd on A
137 137
performn column etree postorder: yes 138 138 performn column etree postorder: yes
prefer diagonal pivoting (attempt P=Q): no 139 139 prefer diagonal pivoting (attempt P=Q): no
variable-size part of Numeric object: 140 140 variable-size part of Numeric object:
minimum initial size (Units): 74 (MBytes): 0.0 141 141 minimum initial size (Units): 74 (MBytes): 0.0
estimated peak size (Units): 1301 (MBytes): 0.0 142 142 estimated peak size (Units): 1301 (MBytes): 0.0
estimated final size (Units): 15 (MBytes): 0.0 143 143 estimated final size (Units): 15 (MBytes): 0.0
symbolic factorization memory usage (Units): 138 (MBytes): 0.0 144 144 symbolic factorization memory usage (Units): 138 (MBytes): 0.0
frontal matrices / supercolumns: 145 145 frontal matrices / supercolumns:
number of frontal chains: 1 146 146 number of frontal chains: 1
number of frontal matrices: 1 147 147 number of frontal matrices: 1
largest frontal matrix row dimension: 3 148 148 largest frontal matrix row dimension: 3
largest frontal matrix column dimension: 3 149 149 largest frontal matrix column dimension: 3
150 150
Frontal chain: 0. Frontal matrices 0 to 0 151 151 Frontal chain: 0. Frontal matrices 0 to 0
Largest frontal matrix in Frontal chain: 3-by-3 152 152 Largest frontal matrix in Frontal chain: 3-by-3
Front: 0 pivot cols: 3 (pivot columns 0 to 2) 153 153 Front: 0 pivot cols: 3 (pivot columns 0 to 2)
pivot row candidates: 2 to 4 154 154 pivot row candidates: 2 to 4
leftmost descendant: 0 155 155 leftmost descendant: 0
1st new candidate row : 2 156 156 1st new candidate row : 2
parent: (none) 157 157 parent: (none)
158 158
Initial column permutation, Q1: permutation vector, n = 5. 159 159 Initial column permutation, Q1: permutation vector, n = 5.
0 : 3 160 160 0 : 3
1 : 2 161 161 1 : 2
2 : 0 162 162 2 : 0
3 : 4 163 163 3 : 4
4 : 1 164 164 4 : 1
permutation vector OK 165 165 permutation vector OK
166 166
167 167
Initial row permutation, P1: permutation vector, n = 5. 168 168 Initial row permutation, P1: permutation vector, n = 5.
0 : 2 169 169 0 : 2
1 : 3 170 170 1 : 3
2 : 0 171 171 2 : 0
3 : 1 172 172 3 : 1
4 : 4 173 173 4 : 4
permutation vector OK 174 174 permutation vector OK
175 175
Symbolic object: OK 176 176 Symbolic object: OK
177 177
178 178
Numeric factorization of A: Numeric object: 179 179 Numeric factorization of A: Numeric object:
n_row: 5 n_col: 5 180 180 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 181 181 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 182 182 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 183 183 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 1.00000e+00 184 184 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.93000e+01 185 185 maximum sum (abs (rows of A)): 1.93000e+01
initial allocation parameter used: 0.7 186 186 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 187 187 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 74 188 188 final total size of Numeric object (Units): 74
final total size of Numeric object (MBytes): 0.0 189 189 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 1292 190 190 peak size of variable-size part (Units): 1292
peak size of variable-size part (MBytes): 0.0 191 191 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 192 192 largest actual frontal matrix size: 4
memory defragmentations: 1 193 193 memory defragmentations: 1
memory reallocations: 1 194 194 memory reallocations: 1
costly memory reallocations: 0 195 195 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 196 196 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 4 197 197 number of nonzeros in L (excl diag): 4
number of entries stored in L (excl diag): 2 198 198 number of entries stored in L (excl diag): 2
number of nonzeros in U (excl diag): 4 199 199 number of nonzeros in U (excl diag): 4
number of entries stored in U (excl diag): 2 200 200 number of entries stored in U (excl diag): 2
factorization floating-point operations: 34 201 201 factorization floating-point operations: 34
number of nonzeros on diagonal of U: 5 202 202 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.34629e-01 203 203 min abs. value on diagonal of U: 1.34629e-01
max abs. value on diagonal of U: 1.77313e+00 204 204 max abs. value on diagonal of U: 1.77313e+00
reciprocal condition number estimate: 7.59e-02 205 205 reciprocal condition number estimate: 7.59e-02
206 206
Scale factors applied via multiplication 207 207 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 208 208 Scale factors, Rs: dense vector, n = 5.
0 : (0.166667) 209 209 0 : (0.166667)
1 : (0.0518135) 210 210 1 : (0.0518135)
2 : (0.0980392) 211 211 2 : (0.0980392)
3 : (1) 212 212 3 : (1)
4 : (0.125) 213 213 4 : (0.125)
dense vector OK 214 214 dense vector OK
215 215
216 216
P: row permutation vector, n = 5. 217 217 P: row permutation vector, n = 5.
0 : 2 218 218 0 : 2
1 : 3 219 219 1 : 3
2 : 0 220 220 2 : 0
3 : 4 221 221 3 : 4
4 : 1 222 222 4 : 1
permutation vector OK 223 223 permutation vector OK
224 224
225 225
Q: column permutation vector, n = 5. 226 226 Q: column permutation vector, n = 5.
0 : 3 227 227 0 : 3
1 : 2 228 228 1 : 2
2 : 0 229 229 2 : 0
3 : 4 230 230 3 : 4
4 : 1 231 231 4 : 1
permutation vector OK 232 232 permutation vector OK
233 233
234 234
L in Numeric object, in column-oriented compressed-pattern form: 235 235 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 236 236 Diagonal entries are all equal to 1.0 (not stored)
237 237
column 0: length 0. 238 238 column 0: length 0.
239 239
column 1: length 2. 240 240 column 1: length 2.
row 4 : (0.207254 + 0.0103627i) 241 241 row 4 : (0.207254 + 0.0103627i)
row 3 : (0.25 + 0.0375i) 242 242 row 3 : (0.25 + 0.0375i)
243 243
column 2: add 1 entries. length 1. Start of Lchain. 244 244 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (0.379275 - 0.174093i) 245 245 row 4 : (0.379275 - 0.174093i)
246 246
column 3: length 1. 247 247 column 3: length 1.
row 4 : (3.00161 + 1.2864i) 248 248 row 4 : (3.00161 + 1.2864i)
249 249
column 4: length 0. Start of Lchain. 250 250 column 4: length 0. Start of Lchain.
251 251
252 252
U in Numeric object, in row-oriented compressed-pattern form: 253 253 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 254 254 Diagonal is stored separately.
255 255
row 4: length 0. End of Uchain. 256 256 row 4: length 0. End of Uchain.
257 257
row 3: length 1. End of Uchain. 258 258 row 3: length 1. End of Uchain.
col 4 : (0.5 + 0.0375i) 259 259 col 4 : (0.5 + 0.0375i)
260 260
row 2: length 1. 261 261 row 2: length 1.
col 4 : (0.5 + 0i) 262 262 col 4 : (0.5 + 0i)
263 263
row 1: length 0. End of Uchain. 264 264 row 1: length 0. End of Uchain.
265 265
row 1: length 0. 266 266 row 1: length 0.
267 267
row 0: length 2. 268 268 row 0: length 2.
col 1 : (-0.294118 - 0.0196078i) 269 269 col 1 : (-0.294118 - 0.0196078i)
col 4 : (-0.0980392 - 0.0980392i) 270 270 col 4 : (-0.0980392 - 0.0980392i)
271 271
272 272
diagonal of U: dense vector, n = 5. 273 273 diagonal of U: dense vector, n = 5.
0 : (0.196078 + 0.294118i) 274 274 0 : (0.196078 + 0.294118i)
1 : (1 + 0i) 275 275 1 : (1 + 0i)
2 : (0.333333 + 0.166667i) 276 276 2 : (0.333333 + 0.166667i)
3 : (0.125 + 0.05i) 277 277 3 : (0.125 + 0.05i)
4 : (-1.6422 - 0.668715i) 278 278 4 : (-1.6422 - 0.668715i)
dense vector OK 279 279 dense vector OK
280 280
Numeric object: OK 281 281 Numeric object: OK
282 282
UMFPACK V5.1.0 (May 31, 2007), Info: 283 283 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 284 284 matrix entry defined as: double complex
Int (generic integer) defined as: UF_long 285 285 Int (generic integer) defined as: UF_long
BLAS library used: Fortran BLAS. size of BLAS integer: 4 286 286 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 287 287 MATLAB: no.
