Commit 20ce530d4f1b4017a2f49a5d325d46fed9ece341
1 parent
e9d7fe24b4
Exists in
master
and in
2 other branches
Wrote documentation in source for fvn_lm
git-svn-id: https://lxsd.femto-st.fr/svn/fvn@78 b657c933-2333-4658-acf2-d3c7c2708721
Showing 1 changed file with 122 additions and 141 deletions Inline Diff
fvn_misc/fvn_misc.f90
module fvn_misc | 1 | 1 | module fvn_misc | |
use fvn_common | 2 | 2 | use fvn_common | |
implicit none | 3 | 3 | implicit none | |
4 | 4 | |||
! Muller | 5 | 5 | ! Muller | |
interface fvn_muller | 6 | 6 | interface fvn_muller | |
module procedure fvn_z_muller | 7 | 7 | module procedure fvn_z_muller | |
end interface fvn_muller | 8 | 8 | end interface fvn_muller | |
9 | 9 | |||
10 | public | |||
11 | private :: lmdif,lmpar,qrfac,qrsolv,enorm,fdjac2 | |||
12 | ! These are made private to not interfere with a | |||
13 | ! possibly linked minpack | |||
14 | ||||
contains | 10 | 15 | contains | |
! | 11 | 16 | ! | |
! Muller | 12 | 17 | ! Muller | |
! | 13 | 18 | ! | |
! | 14 | 19 | ! | |
! | 15 | 20 | ! | |
! William Daniau 2007 | 16 | 21 | ! William Daniau 2007 | |
! | 17 | 22 | ! | |
! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | 18 | 23 | ! This routine is a fortran 90 port of Hans D. Mittelmann's routine muller.f | |
! http://plato.asu.edu/ftp/other_software/muller.f | 19 | 24 | ! http://plato.asu.edu/ftp/other_software/muller.f | |
! | 20 | 25 | ! | |
! it can be used as a replacement for imsl routine dzanly with minor changes | 21 | 26 | ! it can be used as a replacement for imsl routine dzanly with minor changes | |
! | 22 | 27 | ! | |
!----------------------------------------------------------------------- | 23 | 28 | !----------------------------------------------------------------------- | |
! | 24 | 29 | ! | |
! purpose - zeros of an analytic complex function | 25 | 30 | ! purpose - zeros of an analytic complex function | |
! using the muller method with deflation | 26 | 31 | ! using the muller method with deflation | |
! | 27 | 32 | ! | |
! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | 28 | 33 | ! usage - call fvn_z_muller (f,eps,eps1,kn,n,nguess,x,itmax, | |
! infer,ier) | 29 | 34 | ! infer,ier) | |
! | 30 | 35 | ! | |
! arguments f - a complex function subprogram, f(z), written | 31 | 36 | ! arguments f - a complex function subprogram, f(z), written | |
! by the user specifying the equation whose | 32 | 37 | ! by the user specifying the equation whose | |
! roots are to be found. f must appear in | 33 | 38 | ! roots are to be found. f must appear in | |
! an external statement in the calling pro- | 34 | 39 | ! an external statement in the calling pro- | |
! gram. | 35 | 40 | ! gram. | |
! eps - 1st stopping criterion. let fp(z)=f(z)/p | 36 | 41 | ! eps - 1st stopping criterion. let fp(z)=f(z)/p | |
! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | 37 | 42 | ! where p = (z-z(1))*(z-z(2))*,,,*(z-z(k-1)) | |
! and z(1),...,z(k-1) are previously found | 38 | 43 | ! and z(1),...,z(k-1) are previously found | |
! roots. if ((cdabs(f(z)).le.eps) .and. | 39 | 44 | ! roots. if ((cdabs(f(z)).le.eps) .and. | |
! (cdabs(fp(z)).le.eps)), then z is accepted | 40 | 45 | ! (cdabs(fp(z)).le.eps)), then z is accepted | |
! as a root. (input) | 41 | 46 | ! as a root. (input) | |
! eps1 - 2nd stopping criterion. a root is accepted | 42 | 47 | ! eps1 - 2nd stopping criterion. a root is accepted | |
! if two successive approximations to a given | 43 | 48 | ! if two successive approximations to a given | |
! root agree within eps1. (input) | 44 | 49 | ! root agree within eps1. (input) | |
! note. if either or both of the stopping | 45 | 50 | ! note. if either or both of the stopping | |
! criteria are fulfilled, the root is | 46 | 51 | ! criteria are fulfilled, the root is | |
! accepted. | 47 | 52 | ! accepted. | |
! kn - the number of known roots which must be stored | 48 | 53 | ! kn - the number of known roots which must be stored | |
! in x(1),...,x(kn), prior to entry to muller | 49 | 54 | ! in x(1),...,x(kn), prior to entry to muller | |
! nguess - the number of initial guesses provided. these | 50 | 55 | ! nguess - the number of initial guesses provided. these | |
! guesses must be stored in x(kn+1),..., | 51 | 56 | ! guesses must be stored in x(kn+1),..., | |
! x(kn+nguess). nguess must be set equal | 52 | 57 | ! x(kn+nguess). nguess must be set equal | |
! to zero if no guesses are provided. (input) | 53 | 58 | ! to zero if no guesses are provided. (input) | |
! n - the number of new roots to be found by | 54 | 59 | ! n - the number of new roots to be found by | |
! muller (input) | 55 | 60 | ! muller (input) | |
! x - a complex vector of length kn+n. x(1),..., | 56 | 61 | ! x - a complex vector of length kn+n. x(1),..., | |
! x(kn) on input must contain any known | 57 | 62 | ! x(kn) on input must contain any known | |
! roots. x(kn+1),..., x(kn+n) on input may, | 58 | 63 | ! roots. x(kn+1),..., x(kn+n) on input may, | |
! on user option, contain initial guesses for | 59 | 64 | ! on user option, contain initial guesses for | |
! the n new roots which are to be computed. | 60 | 65 | ! the n new roots which are to be computed. | |
! if the user does not provide an initial | 61 | 66 | ! if the user does not provide an initial | |
! guess, zero is used. | 62 | 67 | ! guess, zero is used. | |
! on output, x(kn+1),...,x(kn+n) contain the | 63 | 68 | ! on output, x(kn+1),...,x(kn+n) contain the | |
! approximate roots found by muller. | 64 | 69 | ! approximate roots found by muller. | |
! itmax - the maximum allowable number of iterations | 65 | 70 | ! itmax - the maximum allowable number of iterations | |
! per root (input) | 66 | 71 | ! per root (input) | |
! infer - an integer vector of length kn+n. on | 67 | 72 | ! infer - an integer vector of length kn+n. on | |
! output infer(j) contains the number of | 68 | 73 | ! output infer(j) contains the number of | |
! iterations used in finding the j-th root | 69 | 74 | ! iterations used in finding the j-th root | |
! when convergence was achieved. if | 70 | 75 | ! when convergence was achieved. if | |
! convergence was not obtained in itmax | 71 | 76 | ! convergence was not obtained in itmax | |
! iterations, infer(j) will be greater than | 72 | 77 | ! iterations, infer(j) will be greater than | |
! itmax (output). | 73 | 78 | ! itmax (output). | |
! ier - error parameter (output) | 74 | 79 | ! ier - error parameter (output) | |
! warning error | 75 | 80 | ! warning error | |
! ier = 33 indicates failure to converge with- | 76 | 81 | ! ier = 33 indicates failure to converge with- | |
! in itmax iterations for at least one of | 77 | 82 | ! in itmax iterations for at least one of | |
! the (n) new roots. | 78 | 83 | ! the (n) new roots. | |
! | 79 | 84 | ! | |
! | 80 | 85 | ! | |
! remarks muller always returns the last approximation for root j | 81 | 86 | ! remarks muller always returns the last approximation for root j | |
! in x(j). if the convergence criterion is satisfied, | 82 | 87 | ! in x(j). if the convergence criterion is satisfied, | |
! then infer(j) is less than or equal to itmax. if the | 83 | 88 | ! then infer(j) is less than or equal to itmax. if the | |
! convergence criterion is not satisified, then infer(j) | 84 | 89 | ! convergence criterion is not satisified, then infer(j) | |
! is set to either itmax+1 or itmax+k, with k greater | 85 | 90 | ! is set to either itmax+1 or itmax+k, with k greater | |
! than 1. infer(j) = itmax+1 indicates that muller did | 86 | 91 | ! than 1. infer(j) = itmax+1 indicates that muller did | |
! not obtain convergence in the allowed number of iter- | 87 | 92 | ! not obtain convergence in the allowed number of iter- | |
! ations. in this case, the user may wish to set itmax | 88 | 93 | ! ations. in this case, the user may wish to set itmax | |
! to a larger value. infer(j) = itmax+k means that con- | 89 | 94 | ! to a larger value. infer(j) = itmax+k means that con- | |
! vergence was obtained (on iteration k) for the defla- | 90 | 95 | ! vergence was obtained (on iteration k) for the defla- | |
! ted function | 91 | 96 | ! ted function | |
! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | 92 | 97 | ! fp(z) = f(z)/((z-z(1)...(z-z(j-1))) | |
! | 93 | 98 | ! | |
! but failed for f(z). in this case, better initial | 94 | 99 | ! but failed for f(z). in this case, better initial | |
! guesses might help or, it might be necessary to relax | 95 | 100 | ! guesses might help or, it might be necessary to relax | |
! the convergence criterion. | 96 | 101 | ! the convergence criterion. | |
! | 97 | 102 | ! | |
!----------------------------------------------------------------------- | 98 | 103 | !----------------------------------------------------------------------- | |
! | 99 | 104 | ! | |
subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | 100 | 105 | subroutine fvn_z_muller (f,eps,eps1,kn,nguess,n,x,itmax,infer,ier) | |
implicit none | 101 | 106 | implicit none | |
double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq,eps1w | 102 | 107 | double precision :: rzero,rten,rhun,rp01,ax,eps1,qz,eps,tpq,eps1w | |
double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | 103 | 108 | double complex :: d,dd,den,fprt,frt,h,rt,t1,t2,t3, & | |
tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | 104 | 109 | tem,z0,z1,z2,bi,xx,xl,y0,y1,y2,x0, & | |
zero,p1,one,four,p5 | 105 | 110 | zero,p1,one,four,p5 | |
106 | 111 | |||
double complex, external :: f | 107 | 112 | double complex, external :: f | |
integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | 108 | 113 | integer :: ickmax,kn,nguess,n,itmax,ier,knp1,knpn,i,l,ic, & | |
knpng,jk,ick,nn,lm1,errcode | 109 | 114 | knpng,jk,ick,nn,lm1,errcode | |
double complex :: x(kn+n) | 110 | 115 | double complex :: x(kn+n) | |
integer :: infer(kn+n) | 111 | 116 | integer :: infer(kn+n) | |
112 | 117 | |||
113 | 118 | |||
data zero/(0.0d0,0.0d0)/,p1/(0.1d0,0.0d0)/, & | 114 | 119 | data zero/(0.0d0,0.0d0)/,p1/(0.1d0,0.0d0)/, & | |
one/(1.0d0,0.0d0)/,four/(4.0d0,0.0d0)/, & | 115 | 120 | one/(1.0d0,0.0d0)/,four/(4.0d0,0.0d0)/, & | |
p5/(0.5d0,0.0d0)/, & | 116 | 121 | p5/(0.5d0,0.0d0)/, & | |
rzero/0.0d0/,rten/10.0d0/,rhun/100.0d0/, & | 117 | 122 | rzero/0.0d0/,rten/10.0d0/,rhun/100.0d0/, & | |
ax/0.1d0/,ickmax/3/,rp01/0.01d0/ | 118 | 123 | ax/0.1d0/,ickmax/3/,rp01/0.01d0/ | |
119 | 124 | |||
ier = 0 | 120 | 125 | ier = 0 | |
if (n .lt. 1) then ! What the hell are doing here then ... | 121 | 126 | if (n .lt. 1) then ! What the hell are doing here then ... | |
return | 122 | 127 | return | |
end if | 123 | 128 | end if | |
!eps1 = rten **(-nsig) | 124 | 129 | !eps1 = rten **(-nsig) | |
eps1w = min(eps1,rp01) | 125 | 130 | eps1w = min(eps1,rp01) | |
126 | 131 | |||
knp1 = kn+1 | 127 | 132 | knp1 = kn+1 | |
knpn = kn+n | 128 | 133 | knpn = kn+n | |
knpng = kn+nguess | 129 | 134 | knpng = kn+nguess | |
do i=1,knpn | 130 | 135 | do i=1,knpn | |
infer(i) = 0 | 131 | 136 | infer(i) = 0 | |
if (i .gt. knpng) x(i) = zero | 132 | 137 | if (i .gt. knpng) x(i) = zero | |
end do | 133 | 138 | end do | |
l= knp1 | 134 | 139 | l= knp1 | |
135 | 140 | |||
ic=0 | 136 | 141 | ic=0 | |
rloop: do while (l<=knpn) ! Main loop over new roots | 137 | 142 | rloop: do while (l<=knpn) ! Main loop over new roots | |
jk = 0 | 138 | 143 | jk = 0 | |
ick = 0 | 139 | 144 | ick = 0 | |
xl = x(l) | 140 | 145 | xl = x(l) | |
icloop: do | 141 | 146 | icloop: do | |
ic = 0 | 142 | 147 | ic = 0 | |
h = ax | 143 | 148 | h = ax | |
h = p1*h | 144 | 149 | h = p1*h | |
if (cdabs(xl) .gt. ax) h = p1*xl | 145 | 150 | if (cdabs(xl) .gt. ax) h = p1*xl | |
! first three points are | 146 | 151 | ! first three points are | |
! xl+h, xl-h, xl | 147 | 152 | ! xl+h, xl-h, xl | |
rt = xl+h | 148 | 153 | rt = xl+h | |
call deflated_work(errcode) | 149 | 154 | call deflated_work(errcode) | |
if (errcode == 1) then | 150 | 155 | if (errcode == 1) then | |
exit icloop | 151 | 156 | exit icloop | |
end if | 152 | 157 | end if | |
153 | 158 | |||
z0 = fprt | 154 | 159 | z0 = fprt | |
y0 = frt | 155 | 160 | y0 = frt | |
x0 = rt | 156 | 161 | x0 = rt | |
rt = xl-h | 157 | 162 | rt = xl-h | |
call deflated_work(errcode) | 158 | 163 | call deflated_work(errcode) | |
if (errcode == 1) then | 159 | 164 | if (errcode == 1) then | |
exit icloop | 160 | 165 | exit icloop | |
end if | 161 | 166 | end if | |
162 | 167 | |||
z1 = fprt | 163 | 168 | z1 = fprt | |
y1 = frt | 164 | 169 | y1 = frt | |
h = xl-rt | 165 | 170 | h = xl-rt | |
d = h/(rt-x0) | 166 | 171 | d = h/(rt-x0) | |
rt = xl | 167 | 172 | rt = xl | |
168 | 173 | |||
call deflated_work(errcode) | 169 | 174 | call deflated_work(errcode) | |
if (errcode == 1) then | 170 | 175 | if (errcode == 1) then | |
exit icloop | 171 | 176 | exit icloop | |
end if | 172 | 177 | end if | |
173 | 178 | |||
174 | 179 | |||
z2 = fprt | 175 | 180 | z2 = fprt | |
y2 = frt | 176 | 181 | y2 = frt | |
! begin main algorithm | 177 | 182 | ! begin main algorithm | |
iloop: do | 178 | 183 | iloop: do | |
dd = one + d | 179 | 184 | dd = one + d | |
t1 = z0*d*d | 180 | 185 | t1 = z0*d*d | |
t2 = z1*dd*dd | 181 | 186 | t2 = z1*dd*dd | |