CPU timer: POSIX times ( ) routine. 288 288 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 289 289 number of rows in matrix A: 5
number of columns in matrix A: 5 290 290 number of columns in matrix A: 5
entries in matrix A: 12 291 291 entries in matrix A: 12
memory usage reported in: 16-byte Units 292 292 memory usage reported in: 16-byte Units
size of int: 4 bytes 293 293 size of int: 4 bytes
size of UF_long: 8 bytes 294 294 size of UF_long: 8 bytes
size of pointer: 8 bytes 295 295 size of pointer: 8 bytes
size of numerical entry: 16 bytes 296 296 size of numerical entry: 16 bytes
297 297
strategy used: unsymmetric 298 298 strategy used: unsymmetric
ordering used: colamd on A 299 299 ordering used: colamd on A
modify Q during factorization: yes 300 300 modify Q during factorization: yes
prefer diagonal pivoting: no 301 301 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 302 302 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 303 303 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 304 304 number of "dense" rows: 0
number of "dense" columns: 0 305 305 number of "dense" columns: 0
number of empty rows: 0 306 306 number of empty rows: 0
number of empty columns 0 307 307 number of empty columns 0
submatrix S square and diagonal preserved 308 308 submatrix S square and diagonal preserved
pattern of square submatrix S: 309 309 pattern of square submatrix S:
number rows and columns 3 310 310 number rows and columns 3
symmetry of nonzero pattern: 1.000000 311 311 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 312 312 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 313 313 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 314 314 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 315 315 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 316 316 # of small diagonal entries of S: 1
# unmatched: 0 317 317 # unmatched: 0
symmetry of P2*S: 0.000000 318 318 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 319 319 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 320 320 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 321 321 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 322 322 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 138 323 323 symbolic memory usage (Units): 138
symbolic memory usage (MBytes): 0.0 324 324 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 41 325 325 Symbolic size (Units): 41
Symbolic size (MBytes): 0 326 326 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 327 327 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 328 328 symbolic factorization wallclock time(sec): 0.01
329 329
matrix scaled: yes (divided each row by sum of abs values in each row) 330 330 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.00000e+00 331 331 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.93000e+01 332 332 maximum sum (abs (rows of A)): 1.93000e+01
333 333
symbolic/numeric factorization: upper bound actual % 334 334 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 335 335 variable-sized part of Numeric object:
initial size (Units) 74 69 93% 336 336 initial size (Units) 74 69 93%
peak size (Units) 1301 1292 99% 337 337 peak size (Units) 1301 1292 99%
final size (Units) 15 13 87% 338 338 final size (Units) 15 13 87%
Numeric final size (Units) 79 75 95% 339 339 Numeric final size (Units) 79 75 95%
Numeric final size (MBytes) 0.0 0.0 95% 340 340 Numeric final size (MBytes) 0.0 0.0 95%
peak memory usage (Units) 1463 1454 99% 341 341 peak memory usage (Units) 1463 1454 99%
peak memory usage (MBytes) 0.0 0.0 99% 342 342 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 3.40000e+01 51% 343 343 numeric factorization flops 6.70000e+01 3.40000e+01 51%
nz in L (incl diagonal) 10 9 90% 344 344 nz in L (incl diagonal) 10 9 90%
nz in U (incl diagonal) 10 9 90% 345 345 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 13 87% 346 346 nz in L+U (incl diagonal) 15 13 87%
largest front (# entries) 9 4 44% 347 347 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 348 348 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 349 349 largest # columns in front 3 2 67%
350 350
initial allocation ratio used: 0.7 351 351 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 352 352 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 9 353 353 nz in L (incl diagonal), if none dropped 9
nz in U (incl diagonal), if none dropped 9 354 354 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 355 355 number of small entries dropped 0
nonzeros on diagonal of U: 5 356 356 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.35e-01 357 357 min abs. value on diagonal of U: 1.35e-01
max abs. value on diagonal of U: 1.77e+00 358 358 max abs. value on diagonal of U: 1.77e+00
estimate of reciprocal of condition number: 7.59e-02 359 359 estimate of reciprocal of condition number: 7.59e-02
indices in compressed pattern: 2 360 360 indices in compressed pattern: 2
numerical values stored in Numeric object: 9 361 361 numerical values stored in Numeric object: 9
numeric factorization defragmentations: 1 362 362 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 363 363 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 364 364 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 365 365 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 366 366 numeric factorization wallclock time (sec): 0.00
367 367
solve flops: 1.02800e+03 368 368 solve flops: 1.02800e+03
iterative refinement steps taken: 1 369 369 iterative refinement steps taken: 1
iterative refinement steps attempted: 1 370 370 iterative refinement steps attempted: 1
sparse backward error omega1: 5.28e-17 371 371 sparse backward error omega1: 5.28e-17
sparse backward error omega2: 0.00e+00 372 372 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 373 373 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 374 374 solve wall clock time (sec): 0.00
375 375
total symbolic + numeric + solve flops: 1.06200e+03 376 376 total symbolic + numeric + solve flops: 1.06200e+03
377 377
378 378
UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. 379 379 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.
380 380
UMFPACK V5.1.0 (May 31, 2007): OK 381 381 UMFPACK V5.1.0 (May 31, 2007): OK
382 382
383 383
x (solution of Ax=b): dense vector, n = 5. 384 384 x (solution of Ax=b): dense vector, n = 5.
0 : (0.121188 - 0.561001i) 385 385 0 : (0.121188 - 0.561001i)
1 : (2.39887 + 0.666938i) 386 386 1 : (2.39887 + 0.666938i)
2 : (3 + 0i) 387 387 2 : (3 + 0i)
3 : (1.57395 - 1.52801i) 388 388 3 : (1.57395 - 1.52801i)
4 : (2.3876 - 3.04245i) 389 389 4 : (2.3876 - 3.04245i)
dense vector OK 390 390 dense vector OK
391 391
maxnorm of residual: 1.77636e-15 392 392 maxnorm of residual: 1.77636e-15
393 393
394 394
UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved. 395 395 UMFPACK: Copyright (c) 2005-2006 by Timothy A. Davis. All Rights Reserved.
396 396
UMFPACK V5.1.0 (May 31, 2007): OK 397 397 UMFPACK V5.1.0 (May 31, 2007): OK
398 398
determinant: (-1.7814+ (2.3784)i) * 10^(2) 399 399 determinant: (-1.7814+ (2.3784)i) * 10^(2)
400 400
x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5. 401 401 x (solution of Ax=b, solve is split into 3 steps): dense vector, n = 5.
0 : (0.121188 - 0.561001i) 402 402 0 : (0.121188 - 0.561001i)
1 : (2.39887 + 0.666938i) 403 403 1 : (2.39887 + 0.666938i)
2 : (3 + 0i) 404 404 2 : (3 + 0i)
3 : (1.57395 - 1.52801i) 405 405 3 : (1.57395 - 1.52801i)
4 : (2.3876 - 3.04245i) 406 406 4 : (2.3876 - 3.04245i)
dense vector OK 407 407 dense vector OK
408 408
maxnorm of residual: 1.77636e-14 409 409 maxnorm of residual: 1.77636e-14
410 410
UMFPACK V5.1.0 (May 31, 2007), Info: 411 411 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 412 412 matrix entry defined as: double complex
Int (generic integer) defined as: UF_long 413 413 Int (generic integer) defined as: UF_long
BLAS library used: Fortran BLAS. size of BLAS integer: 4 414 414 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 415 415 MATLAB: no.