xx = z2*dd | 182 | 187 | xx = z2*dd | |
t3 = z2*d | 183 | 188 | t3 = z2*d | |
bi = t1-t2+xx+t3 | 184 | 189 | bi = t1-t2+xx+t3 | |
den = bi*bi-four*(xx*t1-t3*(t2-xx)) | 185 | 190 | den = bi*bi-four*(xx*t1-t3*(t2-xx)) | |
! use denominator of maximum amplitude | 186 | 191 | ! use denominator of maximum amplitude | |
t1 = sqrt(den) | 187 | 192 | t1 = sqrt(den) | |
qz = rhun*max(cdabs(bi),cdabs(t1)) | 188 | 193 | qz = rhun*max(cdabs(bi),cdabs(t1)) | |
t2 = bi + t1 | 189 | 194 | t2 = bi + t1 | |
tpq = cdabs(t2)+qz | 190 | 195 | tpq = cdabs(t2)+qz | |
if (tpq .eq. qz) t2 = zero | 191 | 196 | if (tpq .eq. qz) t2 = zero | |
t3 = bi - t1 | 192 | 197 | t3 = bi - t1 | |
tpq = cdabs(t3) + qz | 193 | 198 | tpq = cdabs(t3) + qz | |
if (tpq .eq. qz) t3 = zero | 194 | 199 | if (tpq .eq. qz) t3 = zero | |
den = t2 | 195 | 200 | den = t2 | |
qz = cdabs(t3)-cdabs(t2) | 196 | 201 | qz = cdabs(t3)-cdabs(t2) | |
if (qz .gt. rzero) den = t3 | 197 | 202 | if (qz .gt. rzero) den = t3 | |
! test for zero denominator | 198 | 203 | ! test for zero denominator | |
if (cdabs(den) .eq. rzero) then | 199 | 204 | if (cdabs(den) .eq. rzero) then | |
call trans_rt() | 200 | 205 | call trans_rt() | |
call deflated_work(errcode) | 201 | 206 | call deflated_work(errcode) | |
if (errcode == 1) then | 202 | 207 | if (errcode == 1) then | |
exit icloop | 203 | 208 | exit icloop | |
end if | 204 | 209 | end if | |
z2 = fprt | 205 | 210 | z2 = fprt | |
y2 = frt | 206 | 211 | y2 = frt | |
cycle iloop | 207 | 212 | cycle iloop | |
end if | 208 | 213 | end if | |
209 | 214 | |||
210 | 215 | |||
d = -xx/den | 211 | 216 | d = -xx/den | |
d = d+d | 212 | 217 | d = d+d | |
h = d*h | 213 | 218 | h = d*h | |
rt = rt + h | 214 | 219 | rt = rt + h | |
! check convergence of the first kind | 215 | 220 | ! check convergence of the first kind | |
if (cdabs(h) .le. eps1w*max(cdabs(rt),ax)) then | 216 | 221 | if (cdabs(h) .le. eps1w*max(cdabs(rt),ax)) then | |
if (ic .ne. 0) then | 217 | 222 | if (ic .ne. 0) then | |
exit icloop | 218 | 223 | exit icloop | |
end if | 219 | 224 | end if | |
ic = 1 | 220 | 225 | ic = 1 | |
z0 = y1 | 221 | 226 | z0 = y1 | |
z1 = y2 | 222 | 227 | z1 = y2 | |
z2 = f(rt) | 223 | 228 | z2 = f(rt) | |
xl = rt | 224 | 229 | xl = rt | |
ick = ick+1 | 225 | 230 | ick = ick+1 | |
if (ick .le. ickmax) then | 226 | 231 | if (ick .le. ickmax) then | |
cycle iloop | 227 | 232 | cycle iloop | |
end if | 228 | 233 | end if | |
! warning error, itmax = maximum | 229 | 234 | ! warning error, itmax = maximum | |
jk = itmax + jk | 230 | 235 | jk = itmax + jk | |
ier = 33 | 231 | 236 | ier = 33 | |
end if | 232 | 237 | end if | |
if (ic .ne. 0) then | 233 | 238 | if (ic .ne. 0) then | |
cycle icloop | 234 | 239 | cycle icloop | |
end if | 235 | 240 | end if | |
call deflated_work(errcode) | 236 | 241 | call deflated_work(errcode) | |
if (errcode == 1) then | 237 | 242 | if (errcode == 1) then | |
exit icloop | 238 | 243 | exit icloop | |
end if | 239 | 244 | end if | |
240 | 245 | |||
do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | 241 | 246 | do while ( (cdabs(fprt)-cdabs(z2)*rten) .ge. rzero) | |
! take remedial action to induce | 242 | 247 | ! take remedial action to induce | |
! convergence | 243 | 248 | ! convergence | |
d = d*p5 | 244 | 249 | d = d*p5 | |
h = h*p5 | 245 | 250 | h = h*p5 | |
rt = rt-h | 246 | 251 | rt = rt-h | |
call deflated_work(errcode) | 247 | 252 | call deflated_work(errcode) | |
if (errcode == 1) then | 248 | 253 | if (errcode == 1) then | |
exit icloop | 249 | 254 | exit icloop | |
end if | 250 | 255 | end if | |
end do | 251 | 256 | end do | |
z0 = z1 | 252 | 257 | z0 = z1 | |
z1 = z2 | 253 | 258 | z1 = z2 | |
z2 = fprt | 254 | 259 | z2 = fprt | |
y0 = y1 | 255 | 260 | y0 = y1 | |
y1 = y2 | 256 | 261 | y1 = y2 | |
y2 = frt | 257 | 262 | y2 = frt | |
end do iloop | 258 | 263 | end do iloop | |
end do icloop | 259 | 264 | end do icloop | |
x(l) = rt | 260 | 265 | x(l) = rt | |
infer(l) = jk | 261 | 266 | infer(l) = jk | |
l = l+1 | 262 | 267 | l = l+1 | |
end do rloop | 263 | 268 | end do rloop | |
264 | 269 | |||
contains | 265 | 270 | contains | |
subroutine trans_rt() | 266 | 271 | subroutine trans_rt() | |
tem = rten*eps1w | 267 | 272 | tem = rten*eps1w | |
if (cdabs(rt) .gt. ax) tem = tem*rt | 268 | 273 | if (cdabs(rt) .gt. ax) tem = tem*rt | |
rt = rt+tem | 269 | 274 | rt = rt+tem | |
d = (h+tem)*d/h | 270 | 275 | d = (h+tem)*d/h | |
h = h+tem | 271 | 276 | h = h+tem | |
end subroutine trans_rt | 272 | 277 | end subroutine trans_rt | |
273 | 278 | |||
subroutine deflated_work(errcode) | 274 | 279 | subroutine deflated_work(errcode) | |
! errcode=0 => no errors | 275 | 280 | ! errcode=0 => no errors | |
! errcode=1 => jk>itmax or convergence of second kind achieved | 276 | 281 | ! errcode=1 => jk>itmax or convergence of second kind achieved | |
integer :: errcode,flag | 277 | 282 | integer :: errcode,flag | |
278 | 283 | |||
flag=1 | 279 | 284 | flag=1 | |
loop1: do while(flag==1) | 280 | 285 | loop1: do while(flag==1) | |
errcode=0 | 281 | 286 | errcode=0 | |
jk = jk+1 | 282 | 287 | jk = jk+1 | |
if (jk .gt. itmax) then | 283 | 288 | if (jk .gt. itmax) then | |
ier=33 | 284 | 289 | ier=33 | |
errcode=1 | 285 | 290 | errcode=1 | |
return | 286 | 291 | return | |
end if | 287 | 292 | end if | |
frt = f(rt) | 288 | 293 | frt = f(rt) | |
fprt = frt | 289 | 294 | fprt = frt | |
if (l /= 1) then | 290 | 295 | if (l /= 1) then | |
lm1 = l-1 | 291 | 296 | lm1 = l-1 | |
do i=1,lm1 | 292 | 297 | do i=1,lm1 | |
tem = rt - x(i) | 293 | 298 | tem = rt - x(i) | |
if (cdabs(tem) .eq. rzero) then | 294 | 299 | if (cdabs(tem) .eq. rzero) then | |
!if (ic .ne. 0) go to 15 !! ?? possible? | 295 | 300 | !if (ic .ne. 0) go to 15 !! ?? possible? | |
call trans_rt() | 296 | 301 | call trans_rt() | |
cycle loop1 | 297 | 302 | cycle loop1 | |
end if | 298 | 303 | end if | |
fprt = fprt/tem | 299 | 304 | fprt = fprt/tem | |
end do | 300 | 305 | end do | |
end if | 301 | 306 | end if | |
flag=0 | 302 | 307 | flag=0 | |
end do loop1 | 303 | 308 | end do loop1 | |
304 | 309 | |||
if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | 305 | 310 | if (cdabs(fprt) .le. eps .and. cdabs(frt) .le. eps) then | |
errcode=1 | 306 | 311 | errcode=1 | |
return | 307 | 312 | return | |
end if | 308 | 313 | end if | |
309 | 314 | |||
end subroutine deflated_work | 310 | 315 | end subroutine deflated_work | |
311 | 316 | |||
end subroutine | 312 | 317 | end subroutine | |
313 | 318 | |||
! | 314 | 319 | ! | |
! | 315 | 320 | ! | |
! | 316 | 321 | ! | |
! Non linear least square using Levenberg-Marquardt algorithm and | 317 | 322 | ! Non linear least square using Levenberg-Marquardt algorithm and | |
! a finite difference jacobian | 318 | 323 | ! a finite difference jacobian | |
! | 319 | 324 | ! | |
! This uses MINPACK Routines (http://www.netlib.org/minpack) | 320 | 325 | ! This uses MINPACK Routines (http://www.netlib.org/minpack) | |
! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | 321 | 326 | ! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |
! | 322 | 327 | ! | |
328 | ! The purpose of fvn_lm is to minimize the sum of the squares of m nonlinear | |||
329 | ! functions in n variables by a modification of the Levenberg-Marquardt | |||
330 | ! algorithm. This is done by using the more general least-squares | |||
331 | ! solver lmdif. The user must provide a subroutine which calculates the | |||
332 | ! functions. The jacobian is then calculated by a forward-difference | |||
333 | ! approximation. | |||
334 | ! | |||
335 | ! call fvn_lm(fcn,m,n,a,info,tol) | |||
336 | ! | |||
337 | ! fcn : fcn is the user-supplied subroutine which calculates | |||
338 | ! the functions. fcn must follow the following interface that must | |||
339 | ! be declared in the calling subroutine : | |||
340 | ! | |||
341 | ! interface | |||
342 | ! subroutine fcn(m,n,a,fvec,iflag) | |||
343 | ! use fvn_common | |||
344 | ! integer(ip_kind), intent(in) :: m | |||
345 | ! integer(ip_kind), intent(in) :: n | |||
346 | ! real(dp_kind), dimension(:), intent(in) :: a | |||
347 | ! real(dp_kind), dimension(:), intent(inout) :: fvec | |||
348 | ! integer(ip_kind), intent(inout) :: iflag | |||
349 | ! end subroutine | |||
350 | ! end interface | |||
351 | ! | |||
352 | ! This is the function which calculate the differences for which which square sum | |||
353 | ! will be minimized outputing this difference in vector fvec. | |||
354 | ! Parameters of fcn are as follows : | |||
355 | ! m : positive integer input variable set to the number of functions | |||
356 | ! (number of measurement points) | |||
357 | ! n : positive integer input variable set to the number of variables | |||
358 | ! (number of parameters in the function to fit) | |||
359 | ! a : vector of length n containing parameters for which fcn should | |||
360 | ! perform the calculation | |||
361 | ! fvec : vector of length m containing the resulting evaluation | |||
362 | ! iflag : integer normally not used, can be used to exit the | |||
363 | ! the algorithm by setting it to a negative value | |||
364 | ! | |||
365 | ! m : positive integer input variable set to the number of functions | |||
366 | ! (number of measurement points) | |||
367 | ! n : positive integer input variable set to the number of variables | |||
368 | ! (number of parameters in the function to fit) | |||
369 | ! a : vector of length n, on input must contains an initial guess (or unity vector) | |||
370 | ! and on output the solution vector | |||
371 | ! info : is an output positive integer | |||
372 | ! info = 0 improper input parameters. | |||
373 | ! info = 1 algorithm estimates that the relative error | |||
374 | ! in the sum of squares is at most tol. | |||
375 | ! info = 2 algorithm estimates that the relative error | |||
376 | ! between x and the solution is at most tol. | |||
377 | ! info = 3 conditions for info = 1 and info = 2 both hold. | |||
378 | ! info = 4 fvec is orthogonal to the columns of the | |||
379 | ! jacobian to machine precision. | |||
380 | ! info = 5 number of calls to fcn has reached or exceeded 200*(n+1). | |||
381 | ! info = 6 tol is too small. no further reduction in | |||
382 | ! the sum of squares is possible. | |||
383 | ! info = 7 tol is too small. No further improvement in | |||
384 | ! the approximate solution x is possible. | |||
385 | ! tol : is an optional positive value. Termination occurs when the | |||
386 | ! algorithm estimates either that the relative error in the sum of | |||
387 | ! squares is at most tol or that the relative error between x and the | |||
388 | ! solution is at most tol. If not provided default value is : | |||
389 | ! sqrt(epsilon(0.0d0)) | |||
390 | ! | |||
391 | subroutine fvn_lm(fcn,m,n,a,info,tol) | |||
392 | integer(ip_kind), intent(in) :: m | |||
393 | integer(ip_kind), intent(in) :: n | |||
394 | real(dp_kind), dimension(:), intent(inout) :: a | |||
395 | integer(ip_kind), intent(out) :: info | |||
396 | real(dp_kind), intent(in), optional :: tol | |||
323 | 397 | |||
subroutine fvn_lmdif(zef,m,n,a,info,tol) | 324 | 398 | real(dp_kind) :: rtol | |
integer(4), intent(in) :: m | 325 | 399 | real(dp_kind), dimension(:), allocatable :: fvec | |
integer(4), intent(in) :: n | 326 | 400 | integer(ip_kind), dimension(:), allocatable :: iwa | |
real(8), dimension(:), intent(inout) :: a | 327 | |||
integer(4), intent(out) :: info | 328 | |||
real(8), intent(in), optional :: tol | 329 | |||
330 | 401 | |||
real(8) :: rtol | 331 | |||
real(8), dimension(:), allocatable :: fvec | 332 | |||
integer(4), dimension(:), allocatable :: iwa | 333 | |||
334 | ||||
interface | 335 | 402 | interface | |
subroutine zef(m,n,a,fvec,iflag) | 336 | 403 | subroutine fcn(m,n,a,fvec,iflag) | |
integer(4), intent(in) :: m | 337 | 404 | use fvn_common | |
integer(4), intent(in) :: n | 338 | 405 | integer(ip_kind), intent(in) :: m | |
real(8), dimension(:), intent(in) :: a | 339 | 406 | integer(ip_kind), intent(in) :: n | |
real(8), dimension(:), intent(inout) :: fvec | 340 | 407 | real(dp_kind), dimension(:), intent(in) :: a | |
integer(4), intent(inout) :: iflag | 341 | 408 | real(dp_kind), dimension(:), intent(inout) :: fvec | |
409 | integer(ip_kind), intent(inout) :: iflag | |||
end subroutine | 342 | 410 | end subroutine | |
end interface | 343 | 411 | end interface | |
344 | 412 | |||
integer(4) :: maxfev, mode, nfev, nprint | 345 | 413 | integer(ip_kind) :: maxfev, mode, nfev, nprint | |
real(8) :: epsfcn, ftol, gtol, xtol, fjac(m,n) | 346 | 414 | real(dp_kind) :: epsfcn, ftol, gtol, xtol, fjac(m,n) | |
real(8), parameter :: factor = 100._8, zero = 0.0_8 | 347 | 415 | real(dp_kind), parameter :: factor = 100._8, zero = 0.0_8 | |
348 | 416 | |||
allocate(fvec(m),iwa(n)) | 349 | 417 | allocate(fvec(m),iwa(n)) | |
350 | 418 | |||
rtol=sqrt(epsilon(0.d0)) | 351 | 419 | rtol=sqrt(epsilon(0.d0)) | |
if (present(tol)) rtol=tol | 352 | 420 | if (present(tol)) rtol=tol | |
353 | 421 | |||
info = 0 | 354 | 422 | info = 0 | |
355 | 423 | |||
! check the input parameters for errors. | 356 | 424 | ! check the input parameters for errors. | |
357 | 425 | |||