CPU timer: POSIX times ( ) routine. 416 416 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 417 417 number of rows in matrix A: 5
number of columns in matrix A: 5 418 418 number of columns in matrix A: 5
entries in matrix A: 12 419 419 entries in matrix A: 12
memory usage reported in: 16-byte Units 420 420 memory usage reported in: 16-byte Units
size of int: 4 bytes 421 421 size of int: 4 bytes
size of UF_long: 8 bytes 422 422 size of UF_long: 8 bytes
size of pointer: 8 bytes 423 423 size of pointer: 8 bytes
size of numerical entry: 16 bytes 424 424 size of numerical entry: 16 bytes
425 425
strategy used: unsymmetric 426 426 strategy used: unsymmetric
ordering used: colamd on A 427 427 ordering used: colamd on A
modify Q during factorization: yes 428 428 modify Q during factorization: yes
prefer diagonal pivoting: no 429 429 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 430 430 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 431 431 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 432 432 number of "dense" rows: 0
number of "dense" columns: 0 433 433 number of "dense" columns: 0
number of empty rows: 0 434 434 number of empty rows: 0
number of empty columns 0 435 435 number of empty columns 0
submatrix S square and diagonal preserved 436 436 submatrix S square and diagonal preserved
pattern of square submatrix S: 437 437 pattern of square submatrix S:
number rows and columns 3 438 438 number rows and columns 3
symmetry of nonzero pattern: 1.000000 439 439 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 440 440 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 441 441 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 442 442 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 443 443 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 444 444 # of small diagonal entries of S: 1
# unmatched: 0 445 445 # unmatched: 0
symmetry of P2*S: 0.000000 446 446 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 447 447 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 448 448 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 449 449 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 450 450 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 138 451 451 symbolic memory usage (Units): 138
symbolic memory usage (MBytes): 0.0 452 452 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 41 453 453 Symbolic size (Units): 41
Symbolic size (MBytes): 0 454 454 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 455 455 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 456 456 symbolic factorization wallclock time(sec): 0.01
457 457
matrix scaled: yes (divided each row by sum of abs values in each row) 458 458 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.00000e+00 459 459 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.93000e+01 460 460 maximum sum (abs (rows of A)): 1.93000e+01
461 461
symbolic/numeric factorization: upper bound actual % 462 462 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 463 463 variable-sized part of Numeric object:
initial size (Units) 74 69 93% 464 464 initial size (Units) 74 69 93%
peak size (Units) 1301 1292 99% 465 465 peak size (Units) 1301 1292 99%
final size (Units) 15 13 87% 466 466 final size (Units) 15 13 87%
Numeric final size (Units) 79 75 95% 467 467 Numeric final size (Units) 79 75 95%
Numeric final size (MBytes) 0.0 0.0 95% 468 468 Numeric final size (MBytes) 0.0 0.0 95%
peak memory usage (Units) 1463 1454 99% 469 469 peak memory usage (Units) 1463 1454 99%
peak memory usage (MBytes) 0.0 0.0 99% 470 470 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 3.40000e+01 51% 471 471 numeric factorization flops 6.70000e+01 3.40000e+01 51%
nz in L (incl diagonal) 10 9 90% 472 472 nz in L (incl diagonal) 10 9 90%
nz in U (incl diagonal) 10 9 90% 473 473 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 13 87% 474 474 nz in L+U (incl diagonal) 15 13 87%
largest front (# entries) 9 4 44% 475 475 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 476 476 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 477 477 largest # columns in front 3 2 67%
478 478
initial allocation ratio used: 0.7 479 479 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 480 480 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 9 481 481 nz in L (incl diagonal), if none dropped 9
nz in U (incl diagonal), if none dropped 9 482 482 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 483 483 number of small entries dropped 0
nonzeros on diagonal of U: 5 484 484 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.35e-01 485 485 min abs. value on diagonal of U: 1.35e-01
max abs. value on diagonal of U: 1.77e+00 486 486 max abs. value on diagonal of U: 1.77e+00
estimate of reciprocal of condition number: 7.59e-02 487 487 estimate of reciprocal of condition number: 7.59e-02
indices in compressed pattern: 2 488 488 indices in compressed pattern: 2
numerical values stored in Numeric object: 9 489 489 numerical values stored in Numeric object: 9
numeric factorization defragmentations: 1 490 490 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 491 491 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 492 492 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 493 493 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 494 494 numeric factorization wallclock time (sec): 0.00
495 495
solve flops: 4.80000e+02 496 496 solve flops: 4.80000e+02
iterative refinement steps taken: 0 497 497 iterative refinement steps taken: 0
iterative refinement steps attempted: 0 498 498 iterative refinement steps attempted: 0
sparse backward error omega1: 7.82e-17 499 499 sparse backward error omega1: 7.82e-17
sparse backward error omega2: 0.00e+00 500 500 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 501 501 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 502 502 solve wall clock time (sec): 0.00
503 503
total symbolic + numeric + solve flops: 5.14000e+02 504 504 total symbolic + numeric + solve flops: 5.14000e+02
505 505
506 506
x (solution of A'x=b): dense vector, n = 5. 507 507 x (solution of A'x=b): dense vector, n = 5.
0 : (3.39246 + 0.13257i) 508 508 0 : (3.39246 + 0.13257i)
1 : (0.31463 + 1.38626i) 509 509 1 : (0.31463 + 1.38626i)
2 : (0.461538 + 0.692308i) 510 510 2 : (0.461538 + 0.692308i)
3 : (-20.9089 - 1.55801i) 511 511 3 : (-20.9089 - 1.55801i)
4 : (9.04015 - 0.613724i) 512 512 4 : (9.04015 - 0.613724i)
dense vector OK 513 513 dense vector OK
514 514
maxnorm of residual: 4.52416e-15 515 515 maxnorm of residual: 4.52416e-15
516 516
517 517
changing A (1,4) to zero 518 518 changing A (1,4) to zero
519 519
modified A: column-form matrix, n_row 5 n_col 5, nz = 12. 520 520 modified A: column-form matrix, n_row 5 n_col 5, nz = 12.
521 521
column 0: start: 0 end: 1 entries: 2 522 522 column 0: start: 0 end: 1 entries: 2
row 0 : (2 + 1i) 523 523 row 0 : (2 + 1i)
row 1 : (3 + 0.1i) 524 524 row 1 : (3 + 0.1i)
525 525
column 1: start: 2 end: 4 entries: 3 526 526 column 1: start: 2 end: 4 entries: 3
row 0 : (3 + 0i) 527 527 row 0 : (3 + 0i)
row 2 : (-1 - 1i) 528 528 row 2 : (-1 - 1i)
row 4 : (4 + 0.3i) 529 529 row 4 : (4 + 0.3i)
530 530
column 2: start: 5 end: 8 entries: 4 531 531 column 2: start: 5 end: 8 entries: 4
row 1 : (4 + 0.2i) 532 532 row 1 : (4 + 0.2i)
row 2 : (-3 - 0.2i) 533 533 row 2 : (-3 - 0.2i)
row 3 : (1 + 0i) 534 534 row 3 : (1 + 0i)
row 4 : (2 + 0.3i) 535 535 row 4 : (2 + 0.3i)
536 536
column 3: start: 9 end: 9 entries: 1 537 537 column 3: start: 9 end: 9 entries: 1
row 2 : (2 + 3i) 538 538 row 2 : (2 + 3i)
539 539
column 4: start: 10 end: 11 entries: 2 540 540 column 4: start: 10 end: 11 entries: 2
row 1 : (0 + 0i) 541 541 row 1 : (0 + 0i)
row 4 : (1 + 0.4i) 542 542 row 4 : (1 + 0.4i)
column-form matrix OK 543 543 column-form matrix OK
544 544
545 545
Numeric factorization of modified A: Numeric object: 546 546 Numeric factorization of modified A: Numeric object:
n_row: 5 n_col: 5 547 547 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 548 548 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 549 549 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 550 550 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 1.00000e+00 551 551 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.02000e+01 552 552 maximum sum (abs (rows of A)): 1.02000e+01
initial allocation parameter used: 0.7 553 553 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 554 554 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 73 555 555 final total size of Numeric object (Units): 73
final total size of Numeric object (MBytes): 0.0 556 556 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 1292 557 557 peak size of variable-size part (Units): 1292
peak size of variable-size part (MBytes): 0.0 558 558 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 559 559 largest actual frontal matrix size: 4
memory defragmentations: 1 560 560 memory defragmentations: 1
memory reallocations: 1 561 561 memory reallocations: 1
costly memory reallocations: 0 562 562 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 563 563 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 3 564 564 number of nonzeros in L (excl diag): 3
number of entries stored in L (excl diag): 1 565 565 number of entries stored in L (excl diag): 1
number of nonzeros in U (excl diag): 4 566 566 number of nonzeros in U (excl diag): 4
number of entries stored in U (excl diag): 2 567 567 number of entries stored in U (excl diag): 2
factorization floating-point operations: 17 568 568 factorization floating-point operations: 17
number of nonzeros on diagonal of U: 5 569 569 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.34629e-01 570 570 min abs. value on diagonal of U: 1.34629e-01
max abs. value on diagonal of U: 1.00000e+00 571 571 max abs. value on diagonal of U: 1.00000e+00
reciprocal condition number estimate: 1.35e-01 572 572 reciprocal condition number estimate: 1.35e-01
573 573
Scale factors applied via multiplication 574 574 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 575 575 Scale factors, Rs: dense vector, n = 5.
0 : (0.166667) 576 576 0 : (0.166667)
1 : (0.136986) 577 577 1 : (0.136986)
2 : (0.0980392) 578 578 2 : (0.0980392)
3 : (1) 579 579 3 : (1)
4 : (0.125) 580 580 4 : (0.125)
dense vector OK 581 581 dense vector OK
582 582
583 583
P: row permutation vector, n = 5. 584 584 P: row permutation vector, n = 5.
0 : 2 585 585 0 : 2
1 : 3 586 586 1 : 3
2 : 0 587 587 2 : 0
3 : 4 588 588 3 : 4
4 : 1 589 589 4 : 1
permutation vector OK 590 590 permutation vector OK
591 591
592 592
Q: column permutation vector, n = 5. 593 593 Q: column permutation vector, n = 5.
0 : 3 594 594 0 : 3
1 : 2 595 595 1 : 2
2 : 0 596 596 2 : 0
3 : 4 597 597 3 : 4
4 : 1 598 598 4 : 1
permutation vector OK 599 599 permutation vector OK
600 600
601 601
L in Numeric object, in column-oriented compressed-pattern form: 602 602 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 603 603 Diagonal entries are all equal to 1.0 (not stored)
604 604
column 0: length 0. 605 605 column 0: length 0.