if (n <= 0 .or. m < n .or. rtol < zero) return | 358 | 426 | if (n <= 0 .or. m < n .or. rtol < zero) return | |
359 | 427 | |||
! call lmdif. | 360 | 428 | ! call lmdif. | |
361 | 429 | |||
maxfev = 200*(n + 1) | 362 | 430 | maxfev = 200*(n + 1) | |
ftol = rtol | 363 | 431 | ftol = rtol | |
xtol = rtol | 364 | 432 | xtol = rtol | |
gtol = zero | 365 | 433 | gtol = zero | |
epsfcn = zero | 366 | 434 | epsfcn = zero | |
mode = 1 | 367 | 435 | mode = 1 | |
nprint = 0 | 368 | 436 | nprint = 0 | |
369 | 437 | |||
call lmdif(zef, m, n, a, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | 370 | 438 | call lmdif(fcn, m, n, a, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |
mode, factor, nprint, info, nfev, fjac, iwa) | 371 | 439 | mode, factor, nprint, info, nfev, fjac, iwa) | |
372 | 440 | |||
if (info == 8) info = 4 | 373 | 441 | if (info == 8) info = 4 | |
374 | 442 | |||
deallocate(fvec,iwa) | 375 | 443 | deallocate(fvec,iwa) | |
end subroutine | 376 | 444 | end subroutine | |
377 | 445 | |||
378 | 446 | |||
! MINPACK routines which are used by both LMDIF & LMDER | 379 | 447 | ! lmdif | |
! 25 October 2001: | 380 | 448 | ! MINPACK Subroutine (http://www.netlib.org/minpack) | |
! Changed INTENT of iflag in several places to IN OUT. | 381 | 449 | ! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |
! Changed INTENT of fvec to IN OUT in user routine FCN. | 382 | |||
! Removed arguments diag and qtv from LMDIF & LMDER. | 383 | |||
! Replaced several DO loops with array operations. | 384 | |||
! amiller @ bigpond.net.au | 385 | |||
386 | ||||
387 | ||||
! ********** | 388 | |||
389 | ||||
! subroutine lmdif1 | 390 | |||
391 | ||||
! The purpose of lmdif1 is to minimize the sum of the squares of m nonlinear | 392 | |||
! functions in n variables by a modification of the Levenberg-Marquardt | 393 | |||
! algorithm. This is done by using the more general least-squares | 394 | |||
! solver lmdif. The user must provide a subroutine which calculates the | 395 | |||
! functions. The jacobian is then calculated by a forward-difference | 396 | |||
! approximation. | 397 | |||
398 | ||||
! the subroutine statement is | 399 | |||
400 | ||||
! subroutine lmdif1(fcn, m, n, x, fvec, tol, info, iwa) | 401 | |||
402 | ||||
! where | 403 | |||
404 | ||||
! fcn is the name of the user-supplied subroutine which calculates | 405 | |||
! the functions. fcn must be declared in an external statement in the | 406 | |||
! user calling program, and should be written as follows. | 407 | |||
408 | ||||
! subroutine fcn(m, n, x, fvec, iflag) | 409 | |||
! integer m, n, iflag | 410 | |||
! REAL (dp) x(n), fvec(m) | 411 | |||
! ---------- | 412 | |||
! calculate the functions at x and return this vector in fvec. | 413 | |||
! ---------- | 414 | |||
! return | 415 | |||
! end | 416 | |||
417 | ||||
! the value of iflag should not be changed by fcn unless | 418 | |||
! the user wants to terminate execution of lmdif1. | 419 | |||
! In this case set iflag to a negative integer. | 420 | |||
421 | ||||
! m is a positive integer input variable set to the number of functions. | 422 | |||
423 | ||||
! n is a positive integer input variable set to the number of variables. | 424 | |||
! n must not exceed m. | 425 | |||
426 | ||||
! x is an array of length n. On input x must contain an initial estimate | 427 | |||
! of the solution vector. On output x contains the final estimate of | 428 | |||
! the solution vector. | 429 | |||
430 | ||||
! fvec is an output array of length m which contains | 431 | |||
! the functions evaluated at the output x. | 432 | |||
433 | ||||
! tol is a nonnegative input variable. Termination occurs when the | 434 | |||
! algorithm estimates either that the relative error in the sum of | 435 | |||
! squares is at most tol or that the relative error between x and the | 436 | |||
! solution is at most tol. | 437 | |||
438 | ||||
! info is an integer output variable. If the user has terminated execution, | 439 | |||
! info is set to the (negative) value of iflag. See description of fcn. | 440 | |||
! Otherwise, info is set as follows. | 441 | |||
442 | ||||
! info = 0 improper input parameters. | 443 | |||
444 | ||||
! info = 1 algorithm estimates that the relative error | 445 | |||
! in the sum of squares is at most tol. | 446 | |||
447 | ||||
! info = 2 algorithm estimates that the relative error | 448 | |||
! between x and the solution is at most tol. | 449 | |||
450 | ||||
! info = 3 conditions for info = 1 and info = 2 both hold. | 451 | |||
452 | ||||
! info = 4 fvec is orthogonal to the columns of the | 453 | |||
! jacobian to machine precision. | 454 | |||
455 | ||||
! info = 5 number of calls to fcn has reached or exceeded 200*(n+1). | 456 | |||
457 | ||||
! info = 6 tol is too small. no further reduction in | 458 | |||
! the sum of squares is possible. | 459 | |||
460 | ||||
! info = 7 tol is too small. No further improvement in | 461 | |||
! the approximate solution x is possible. | 462 | |||
463 | ||||
! iwa is an integer work array of length n. | 464 | |||
465 | ||||
! wa is a work array of length lwa. | 466 | |||
467 | ||||
! lwa is a positive integer input variable not less than m*n+5*n+m. | 468 | |||
469 | ||||
! subprograms called | 470 | |||
471 | ||||
! user-supplied ...... fcn | 472 | |||
473 | ||||
! minpack-supplied ... lmdif | 474 | |||
475 | ||||
! argonne national laboratory. minpack project. march 1980. | 476 | |||
! burton s. garbow, kenneth e. hillstrom, jorge j. more | 477 | |||
478 | ||||
! ********** | 479 | |||
480 | ||||
SUBROUTINE lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | 481 | 450 | SUBROUTINE lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, & | |
mode, factor, nprint, info, nfev, fjac, ipvt) | 482 | 451 | mode, factor, nprint, info, nfev, fjac, ipvt) | |
483 | 452 | |||
! N.B. Arguments LDFJAC, DIAG, QTF, WA1, WA2, WA3 & WA4 have been removed. | 484 | 453 | ! N.B. Arguments LDFJAC, DIAG, QTF, WA1, WA2, WA3 & WA4 have been removed. | |
INTEGER, PARAMETER :: dp = 8 | 485 | 454 | INTEGER, PARAMETER :: dp = dp_kind | |
INTEGER, INTENT(IN) :: m | 486 | 455 | INTEGER, INTENT(IN) :: m | |
INTEGER, INTENT(IN) :: n | 487 | 456 | INTEGER, INTENT(IN) :: n | |
REAL (dp), INTENT(IN OUT) :: x(:) | 488 | 457 | REAL (dp), INTENT(IN OUT) :: x(:) | |
REAL (dp), INTENT(OUT) :: fvec(:) | 489 | 458 | REAL (dp), INTENT(OUT) :: fvec(:) | |
REAL (dp), INTENT(IN) :: ftol | 490 | 459 | REAL (dp), INTENT(IN) :: ftol | |
REAL (dp), INTENT(IN) :: xtol | 491 | 460 | REAL (dp), INTENT(IN) :: xtol | |