606 606
column 1: length 2. 607 607 column 1: length 2.
row 4 : (0.547945 + 0.0273973i) 608 608 row 4 : (0.547945 + 0.0273973i)
row 3 : (0.25 + 0.0375i) 609 609 row 3 : (0.25 + 0.0375i)
610 610
column 2: add 1 entries. length 1. Start of Lchain. 611 611 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (1.00274 - 0.460274i) 612 612 row 4 : (1.00274 - 0.460274i)
613 613
column 3: length 0. Start of Lchain. 614 614 column 3: length 0. Start of Lchain.
615 615
column 4: length 0. Start of Lchain. 616 616 column 4: length 0. Start of Lchain.
617 617
618 618
U in Numeric object, in row-oriented compressed-pattern form: 619 619 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 620 620 Diagonal is stored separately.
621 621
row 4: length 0. End of Uchain. 622 622 row 4: length 0. End of Uchain.
623 623
row 3: length 1. End of Uchain. 624 624 row 3: length 1. End of Uchain.
col 4 : (0.5 + 0.0375i) 625 625 col 4 : (0.5 + 0.0375i)
626 626
row 2: length 1. 627 627 row 2: length 1.
col 4 : (0.5 + 0i) 628 628 col 4 : (0.5 + 0i)
629 629
row 1: length 0. End of Uchain. 630 630 row 1: length 0. End of Uchain.
631 631
row 1: length 0. 632 632 row 1: length 0.
633 633
row 0: length 2. 634 634 row 0: length 2.
col 1 : (-0.294118 - 0.0196078i) 635 635 col 1 : (-0.294118 - 0.0196078i)
col 4 : (-0.0980392 - 0.0980392i) 636 636 col 4 : (-0.0980392 - 0.0980392i)
637 637
638 638
diagonal of U: dense vector, n = 5. 639 639 diagonal of U: dense vector, n = 5.
0 : (0.196078 + 0.294118i) 640 640 0 : (0.196078 + 0.294118i)
1 : (1 + 0i) 641 641 1 : (1 + 0i)
2 : (0.333333 + 0.166667i) 642 642 2 : (0.333333 + 0.166667i)
3 : (0.125 + 0.05i) 643 643 3 : (0.125 + 0.05i)
4 : (-0.50137 + 0.230137i) 644 644 4 : (-0.50137 + 0.230137i)
dense vector OK 645 645 dense vector OK
646 646
Numeric object: OK 647 647 Numeric object: OK
648 648
UMFPACK V5.1.0 (May 31, 2007), Info: 649 649 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 650 650 matrix entry defined as: double complex
Int (generic integer) defined as: UF_long 651 651 Int (generic integer) defined as: UF_long
BLAS library used: Fortran BLAS. size of BLAS integer: 4 652 652 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 653 653 MATLAB: no.
CPU timer: POSIX times ( ) routine. 654 654 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 655 655 number of rows in matrix A: 5
number of columns in matrix A: 5 656 656 number of columns in matrix A: 5
entries in matrix A: 12 657 657 entries in matrix A: 12
memory usage reported in: 16-byte Units 658 658 memory usage reported in: 16-byte Units
size of int: 4 bytes 659 659 size of int: 4 bytes
size of UF_long: 8 bytes 660 660 size of UF_long: 8 bytes
size of pointer: 8 bytes 661 661 size of pointer: 8 bytes
size of numerical entry: 16 bytes 662 662 size of numerical entry: 16 bytes
663 663
strategy used: unsymmetric 664 664 strategy used: unsymmetric
ordering used: colamd on A 665 665 ordering used: colamd on A
modify Q during factorization: yes 666 666 modify Q during factorization: yes
prefer diagonal pivoting: no 667 667 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 668 668 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 669 669 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 670 670 number of "dense" rows: 0
number of "dense" columns: 0 671 671 number of "dense" columns: 0
number of empty rows: 0 672 672 number of empty rows: 0
number of empty columns 0 673 673 number of empty columns 0
submatrix S square and diagonal preserved 674 674 submatrix S square and diagonal preserved
pattern of square submatrix S: 675 675 pattern of square submatrix S:
number rows and columns 3 676 676 number rows and columns 3
symmetry of nonzero pattern: 1.000000 677 677 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 678 678 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 679 679 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 680 680 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 681 681 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 682 682 # of small diagonal entries of S: 1
# unmatched: 0 683 683 # unmatched: 0
symmetry of P2*S: 0.000000 684 684 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 685 685 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 686 686 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 687 687 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 688 688 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 138 689 689 symbolic memory usage (Units): 138
symbolic memory usage (MBytes): 0.0 690 690 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 41 691 691 Symbolic size (Units): 41
Symbolic size (MBytes): 0 692 692 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 693 693 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 694 694 symbolic factorization wallclock time(sec): 0.01
695 695
matrix scaled: yes (divided each row by sum of abs values in each row) 696 696 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.00000e+00 697 697 minimum sum (abs (rows of A)): 1.00000e+00
maximum sum (abs (rows of A)): 1.02000e+01 698 698 maximum sum (abs (rows of A)): 1.02000e+01
699 699
symbolic/numeric factorization: upper bound actual % 700 700 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 701 701 variable-sized part of Numeric object:
initial size (Units) 74 69 93% 702 702 initial size (Units) 74 69 93%
peak size (Units) 1301 1292 99% 703 703 peak size (Units) 1301 1292 99%
final size (Units) 15 12 80% 704 704 final size (Units) 15 12 80%
Numeric final size (Units) 79 74 94% 705 705 Numeric final size (Units) 79 74 94%
Numeric final size (MBytes) 0.0 0.0 94% 706 706 Numeric final size (MBytes) 0.0 0.0 94%
peak memory usage (Units) 1463 1454 99% 707 707 peak memory usage (Units) 1463 1454 99%
peak memory usage (MBytes) 0.0 0.0 99% 708 708 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 1.70000e+01 25% 709 709 numeric factorization flops 6.70000e+01 1.70000e+01 25%
nz in L (incl diagonal) 10 8 80% 710 710 nz in L (incl diagonal) 10 8 80%
nz in U (incl diagonal) 10 9 90% 711 711 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 12 80% 712 712 nz in L+U (incl diagonal) 15 12 80%
largest front (# entries) 9 4 44% 713 713 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 714 714 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 715 715 largest # columns in front 3 2 67%
716 716
initial allocation ratio used: 0.7 717 717 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 718 718 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 8 719 719 nz in L (incl diagonal), if none dropped 8
nz in U (incl diagonal), if none dropped 9 720 720 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 721 721 number of small entries dropped 0
nonzeros on diagonal of U: 5 722 722 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.35e-01 723 723 min abs. value on diagonal of U: 1.35e-01
max abs. value on diagonal of U: 1.00e+00 724 724 max abs. value on diagonal of U: 1.00e+00
estimate of reciprocal of condition number: 1.35e-01 725 725 estimate of reciprocal of condition number: 1.35e-01
indices in compressed pattern: 2 726 726 indices in compressed pattern: 2
numerical values stored in Numeric object: 8 727 727 numerical values stored in Numeric object: 8
numeric factorization defragmentations: 1 728 728 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 729 729 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 730 730 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 731 731 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 732 732 numeric factorization wallclock time (sec): 0.00
733 733
solve flops: 5.15000e+02 734 734 solve flops: 5.15000e+02
iterative refinement steps taken: 0 735 735 iterative refinement steps taken: 0
iterative refinement steps attempted: 0 736 736 iterative refinement steps attempted: 0
sparse backward error omega1: 6.01e-17 737 737 sparse backward error omega1: 6.01e-17
sparse backward error omega2: 0.00e+00 738 738 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 739 739 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 740 740 solve wall clock time (sec): 0.00
741 741
total symbolic + numeric + solve flops: 5.32000e+02 742 742 total symbolic + numeric + solve flops: 5.32000e+02
743 743
744 744
x (with modified A): dense vector, n = 5. 745 745 x (with modified A): dense vector, n = 5.
0 : (10.9256 - 2.23085i) 746 746 0 : (10.9256 - 2.23085i)
1 : (-5.36071 - 1.82131i) 747 747 1 : (-5.36071 - 1.82131i)
2 : (3 + 0i) 748 748 2 : (3 + 0i)
3 : (-1.60191 - 1.88814i) 749 749 3 : (-1.60191 - 1.88814i)
4 : (32.7361 - 2.90097i) 750 750 4 : (32.7361 - 2.90097i)
dense vector OK 751 751 dense vector OK
752 752
maxnorm of residual: 4.66294e-15 753 753 maxnorm of residual: 4.66294e-15
754 754
changing real part of A (0,0) from 2 to 2 755 755 changing real part of A (0,0) from 2 to 2
changing real part of A (1,0) from 3 to 2 756 756 changing real part of A (1,0) from 3 to 2
changing real part of A (0,1) from 3 to 13 757 757 changing real part of A (0,1) from 3 to 13
changing real part of A (2,1) from -1 to 7 758 758 changing real part of A (2,1) from -1 to 7
changing real part of A (4,1) from 4 to 10 759 759 changing real part of A (4,1) from 4 to 10
changing real part of A (1,2) from 4 to 23 760 760 changing real part of A (1,2) from 4 to 23
changing real part of A (2,2) from -3 to 15 761 761 changing real part of A (2,2) from -3 to 15
changing real part of A (3,2) from 1 to 18 762 762 changing real part of A (3,2) from 1 to 18
changing real part of A (4,2) from 2 to 18 763 763 changing real part of A (4,2) from 2 to 18
changing real part of A (2,3) from 2 to 30 764 764 changing real part of A (2,3) from 2 to 30
changing real part of A (1,4) from 0 to 39 765 765 changing real part of A (1,4) from 0 to 39
changing real part of A (4,4) from 1 to 37 766 766 changing real part of A (4,4) from 1 to 37
767 767
completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12. 768 768 completely modified A (same pattern): column-form matrix, n_row 5 n_col 5, nz = 12.