REAL (dp), INTENT(IN OUT) :: gtol | 492 | 461 | REAL (dp), INTENT(IN OUT) :: gtol | |
INTEGER, INTENT(IN OUT) :: maxfev | 493 | 462 | INTEGER, INTENT(IN OUT) :: maxfev | |
REAL (dp), INTENT(IN OUT) :: epsfcn | 494 | 463 | REAL (dp), INTENT(IN OUT) :: epsfcn | |
INTEGER, INTENT(IN) :: mode | 495 | 464 | INTEGER, INTENT(IN) :: mode | |
REAL (dp), INTENT(IN) :: factor | 496 | 465 | REAL (dp), INTENT(IN) :: factor | |
INTEGER, INTENT(IN) :: nprint | 497 | 466 | INTEGER, INTENT(IN) :: nprint | |
INTEGER, INTENT(OUT) :: info | 498 | 467 | INTEGER, INTENT(OUT) :: info | |
INTEGER, INTENT(OUT) :: nfev | 499 | 468 | INTEGER, INTENT(OUT) :: nfev | |
REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | 500 | 469 | REAL (dp), INTENT(OUT) :: fjac(:,:) ! fjac(ldfjac,n) | |
INTEGER, INTENT(OUT) :: ipvt(:) | 501 | 470 | INTEGER, INTENT(OUT) :: ipvt(:) | |
502 | 471 | |||
! EXTERNAL fcn | 503 | 472 | ! EXTERNAL fcn | |
504 | 473 | |||
INTERFACE | 505 | 474 | INTERFACE | |
SUBROUTINE fcn(m, n, x, fvec, iflag) | 506 | 475 | SUBROUTINE fcn(m, n, x, fvec, iflag) | |
INTEGER(4), INTENT(IN) :: m, n | 507 | 476 | use fvn_common | |
REAL (8), INTENT(IN) :: x(:) | 508 | 477 | INTEGER(ip_kind), INTENT(IN) :: m, n | |
REAL (8), INTENT(IN OUT) :: fvec(:) | 509 | 478 | REAL (dp_kind), INTENT(IN) :: x(:) | |
INTEGER(4), INTENT(IN OUT) :: iflag | 510 | 479 | REAL (dp_kind), INTENT(IN OUT) :: fvec(:) | |
480 | INTEGER(ip_kind), INTENT(IN OUT) :: iflag | |||
END SUBROUTINE fcn | 511 | 481 | END SUBROUTINE fcn | |
END INTERFACE | 512 | 482 | END INTERFACE | |
513 | 483 | |||
! ********** | 514 | 484 | ! ********** | |
515 | 485 | |||
! subroutine lmdif | 516 | 486 | ! subroutine lmdif | |
517 | 487 | |||
! The purpose of lmdif is to minimize the sum of the squares of m nonlinear | 518 | 488 | ! The purpose of lmdif is to minimize the sum of the squares of m nonlinear | |
! functions in n variables by a modification of the Levenberg-Marquardt | 519 | 489 | ! functions in n variables by a modification of the Levenberg-Marquardt | |
! algorithm. The user must provide a subroutine which calculates the | 520 | 490 | ! algorithm. The user must provide a subroutine which calculates the | |
! functions. The jacobian is then calculated by a forward-difference | 521 | 491 | ! functions. The jacobian is then calculated by a forward-difference | |
! approximation. | 522 | 492 | ! approximation. | |
523 | 493 | |||
! the subroutine statement is | 524 | 494 | ! the subroutine statement is | |
525 | 495 | |||
! subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, | 526 | 496 | ! subroutine lmdif(fcn, m, n, x, fvec, ftol, xtol, gtol, maxfev, epsfcn, | |
! diag, mode, factor, nprint, info, nfev, fjac, | 527 | 497 | ! diag, mode, factor, nprint, info, nfev, fjac, | |
! ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4) | 528 | 498 | ! ldfjac, ipvt, qtf, wa1, wa2, wa3, wa4) | |
529 | 499 | |||
! N.B. 7 of these arguments have been removed in this version. | 530 | 500 | ! N.B. 7 of these arguments have been removed in this version. | |
531 | 501 | |||
! where | 532 | 502 | ! where | |
533 | 503 | |||
! fcn is the name of the user-supplied subroutine which calculates the | 534 | 504 | ! fcn is the name of the user-supplied subroutine which calculates the | |
! functions. fcn must be declared in an external statement in the user | 535 | 505 | ! functions. fcn must be declared in an external statement in the user | |
! calling program, and should be written as follows. | 536 | 506 | ! calling program, and should be written as follows. | |
537 | 507 | |||
! subroutine fcn(m, n, x, fvec, iflag) | 538 | 508 | ! subroutine fcn(m, n, x, fvec, iflag) | |
! integer m, n, iflag | 539 | 509 | ! integer m, n, iflag | |
! REAL (dp) x(:), fvec(m) | 540 | 510 | ! REAL (dp) x(:), fvec(m) | |
! ---------- | 541 | 511 | ! ---------- | |
! calculate the functions at x and return this vector in fvec. | 542 | 512 | ! calculate the functions at x and return this vector in fvec. | |
! ---------- | 543 | 513 | ! ---------- | |
! return | 544 | 514 | ! return | |
! end | 545 | 515 | ! end | |
546 | 516 | |||
! the value of iflag should not be changed by fcn unless | 547 | 517 | ! the value of iflag should not be changed by fcn unless | |
! the user wants to terminate execution of lmdif. | 548 | 518 | ! the user wants to terminate execution of lmdif. | |
! in this case set iflag to a negative integer. | 549 | 519 | ! in this case set iflag to a negative integer. | |
550 | 520 | |||
! m is a positive integer input variable set to the number of functions. | 551 | 521 | ! m is a positive integer input variable set to the number of functions. | |
552 | 522 | |||
! n is a positive integer input variable set to the number of variables. | 553 | 523 | ! n is a positive integer input variable set to the number of variables. | |
! n must not exceed m. | 554 | 524 | ! n must not exceed m. | |
555 | 525 | |||
! x is an array of length n. On input x must contain an initial estimate | 556 | 526 | ! x is an array of length n. On input x must contain an initial estimate | |
! of the solution vector. On output x contains the final estimate of the | 557 | 527 | ! of the solution vector. On output x contains the final estimate of the | |
! solution vector. | 558 | 528 | ! solution vector. | |
559 | 529 | |||
! fvec is an output array of length m which contains | 560 | 530 | ! fvec is an output array of length m which contains | |
! the functions evaluated at the output x. | 561 | 531 | ! the functions evaluated at the output x. | |
562 | 532 | |||
! ftol is a nonnegative input variable. Termination occurs when both the | 563 | 533 | ! ftol is a nonnegative input variable. Termination occurs when both the | |
! actual and predicted relative reductions in the sum of squares are at | 564 | 534 | ! actual and predicted relative reductions in the sum of squares are at | |
! most ftol. Therefore, ftol measures the relative error desired | 565 | 535 | ! most ftol. Therefore, ftol measures the relative error desired | |
! in the sum of squares. | 566 | 536 | ! in the sum of squares. | |
567 | 537 | |||
! xtol is a nonnegative input variable. Termination occurs when the | 568 | 538 | ! xtol is a nonnegative input variable. Termination occurs when the | |
! relative error between two consecutive iterates is at most xtol. | 569 | 539 | ! relative error between two consecutive iterates is at most xtol. | |
! Therefore, xtol measures the relative error desired in the approximate | 570 | 540 | ! Therefore, xtol measures the relative error desired in the approximate | |
! solution. | 571 | 541 | ! solution. | |
572 | 542 | |||
! gtol is a nonnegative input variable. Termination occurs when the cosine | 573 | 543 | ! gtol is a nonnegative input variable. Termination occurs when the cosine | |
! of the angle between fvec and any column of the jacobian is at most | 574 | 544 | ! of the angle between fvec and any column of the jacobian is at most | |
! gtol in absolute value. Therefore, gtol measures the orthogonality | 575 | 545 | ! gtol in absolute value. Therefore, gtol measures the orthogonality | |
! desired between the function vector and the columns of the jacobian. | 576 | 546 | ! desired between the function vector and the columns of the jacobian. | |
577 | 547 | |||
! maxfev is a positive integer input variable. Termination occurs when the | 578 | 548 | ! maxfev is a positive integer input variable. Termination occurs when the | |
! number of calls to fcn is at least maxfev by the end of an iteration. | 579 | 549 | ! number of calls to fcn is at least maxfev by the end of an iteration. | |
580 | 550 | |||
! epsfcn is an input variable used in determining a suitable step length | 581 | 551 | ! epsfcn is an input variable used in determining a suitable step length | |
! for the forward-difference approximation. This approximation assumes | 582 | 552 | ! for the forward-difference approximation. This approximation assumes | |
! that the relative errors in the functions are of the order of epsfcn. | 583 | 553 | ! that the relative errors in the functions are of the order of epsfcn. | |
! If epsfcn is less than the machine precision, it is assumed that the | 584 | 554 | ! If epsfcn is less than the machine precision, it is assumed that the | |
! relative errors in the functions are of the order of the machine | 585 | 555 | ! relative errors in the functions are of the order of the machine | |
! precision. | 586 | 556 | ! precision. | |
587 | 557 | |||
! diag is an array of length n. If mode = 1 (see below), diag is | 588 | 558 | ! diag is an array of length n. If mode = 1 (see below), diag is | |
! internally set. If mode = 2, diag must contain positive entries that | 589 | 559 | ! internally set. If mode = 2, diag must contain positive entries that | |
! serve as multiplicative scale factors for the variables. | 590 | 560 | ! serve as multiplicative scale factors for the variables. | |
591 | 561 | |||
! mode is an integer input variable. If mode = 1, the variables will be | 592 | 562 | ! mode is an integer input variable. If mode = 1, the variables will be | |
! scaled internally. If mode = 2, the scaling is specified by the input | 593 | 563 | ! scaled internally. If mode = 2, the scaling is specified by the input | |
! diag. other values of mode are equivalent to mode = 1. | 594 | 564 | ! diag. other values of mode are equivalent to mode = 1. | |
595 | 565 | |||
! factor is a positive input variable used in determining the initial step | 596 | 566 | ! factor is a positive input variable used in determining the initial step | |
! bound. This bound is set to the product of factor and the euclidean | 597 | 567 | ! bound. This bound is set to the product of factor and the euclidean | |
! norm of diag*x if nonzero, or else to factor itself. In most cases | 598 | 568 | ! norm of diag*x if nonzero, or else to factor itself. In most cases | |
! factor should lie in the interval (.1,100.). 100. is a generally | 599 | 569 | ! factor should lie in the interval (.1,100.). 100. is a generally | |
! recommended value. | 600 | 570 | ! recommended value. | |
601 | 571 | |||
! nprint is an integer input variable that enables controlled printing of | 602 | 572 | ! nprint is an integer input variable that enables controlled printing of | |
! iterates if it is positive. In this case, fcn is called with iflag = 0 | 603 | 573 | ! iterates if it is positive. In this case, fcn is called with iflag = 0 | |
! at the beginning of the first iteration and every nprint iterations | 604 | 574 | ! at the beginning of the first iteration and every nprint iterations | |
! thereafter and immediately prior to return, with x and fvec available | 605 | 575 | ! thereafter and immediately prior to return, with x and fvec available | |
! for printing. If nprint is not positive, no special calls | 606 | 576 | ! for printing. If nprint is not positive, no special calls | |
! of fcn with iflag = 0 are made. | 607 | 577 | ! of fcn with iflag = 0 are made. | |
608 | 578 | |||
! info is an integer output variable. If the user has terminated | 609 | 579 | ! info is an integer output variable. If the user has terminated | |
! execution, info is set to the (negative) value of iflag. | 610 | 580 | ! execution, info is set to the (negative) value of iflag. | |
! See description of fcn. Otherwise, info is set as follows. | 611 | 581 | ! See description of fcn. Otherwise, info is set as follows. | |
612 | 582 | |||
! info = 0 improper input parameters. | 613 | 583 | ! info = 0 improper input parameters. | |
614 | 584 | |||
! info = 1 both actual and predicted relative reductions | 615 | 585 | ! info = 1 both actual and predicted relative reductions | |
! in the sum of squares are at most ftol. | 616 | 586 | ! in the sum of squares are at most ftol. | |
617 | 587 | |||
! info = 2 relative error between two consecutive iterates <= xtol. | 618 | 588 | ! info = 2 relative error between two consecutive iterates <= xtol. | |
619 | 589 | |||
! info = 3 conditions for info = 1 and info = 2 both hold. | 620 | 590 | ! info = 3 conditions for info = 1 and info = 2 both hold. | |
621 | 591 | |||
! info = 4 the cosine of the angle between fvec and any column of | 622 | 592 | ! info = 4 the cosine of the angle between fvec and any column of | |
! the Jacobian is at most gtol in absolute value. | 623 | 593 | ! the Jacobian is at most gtol in absolute value. | |
624 | 594 | |||
! info = 5 number of calls to fcn has reached or exceeded maxfev. | 625 | 595 | ! info = 5 number of calls to fcn has reached or exceeded maxfev. | |
626 | 596 | |||
! info = 6 ftol is too small. no further reduction in | 627 | 597 | ! info = 6 ftol is too small. no further reduction in | |
! the sum of squares is possible. | 628 | 598 | ! the sum of squares is possible. | |
629 | 599 | |||
! info = 7 xtol is too small. no further improvement in | 630 | 600 | ! info = 7 xtol is too small. no further improvement in | |
! the approximate solution x is possible. | 631 | 601 | ! the approximate solution x is possible. | |
632 | 602 | |||