769 769
column 0: start: 0 end: 1 entries: 2 770 770 column 0: start: 0 end: 1 entries: 2
row 0 : (2 + 1i) 771 771 row 0 : (2 + 1i)
row 1 : (2 + 0.1i) 772 772 row 1 : (2 + 0.1i)
773 773
column 1: start: 2 end: 4 entries: 3 774 774 column 1: start: 2 end: 4 entries: 3
row 0 : (13 + 0i) 775 775 row 0 : (13 + 0i)
row 2 : (7 - 1i) 776 776 row 2 : (7 - 1i)
row 4 : (10 + 0.3i) 777 777 row 4 : (10 + 0.3i)
778 778
column 2: start: 5 end: 8 entries: 4 779 779 column 2: start: 5 end: 8 entries: 4
row 1 : (23 + 0.2i) 780 780 row 1 : (23 + 0.2i)
row 2 : (15 - 0.2i) 781 781 row 2 : (15 - 0.2i)
row 3 : (18 + 0i) 782 782 row 3 : (18 + 0i)
row 4 : (18 + 0.3i) 783 783 row 4 : (18 + 0.3i)
784 784
column 3: start: 9 end: 9 entries: 1 785 785 column 3: start: 9 end: 9 entries: 1
row 2 : (30 + 3i) 786 786 row 2 : (30 + 3i)
787 787
column 4: start: 10 end: 11 entries: 2 788 788 column 4: start: 10 end: 11 entries: 2
row 1 : (39 + 0i) 789 789 row 1 : (39 + 0i)
row 4 : (37 + 0.4i) 790 790 row 4 : (37 + 0.4i)
column-form matrix OK 791 791 column-form matrix OK
792 792
793 793
Saving symbolic object: 794 794 Saving symbolic object:
795 795
Freeing symbolic object: 796 796 Freeing symbolic object:
797 797
Loading symbolic object: 798 798 Loading symbolic object:
799 799
Done loading symbolic object 800 800 Done loading symbolic object
801 801
Numeric factorization of completely modified A: Numeric object: 802 802 Numeric factorization of completely modified A: Numeric object:
n_row: 5 n_col: 5 803 803 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 804 804 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 805 805 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 806 806 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 1.60000e+01 807 807 minimum sum (abs (rows of A)): 1.60000e+01
maximum sum (abs (rows of A)): 6.60000e+01 808 808 maximum sum (abs (rows of A)): 6.60000e+01
initial allocation parameter used: 0.7 809 809 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 810 810 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 74 811 811 final total size of Numeric object (Units): 74
final total size of Numeric object (MBytes): 0.0 812 812 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 1292 813 813 peak size of variable-size part (Units): 1292
peak size of variable-size part (MBytes): 0.0 814 814 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 815 815 largest actual frontal matrix size: 4
memory defragmentations: 1 816 816 memory defragmentations: 1
memory reallocations: 1 817 817 memory reallocations: 1
costly memory reallocations: 0 818 818 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 819 819 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 4 820 820 number of nonzeros in L (excl diag): 4
number of entries stored in L (excl diag): 2 821 821 number of entries stored in L (excl diag): 2
number of nonzeros in U (excl diag): 4 822 822 number of nonzeros in U (excl diag): 4
number of entries stored in U (excl diag): 2 823 823 number of entries stored in U (excl diag): 2
factorization floating-point operations: 34 824 824 factorization floating-point operations: 34
number of nonzeros on diagonal of U: 5 825 825 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.39754e-01 826 826 min abs. value on diagonal of U: 1.39754e-01
max abs. value on diagonal of U: 1.00000e+00 827 827 max abs. value on diagonal of U: 1.00000e+00
reciprocal condition number estimate: 1.40e-01 828 828 reciprocal condition number estimate: 1.40e-01
829 829
Scale factors applied via multiplication 830 830 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 831 831 Scale factors, Rs: dense vector, n = 5.
0 : (0.0625) 832 832 0 : (0.0625)
1 : (0.0155521) 833 833 1 : (0.0155521)
2 : (0.0177936) 834 834 2 : (0.0177936)
3 : (0.0555556) 835 835 3 : (0.0555556)
4 : (0.0151515) 836 836 4 : (0.0151515)
dense vector OK 837 837 dense vector OK
838 838
839 839
P: row permutation vector, n = 5. 840 840 P: row permutation vector, n = 5.
0 : 2 841 841 0 : 2
1 : 3 842 842 1 : 3
2 : 0 843 843 2 : 0
3 : 4 844 844 3 : 4
4 : 1 845 845 4 : 1
permutation vector OK 846 846 permutation vector OK
847 847
848 848
Q: column permutation vector, n = 5. 849 849 Q: column permutation vector, n = 5.
0 : 3 850 850 0 : 3
1 : 2 851 851 1 : 2
2 : 0 852 852 2 : 0
3 : 4 853 853 3 : 4
4 : 1 854 854 4 : 1
permutation vector OK 855 855 permutation vector OK
856 856
857 857
L in Numeric object, in column-oriented compressed-pattern form: 858 858 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 859 859 Diagonal entries are all equal to 1.0 (not stored)
860 860
column 0: length 0. 861 861 column 0: length 0.
862 862
column 1: length 2. 863 863 column 1: length 2.
row 4 : (0.357698 + 0.00311042i) 864 864 row 4 : (0.357698 + 0.00311042i)
row 3 : (0.272727 + 0.00454545i) 865 865 row 3 : (0.272727 + 0.00454545i)
866 866
column 2: add 1 entries. length 1. Start of Lchain. 867 867 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (0.204044 - 0.0895801i) 868 868 row 4 : (0.204044 - 0.0895801i)
869 869
column 3: length 1. 870 870 column 3: length 1.
row 4 : (1.0818 - 0.0116951i) 871 871 row 4 : (1.0818 - 0.0116951i)
872 872
column 4: length 0. Start of Lchain. 873 873 column 4: length 0. Start of Lchain.
874 874
875 875
U in Numeric object, in row-oriented compressed-pattern form: 876 876 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 877 877 Diagonal is stored separately.
878 878
row 4: length 0. End of Uchain. 879 879 row 4: length 0. End of Uchain.
880 880
row 3: length 1. End of Uchain. 881 881 row 3: length 1. End of Uchain.
col 4 : (0.151515 + 0.00454545i) 882 882 col 4 : (0.151515 + 0.00454545i)
883 883
row 2: length 1. 884 884 row 2: length 1.
col 4 : (0.8125 + 0i) 885 885 col 4 : (0.8125 + 0i)
886 886
row 1: length 0. End of Uchain. 887 887 row 1: length 0. End of Uchain.
888 888
row 1: length 0. 889 889 row 1: length 0.
890 890
row 0: length 2. 891 891 row 0: length 2.
col 1 : (0.266904 - 0.00355872i) 892 892 col 1 : (0.266904 - 0.00355872i)
col 4 : (0.124555 - 0.0177936i) 893 893 col 4 : (0.124555 - 0.0177936i)
894 894
895 895
diagonal of U: dense vector, n = 5. 896 896 diagonal of U: dense vector, n = 5.
0 : (0.533808 + 0.0533808i) 897 897 0 : (0.533808 + 0.0533808i)
1 : (1 + 0i) 898 898 1 : (1 + 0i)
2 : (0.125 + 0.0625i) 899 899 2 : (0.125 + 0.0625i)
3 : (0.560606 + 0.00606061i) 900 900 3 : (0.560606 + 0.00606061i)
4 : (-0.329747 + 0.0696386i) 901 901 4 : (-0.329747 + 0.0696386i)
dense vector OK 902 902 dense vector OK
903 903
Numeric object: OK 904 904 Numeric object: OK
905 905
UMFPACK V5.1.0 (May 31, 2007), Info: 906 906 UMFPACK V5.1.0 (May 31, 2007), Info:
matrix entry defined as: double complex 907 907 matrix entry defined as: double complex
Int (generic integer) defined as: UF_long 908 908 Int (generic integer) defined as: UF_long
BLAS library used: Fortran BLAS. size of BLAS integer: 4 909 909 BLAS library used: Fortran BLAS. size of BLAS integer: 4
MATLAB: no. 910 910 MATLAB: no.
CPU timer: POSIX times ( ) routine. 911 911 CPU timer: POSIX times ( ) routine.
number of rows in matrix A: 5 912 912 number of rows in matrix A: 5
number of columns in matrix A: 5 913 913 number of columns in matrix A: 5
entries in matrix A: 12 914 914 entries in matrix A: 12
memory usage reported in: 16-byte Units 915 915 memory usage reported in: 16-byte Units
size of int: 4 bytes 916 916 size of int: 4 bytes
size of UF_long: 8 bytes 917 917 size of UF_long: 8 bytes
size of pointer: 8 bytes 918 918 size of pointer: 8 bytes
size of numerical entry: 16 bytes 919 919 size of numerical entry: 16 bytes
920 920
strategy used: unsymmetric 921 921 strategy used: unsymmetric
ordering used: colamd on A 922 922 ordering used: colamd on A
modify Q during factorization: yes 923 923 modify Q during factorization: yes
prefer diagonal pivoting: no 924 924 prefer diagonal pivoting: no
pivots with zero Markowitz cost: 2 925 925 pivots with zero Markowitz cost: 2
submatrix S after removing zero-cost pivots: 926 926 submatrix S after removing zero-cost pivots:
number of "dense" rows: 0 927 927 number of "dense" rows: 0
number of "dense" columns: 0 928 928 number of "dense" columns: 0
number of empty rows: 0 929 929 number of empty rows: 0
number of empty columns 0 930 930 number of empty columns 0
submatrix S square and diagonal preserved 931 931 submatrix S square and diagonal preserved
pattern of square submatrix S: 932 932 pattern of square submatrix S:
number rows and columns 3 933 933 number rows and columns 3
symmetry of nonzero pattern: 1.000000 934 934 symmetry of nonzero pattern: 1.000000
nz in S+S' (excl. diagonal): 4 935 935 nz in S+S' (excl. diagonal): 4
nz on diagonal of matrix S: 2 936 936 nz on diagonal of matrix S: 2
fraction of nz on diagonal: 0.666667 937 937 fraction of nz on diagonal: 0.666667
2-by-2 pivoting to place large entries on diagonal: 938 938 2-by-2 pivoting to place large entries on diagonal:
# of small diagonal entries of S: 1 939 939 # of small diagonal entries of S: 1
# unmatched: 0 940 940 # unmatched: 0
symmetry of P2*S: 0.000000 941 941 symmetry of P2*S: 0.000000
nz in P2*S+(P2*S)' (excl. diag.): 6 942 942 nz in P2*S+(P2*S)' (excl. diag.): 6
nz on diagonal of P2*S: 3 943 943 nz on diagonal of P2*S: 3
fraction of nz on diag of P2*S: 1.000000 944 944 fraction of nz on diag of P2*S: 1.000000
symbolic factorization defragmentations: 0 945 945 symbolic factorization defragmentations: 0
symbolic memory usage (Units): 138 946 946 symbolic memory usage (Units): 138
symbolic memory usage (MBytes): 0.0 947 947 symbolic memory usage (MBytes): 0.0
Symbolic size (Units): 41 948 948 Symbolic size (Units): 41
Symbolic size (MBytes): 0 949 949 Symbolic size (MBytes): 0
symbolic factorization CPU time (sec): 0.00 950 950 symbolic factorization CPU time (sec): 0.00
symbolic factorization wallclock time(sec): 0.00 951 951 symbolic factorization wallclock time(sec): 0.01
952 952
matrix scaled: yes (divided each row by sum of abs values in each row) 953 953 matrix scaled: yes (divided each row by sum of abs values in each row)
minimum sum (abs (rows of A)): 1.60000e+01 954 954 minimum sum (abs (rows of A)): 1.60000e+01
maximum sum (abs (rows of A)): 6.60000e+01 955 955 maximum sum (abs (rows of A)): 6.60000e+01
956 956
symbolic/numeric factorization: upper bound actual % 957 957 symbolic/numeric factorization: upper bound actual %
variable-sized part of Numeric object: 958 958 variable-sized part of Numeric object:
initial size (Units) 74 69 93% 959 959 initial size (Units) 74 69 93%
peak size (Units) 1301 1292 99% 960 960 peak size (Units) 1301 1292 99%
final size (Units) 15 13 87% 961 961 final size (Units) 15 13 87%
Numeric final size (Units) 79 75 95% 962 962 Numeric final size (Units) 79 75 95%
Numeric final size (MBytes) 0.0 0.0 95% 963 963 Numeric final size (MBytes) 0.0 0.0 95%
peak memory usage (Units) 1463 1454 99% 964 964 peak memory usage (Units) 1463 1454 99%
peak memory usage (MBytes) 0.0 0.0 99% 965 965 peak memory usage (MBytes) 0.0 0.0 99%
numeric factorization flops 6.70000e+01 3.40000e+01 51% 966 966 numeric factorization flops 6.70000e+01 3.40000e+01 51%
nz in L (incl diagonal) 10 9 90% 967 967 nz in L (incl diagonal) 10 9 90%
nz in U (incl diagonal) 10 9 90% 968 968 nz in U (incl diagonal) 10 9 90%
nz in L+U (incl diagonal) 15 13 87% 969 969 nz in L+U (incl diagonal) 15 13 87%
largest front (# entries) 9 4 44% 970 970 largest front (# entries) 9 4 44%
largest # rows in front 3 2 67% 971 971 largest # rows in front 3 2 67%
largest # columns in front 3 2 67% 972 972 largest # columns in front 3 2 67%
973 973
initial allocation ratio used: 0.7 974 974 initial allocation ratio used: 0.7
# of forced updates due to frontal growth: 0 975 975 # of forced updates due to frontal growth: 0
nz in L (incl diagonal), if none dropped 9 976 976 nz in L (incl diagonal), if none dropped 9
nz in U (incl diagonal), if none dropped 9 977 977 nz in U (incl diagonal), if none dropped 9
number of small entries dropped 0 978 978 number of small entries dropped 0
nonzeros on diagonal of U: 5 979 979 nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 1.40e-01 980 980 min abs. value on diagonal of U: 1.40e-01
max abs. value on diagonal of U: 1.00e+00 981 981 max abs. value on diagonal of U: 1.00e+00
estimate of reciprocal of condition number: 1.40e-01 982 982 estimate of reciprocal of condition number: 1.40e-01
indices in compressed pattern: 2 983 983 indices in compressed pattern: 2
numerical values stored in Numeric object: 9 984 984 numerical values stored in Numeric object: 9
numeric factorization defragmentations: 1 985 985 numeric factorization defragmentations: 1
numeric factorization reallocations: 1 986 986 numeric factorization reallocations: 1
costly numeric factorization reallocations: 0 987 987 costly numeric factorization reallocations: 0
numeric factorization CPU time (sec): 0.00 988 988 numeric factorization CPU time (sec): 0.00
numeric factorization wallclock time (sec): 0.00 989 989 numeric factorization wallclock time (sec): 0.00
990 990
solve flops: 5.23000e+02 991 991 solve flops: 5.23000e+02
iterative refinement steps taken: 0 992 992 iterative refinement steps taken: 0
iterative refinement steps attempted: 0 993 993 iterative refinement steps attempted: 0
sparse backward error omega1: 8.05e-17 994 994 sparse backward error omega1: 8.05e-17
sparse backward error omega2: 0.00e+00 995 995 sparse backward error omega2: 0.00e+00
solve CPU time (sec): 0.00 996 996 solve CPU time (sec): 0.00
solve wall clock time (sec): 0.00 997 997 solve wall clock time (sec): 0.00
998 998
total symbolic + numeric + solve flops: 5.57000e+02 999 999 total symbolic + numeric + solve flops: 5.57000e+02
1000 1000
1001 1001
x (with completely modified A): dense vector, n = 5. 1002 1002 x (with completely modified A): dense vector, n = 5.
0 : (7.56307 - 3.68974i) 1003 1003 0 : (7.56307 - 3.68974i)
1 : (-0.831991 + 0.0627998i) 1004 1004 1 : (-0.831991 + 0.0627998i)
2 : (0.166667 + 0i) 1005 1005 2 : (0.166667 + 0i)
3 : (-0.00206892 - 0.107735i) 1006 1006 3 : (-0.00206892 - 0.107735i)
4 : (0.658245 + 0.0407649i) 1007 1007 4 : (0.658245 + 0.0407649i)
dense vector OK 1008 1008 dense vector OK
1009 1009
maxnorm of residual: 9.10383e-15 1010 1010 maxnorm of residual: 9.10383e-15
1011 1011
1012 1012
C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12. 1013 1013 C (transpose of A): column-form matrix, n_row 5 n_col 5, nz = 12.
1014 1014
column 0: start: 0 end: 1 entries: 2 1015 1015 column 0: start: 0 end: 1 entries: 2
row 0 : (2 - 1i) 1016 1016 row 0 : (2 - 1i)
row 1 : (13 + 0i) 1017 1017 row 1 : (13 + 0i)
1018 1018
column 1: start: 2 end: 4 entries: 3 1019 1019 column 1: start: 2 end: 4 entries: 3
row 0 : (2 - 0.1i) 1020 1020 row 0 : (2 - 0.1i)
row 2 : (23 - 0.2i) 1021 1021 row 2 : (23 - 0.2i)
row 4 : (39 + 0i) 1022 1022 row 4 : (39 + 0i)
1023 1023
column 2: start: 5 end: 7 entries: 3 1024 1024 column 2: start: 5 end: 7 entries: 3
row 1 : (7 + 1i) 1025 1025 row 1 : (7 + 1i)
row 2 : (15 + 0.2i) 1026 1026 row 2 : (15 + 0.2i)
row 3 : (30 - 3i) 1027 1027 row 3 : (30 - 3i)
1028 1028
column 3: start: 8 end: 8 entries: 1 1029 1029 column 3: start: 8 end: 8 entries: 1
row 2 : (18 + 0i) 1030 1030 row 2 : (18 + 0i)
1031 1031
column 4: start: 9 end: 11 entries: 3 1032 1032 column 4: start: 9 end: 11 entries: 3
row 1 : (10 - 0.3i) 1033 1033 row 1 : (10 - 0.3i)
row 2 : (18 - 0.3i) 1034 1034 row 2 : (18 - 0.3i)
row 4 : (37 - 0.4i) 1035 1035 row 4 : (37 - 0.4i)
column-form matrix OK 1036 1036 column-form matrix OK
1037 1037
1038 1038
Symbolic factorization of C: Symbolic object: 1039 1039 Symbolic factorization of C: Symbolic object:
matrix to be factorized: 1040 1040 matrix to be factorized:
n_row: 5 n_col: 5 1041 1041 n_row: 5 n_col: 5
number of entries: 12 1042 1042 number of entries: 12
block size used for dense matrix kernels: 32 1043 1043 block size used for dense matrix kernels: 32
strategy used: unsymmetric 1044 1044 strategy used: unsymmetric
ordering used: colamd on A 1045 1045 ordering used: colamd on A
1046 1046
performn column etree postorder: yes 1047 1047 performn column etree postorder: yes
prefer diagonal pivoting (attempt P=Q): no 1048 1048 prefer diagonal pivoting (attempt P=Q): no
variable-size part of Numeric object: 1049 1049 variable-size part of Numeric object:
minimum initial size (Units): 75 (MBytes): 0.0 1050 1050 minimum initial size (Units): 75 (MBytes): 0.0
estimated peak size (Units): 1302 (MBytes): 0.0 1051 1051 estimated peak size (Units): 1302 (MBytes): 0.0
estimated final size (Units): 16 (MBytes): 0.0 1052 1052 estimated final size (Units): 16 (MBytes): 0.0
symbolic factorization memory usage (Units): 138 (MBytes): 0.0 1053 1053 symbolic factorization memory usage (Units): 138 (MBytes): 0.0
frontal matrices / supercolumns: 1054 1054 frontal matrices / supercolumns:
number of frontal chains: 1 1055 1055 number of frontal chains: 1
number of frontal matrices: 1 1056 1056 number of frontal matrices: 1
largest frontal matrix row dimension: 3 1057 1057 largest frontal matrix row dimension: 3
largest frontal matrix column dimension: 3 1058 1058 largest frontal matrix column dimension: 3
1059 1059
Frontal chain: 0. Frontal matrices 0 to 0 1060 1060 Frontal chain: 0. Frontal matrices 0 to 0
Largest frontal matrix in Frontal chain: 3-by-3 1061 1061 Largest frontal matrix in Frontal chain: 3-by-3
Front: 0 pivot cols: 3 (pivot columns 0 to 2) 1062 1062 Front: 0 pivot cols: 3 (pivot columns 0 to 2)
pivot row candidates: 2 to 4 1063 1063 pivot row candidates: 2 to 4
leftmost descendant: 0 1064 1064 leftmost descendant: 0
1st new candidate row : 2 1065 1065 1st new candidate row : 2
parent: (none) 1066 1066 parent: (none)
1067 1067
Initial column permutation, Q1: permutation vector, n = 5. 1068 1068 Initial column permutation, Q1: permutation vector, n = 5.
0 : 3 1069 1069 0 : 3
1 : 2 1070 1070 1 : 2
2 : 0 1071 1071 2 : 0
3 : 4 1072 1072 3 : 4
4 : 1 1073 1073 4 : 1
permutation vector OK 1074 1074 permutation vector OK
1075 1075
1076 1076
Initial row permutation, P1: permutation vector, n = 5. 1077 1077 Initial row permutation, P1: permutation vector, n = 5.
0 : 2 1078 1078 0 : 2
1 : 3 1079 1079 1 : 3
2 : 0 1080 1080 2 : 0
3 : 1 1081 1081 3 : 1
4 : 4 1082 1082 4 : 4
permutation vector OK 1083 1083 permutation vector OK
1084 1084
Symbolic object: OK 1085 1085 Symbolic object: OK
1086 1086
1087 1087
Get the contents of the Symbolic object for C: 1088 1088 Get the contents of the Symbolic object for C:
(compare with umfpack_zl_report_symbolic output, above) 1089 1089 (compare with umfpack_zl_report_symbolic output, above)
From the Symbolic object, C is of dimension 5-by-5 1090 1090 From the Symbolic object, C is of dimension 5-by-5
with nz = 12, number of fronts = 1, 1091 1091 with nz = 12, number of fronts = 1,
number of frontal matrix chains = 1 1092 1092 number of frontal matrix chains = 1
1093 1093
Pivot columns in each front, and parent of each front: 1094 1094 Pivot columns in each front, and parent of each front:
Front 0: parent front: -1 number of pivot cols: 3 1095 1095 Front 0: parent front: -1 number of pivot cols: 3
0-th pivot column is column 3 in original matrix 1096 1096 0-th pivot column is column 3 in original matrix
1-th pivot column is column 2 in original matrix 1097 1097 1-th pivot column is column 2 in original matrix
2-th pivot column is column 0 in original matrix 1098 1098 2-th pivot column is column 0 in original matrix
1099 1099
Note that the column ordering, above, will be refined 1100 1100 Note that the column ordering, above, will be refined
in the numeric factorization below. The assignment of pivot 1101 1101 in the numeric factorization below. The assignment of pivot
columns to frontal matrices will always remain unchanged. 1102 1102 columns to frontal matrices will always remain unchanged.
1103 1103
Total number of pivot columns in frontal matrices: 3 1104 1104 Total number of pivot columns in frontal matrices: 3
1105 1105
Frontal matrix chains: 1106 1106 Frontal matrix chains:
Frontal matrices 0 to 0 are factorized in a single 1107 1107 Frontal matrices 0 to 0 are factorized in a single
working array of size 3-by-3 1108 1108 working array of size 3-by-3
1109 1109
Numeric factorization of C: Numeric object: 1110 1110 Numeric factorization of C: Numeric object:
n_row: 5 n_col: 5 1111 1111 n_row: 5 n_col: 5
relative pivot tolerance used: 0.1 1112 1112 relative pivot tolerance used: 0.1
relative symmetric pivot tolerance used: 0.001 1113 1113 relative symmetric pivot tolerance used: 0.001
matrix scaled: yes (divided each row by sum abs value in each row) 1114 1114 matrix scaled: yes (divided each row by sum abs value in each row)
minimum sum (abs (rows of A)): 5.10000e+00 1115 1115 minimum sum (abs (rows of A)): 5.10000e+00
maximum sum (abs (rows of A)): 7.64000e+01 1116 1116 maximum sum (abs (rows of A)): 7.64000e+01
initial allocation parameter used: 0.7 1117 1117 initial allocation parameter used: 0.7
frontal matrix allocation parameter used: 0.5 1118 1118 frontal matrix allocation parameter used: 0.5
final total size of Numeric object (Units): 75 1119 1119 final total size of Numeric object (Units): 75
final total size of Numeric object (MBytes): 0.0 1120 1120 final total size of Numeric object (MBytes): 0.0
peak size of variable-size part (Units): 1293 1121 1121 peak size of variable-size part (Units): 1293
peak size of variable-size part (MBytes): 0.0 1122 1122 peak size of variable-size part (MBytes): 0.0
largest actual frontal matrix size: 4 1123 1123 largest actual frontal matrix size: 4
memory defragmentations: 1 1124 1124 memory defragmentations: 1
memory reallocations: 1 1125 1125 memory reallocations: 1
costly memory reallocations: 0 1126 1126 costly memory reallocations: 0
entries in compressed pattern (L and U): 2 1127 1127 entries in compressed pattern (L and U): 2
number of nonzeros in L (excl diag): 3 1128 1128 number of nonzeros in L (excl diag): 3
number of entries stored in L (excl diag): 2 1129 1129 number of entries stored in L (excl diag): 2
number of nonzeros in U (excl diag): 5 1130 1130 number of nonzeros in U (excl diag): 5
number of entries stored in U (excl diag): 2 1131 1131 number of entries stored in U (excl diag): 2
factorization floating-point operations: 34 1132 1132 factorization floating-point operations: 34
number of nonzeros on diagonal of U: 5 1133 1133 number of nonzeros on diagonal of U: 5
min abs. value on diagonal of U: 2.40964e-01 1134 1134 min abs. value on diagonal of U: 2.40964e-01
max abs. value on diagonal of U: 9.13625e-01 1135 1135 max abs. value on diagonal of U: 9.13625e-01
reciprocal condition number estimate: 2.64e-01 1136 1136 reciprocal condition number estimate: 2.64e-01
1137 1137
Scale factors applied via multiplication 1138 1138 Scale factors applied via multiplication
Scale factors, Rs: dense vector, n = 5. 1139 1139 Scale factors, Rs: dense vector, n = 5.
0 : (0.196078) 1140 1140 0 : (0.196078)
1 : (0.0319489) 1141 1141 1 : (0.0319489)
2 : (0.0133869) 1142 1142 2 : (0.0133869)
3 : (0.030303) 1143 1143 3 : (0.030303)
4 : (0.013089) 1144 1144 4 : (0.013089)
dense vector OK 1145 1145 dense vector OK
1146 1146
1147 1147
P: row permutation vector, n = 5. 1148 1148 P: row permutation vector, n = 5.
0 : 2 1149 1149 0 : 2
1 : 3 1150 1150 1 : 3
2 : 0 1151 1151 2 : 0
3 : 4 1152 1152 3 : 4
4 : 1 1153 1153 4 : 1
permutation vector OK 1154 1154 permutation vector OK
1155 1155
1156 1156
Q: column permutation vector, n = 5. 1157 1157 Q: column permutation vector, n = 5.
0 : 3 1158 1158 0 : 3
1 : 2 1159 1159 1 : 2
2 : 0 1160 1160 2 : 0
3 : 4 1161 1161 3 : 4
4 : 1 1162 1162 4 : 1
permutation vector OK 1163 1163 permutation vector OK
1164 1164
1165 1165
L in Numeric object, in column-oriented compressed-pattern form: 1166 1166 L in Numeric object, in column-oriented compressed-pattern form:
Diagonal entries are all equal to 1.0 (not stored) 1167 1167 Diagonal entries are all equal to 1.0 (not stored)
1168 1168
column 0: length 0. 1169 1169 column 0: length 0.
1170 1170
column 1: length 1. 1171 1171 column 1: length 1.
row 4 : (0.240091 + 0.0591529i) 1172 1172 row 4 : (0.240091 + 0.0591529i)
1173 1173
column 2: add 1 entries. length 1. Start of Lchain. 1174 1174 column 2: add 1 entries. length 1. Start of Lchain.
row 4 : (0.847284 + 0.423642i) 1175 1175 row 4 : (0.847284 + 0.423642i)
1176 1176
column 3: length 1. 1177 1177 column 3: length 1.
row 4 : (0.659838 - 0.0126577i) 1178 1178 row 4 : (0.659838 - 0.0126577i)
1179 1179
column 4: length 0. Start of Lchain. 1180 1180 column 4: length 0. Start of Lchain.
1181 1181
1182 1182
U in Numeric object, in row-oriented compressed-pattern form: 1183 1183 U in Numeric object, in row-oriented compressed-pattern form:
Diagonal is stored separately. 1184 1184 Diagonal is stored separately.
1185 1185
row 4: length 0. End of Uchain. 1186 1186 row 4: length 0. End of Uchain.
1187 1187
row 3: length 1. End of Uchain. 1188 1188 row 3: length 1. End of Uchain.
col 4 : (0.510471 + 0i) 1189 1189 col 4 : (0.510471 + 0i)
1190 1190
row 2: length 1. 1191 1191 row 2: length 1.
col 4 : (0.392157 - 0.0196078i) 1192 1192 col 4 : (0.392157 - 0.0196078i)
1193 1193
row 1: length 0. End of Uchain. 1194 1194 row 1: length 0. End of Uchain.
1195 1195
row 1: length 0. 1196 1196 row 1: length 0.
1197 1197
row 0: length 3. 1198 1198 row 0: length 3.
col 1 : (0.200803 + 0.00267738i) 1199 1199 col 1 : (0.200803 + 0.00267738i)
col 3 : (0.240964 - 0.00401606i) 1200 1200 col 3 : (0.240964 - 0.00401606i)
col 4 : (0.307898 - 0.00267738i) 1201 1201 col 4 : (0.307898 - 0.00267738i)
1202 1202
1203 1203
diagonal of U: dense vector, n = 5. 1204 1204 diagonal of U: dense vector, n = 5.
0 : (0.240964 + 0i) 1205 1205 0 : (0.240964 + 0i)
1 : (0.909091 - 0.0909091i) 1206 1206 1 : (0.909091 - 0.0909091i)
2 : (0.392157 - 0.196078i) 1207 1207 2 : (0.392157 - 0.196078i)
3 : (0.484293 - 0.0052356i) 1208 1208 3 : (0.484293 - 0.0052356i)
4 : (-0.677403 - 0.143059i) 1209 1209 4 : (-0.677403 - 0.143059i)
dense vector OK 1210 1210 dense vector OK
1211 1211
Numeric object: OK 1212 1212 Numeric object: OK
1213 1213
1214 1214
L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8. 1215 1215 L (lower triangular factor of C): row-form matrix, n_row 5 n_col 5, nz = 8.
1216 1216
row 0: start: 0 end: 0 entries: 1 1217 1217 row 0: start: 0 end: 0 entries: 1
column 0 : (1 + 0i) 1218 1218 column 0 : (1 + 0i)
1219 1219
row 1: start: 1 end: 1 entries: 1 1220 1220 row 1: start: 1 end: 1 entries: 1
column 1 : (1 + 0i) 1221 1221 column 1 : (1 + 0i)
1222 1222
row 2: start: 2 end: 2 entries: 1 1223 1223 row 2: start: 2 end: 2 entries: 1
column 2 : (1 + 0i) 1224 1224 column 2 : (1 + 0i)
1225 1225
row 3: start: 3 end: 3 entries: 1 1226 1226 row 3: start: 3 end: 3 entries: 1
column 3 : (1 + 0i) 1227 1227 column 3 : (1 + 0i)
1228 1228
row 4: start: 4 end: 7 entries: 4 1229 1229 row 4: start: 4 end: 7 entries: 4
column 1 : (0.240091 + 0.0591529i) 1230 1230 column 1 : (0.240091 + 0.0591529i)
column 2 : (0.847284 + 0.423642i) 1231 1231 column 2 : (0.847284 + 0.423642i)
column 3 : (0.659838 - 0.0126577i) 1232 1232 column 3 : (0.659838 - 0.0126577i)
column 4 : (1 + 0i) 1233 1233 column 4 : (1 + 0i)
row-form matrix OK 1234 1234 row-form matrix OK
1235 1235
1236 1236
U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10. 1237 1237 U (upper triangular factor of C): column-form matrix, n_row 5 n_col 5, nz = 10.
1238 1238
column 0: start: 0 end: 0 entries: 1 1239 1239 column 0: start: 0 end: 0 entries: 1
row 0 : (0.240964 + 0i) 1240 1240 row 0 : (0.240964 + 0i)
1241 1241
column 1: start: 1 end: 2 entries: 2 1242 1242 column 1: start: 1 end: 2 entries: 2
row 0 : (0.200803 + 0.00267738i) 1243 1243 row 0 : (0.200803 + 0.00267738i)
row 1 : (0.909091 - 0.0909091i) 1244 1244 row 1 : (0.909091 - 0.0909091i)
1245 1245
column 2: start: 3 end: 3 entries: 1 1246 1246 column 2: start: 3 end: 3 entries: 1
row 2 : (0.392157 - 0.196078i) 1247 1247 row 2 : (0.392157 - 0.196078i)
1248 1248
column 3: start: 4 end: 5 entries: 2 1249 1249 column 3: start: 4 end: 5 entries: 2
row 0 : (0.240964 - 0.00401606i) 1250 1250 row 0 : (0.240964 - 0.00401606i)
row 3 : (0.484293 - 0.0052356i) 1251 1251 row 3 : (0.484293 - 0.0052356i)
1252 1252
column 4: start: 6 end: 9 entries: 4 1253 1253 column 4: start: 6 end: 9 entries: 4
row 0 : (0.307898 - 0.00267738i) 1254 1254 row 0 : (0.307898 - 0.00267738i)
row 2 : (0.392157 - 0.0196078i) 1255 1255 row 2 : (0.392157 - 0.0196078i)
row 3 : (0.510471 + 0i) 1256 1256 row 3 : (0.510471 + 0i)
row 4 : (-0.677403 - 0.143059i) 1257 1257 row 4 : (-0.677403 - 0.143059i)