! info = 8 gtol is too small. fvec is orthogonal to the | 633 | 603 | ! info = 8 gtol is too small. fvec is orthogonal to the | |
! columns of the jacobian to machine precision. | 634 | 604 | ! columns of the jacobian to machine precision. | |
635 | 605 | |||
! nfev is an integer output variable set to the number of calls to fcn. | 636 | 606 | ! nfev is an integer output variable set to the number of calls to fcn. | |
637 | 607 | |||
! fjac is an output m by n array. the upper n by n submatrix | 638 | 608 | ! fjac is an output m by n array. the upper n by n submatrix | |
! of fjac contains an upper triangular matrix r with | 639 | 609 | ! of fjac contains an upper triangular matrix r with | |
! diagonal elements of nonincreasing magnitude such that | 640 | 610 | ! diagonal elements of nonincreasing magnitude such that | |
641 | 611 | |||
! t t t | 642 | 612 | ! t t t | |
! p *(jac *jac)*p = r *r, | 643 | 613 | ! p *(jac *jac)*p = r *r, | |
644 | 614 | |||
! where p is a permutation matrix and jac is the final calculated | 645 | 615 | ! where p is a permutation matrix and jac is the final calculated | |
! Jacobian. Column j of p is column ipvt(j) (see below) of the | 646 | 616 | ! Jacobian. Column j of p is column ipvt(j) (see below) of the | |
! identity matrix. the lower trapezoidal part of fjac contains | 647 | 617 | ! identity matrix. the lower trapezoidal part of fjac contains | |
! information generated during the computation of r. | 648 | 618 | ! information generated during the computation of r. | |
649 | 619 | |||
! ldfjac is a positive integer input variable not less than m | 650 | 620 | ! ldfjac is a positive integer input variable not less than m | |
! which specifies the leading dimension of the array fjac. | 651 | 621 | ! which specifies the leading dimension of the array fjac. | |
652 | 622 | |||
! ipvt is an integer output array of length n. ipvt defines a permutation | 653 | 623 | ! ipvt is an integer output array of length n. ipvt defines a permutation | |
! matrix p such that jac*p = q*r, where jac is the final calculated | 654 | 624 | ! matrix p such that jac*p = q*r, where jac is the final calculated | |
! jacobian, q is orthogonal (not stored), and r is upper triangular | 655 | 625 | ! jacobian, q is orthogonal (not stored), and r is upper triangular | |
! with diagonal elements of nonincreasing magnitude. | 656 | 626 | ! with diagonal elements of nonincreasing magnitude. | |
! Column j of p is column ipvt(j) of the identity matrix. | 657 | 627 | ! Column j of p is column ipvt(j) of the identity matrix. | |
658 | 628 | |||
! qtf is an output array of length n which contains | 659 | 629 | ! qtf is an output array of length n which contains | |
! the first n elements of the vector (q transpose)*fvec. | 660 | 630 | ! the first n elements of the vector (q transpose)*fvec. | |
661 | 631 | |||
! wa1, wa2, and wa3 are work arrays of length n. | 662 | 632 | ! wa1, wa2, and wa3 are work arrays of length n. | |
663 | 633 | |||
! wa4 is a work array of length m. | 664 | 634 | ! wa4 is a work array of length m. | |
665 | 635 | |||
! subprograms called | 666 | 636 | ! subprograms called | |
667 | 637 | |||
! user-supplied ...... fcn | 668 | 638 | ! user-supplied ...... fcn | |
669 | 639 | |||
! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac | 670 | 640 | ! minpack-supplied ... dpmpar,enorm,fdjac2,lmpar,qrfac | |
671 | 641 | |||
! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod | 672 | 642 | ! fortran-supplied ... dabs,dmax1,dmin1,dsqrt,mod | |
673 | 643 | |||
! argonne national laboratory. minpack project. march 1980. | 674 | 644 | ! argonne national laboratory. minpack project. march 1980. | |
! burton s. garbow, kenneth e. hillstrom, jorge j. more | 675 | 645 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
676 | 646 | |||
! ********** | 677 | 647 | ! ********** | |
INTEGER :: i, iflag, iter, j, l | 678 | 648 | INTEGER :: i, iflag, iter, j, l | |
REAL (dp) :: actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, & | 679 | 649 | REAL (dp) :: actred, delta, dirder, epsmch, fnorm, fnorm1, gnorm, & | |
par, pnorm, prered, ratio, sum, temp, temp1, temp2, xnorm | 680 | 650 | par, pnorm, prered, ratio, sum, temp, temp1, temp2, xnorm | |
REAL (dp) :: diag(n), qtf(n), wa1(n), wa2(n), wa3(n), wa4(m) | 681 | 651 | REAL (dp) :: diag(n), qtf(n), wa1(n), wa2(n), wa3(n), wa4(m) | |
REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & | 682 | 652 | REAL (dp), PARAMETER :: one = 1.0_dp, p1 = 0.1_dp, p5 = 0.5_dp, & | |
p25 = 0.25_dp, p75 = 0.75_dp, p0001 = 0.0001_dp, & | 683 | 653 | p25 = 0.25_dp, p75 = 0.75_dp, p0001 = 0.0001_dp, & | |
zero = 0.0_dp | 684 | 654 | zero = 0.0_dp | |
685 | 655 | |||
! epsmch is the machine precision. | 686 | 656 | ! epsmch is the machine precision. | |
687 | 657 | |||
epsmch = EPSILON(zero) | 688 | 658 | epsmch = EPSILON(zero) | |
689 | 659 | |||
info = 0 | 690 | 660 | info = 0 | |
iflag = 0 | 691 | 661 | iflag = 0 | |
nfev = 0 | 692 | 662 | nfev = 0 | |
693 | 663 | |||
! check the input parameters for errors. | 694 | 664 | ! check the input parameters for errors. | |
695 | 665 | |||
IF (n <= 0 .OR. m < n .OR. ftol < zero .OR. xtol < zero .OR. gtol < zero & | 696 | 666 | IF (n <= 0 .OR. m < n .OR. ftol < zero .OR. xtol < zero .OR. gtol < zero & | |
.OR. maxfev <= 0 .OR. factor <= zero) GO TO 300 | 697 | 667 | .OR. maxfev <= 0 .OR. factor <= zero) GO TO 300 | |
IF (mode /= 2) GO TO 20 | 698 | 668 | IF (mode /= 2) GO TO 20 | |
DO j = 1, n | 699 | 669 | DO j = 1, n | |
IF (diag(j) <= zero) GO TO 300 | 700 | 670 | IF (diag(j) <= zero) GO TO 300 | |
END DO | 701 | 671 | END DO | |
702 | 672 | |||
! evaluate the function at the starting point and calculate its norm. | 703 | 673 | ! evaluate the function at the starting point and calculate its norm. | |
704 | 674 | |||
20 iflag = 1 | 705 | 675 | 20 iflag = 1 | |
CALL fcn(m, n, x, fvec, iflag) | 706 | 676 | CALL fcn(m, n, x, fvec, iflag) | |
nfev = 1 | 707 | 677 | nfev = 1 | |
IF (iflag < 0) GO TO 300 | 708 | 678 | IF (iflag < 0) GO TO 300 | |
fnorm = enorm(m, fvec) | 709 | 679 | fnorm = enorm(m, fvec) | |
710 | 680 | |||
! initialize levenberg-marquardt parameter and iteration counter. | 711 | 681 | ! initialize levenberg-marquardt parameter and iteration counter. | |
712 | 682 | |||
par = zero | 713 | 683 | par = zero | |
iter = 1 | 714 | 684 | iter = 1 | |
715 | 685 | |||
! beginning of the outer loop. | 716 | 686 | ! beginning of the outer loop. | |
717 | 687 | |||
! calculate the jacobian matrix. | 718 | 688 | ! calculate the jacobian matrix. | |
719 | 689 | |||
30 iflag = 2 | 720 | 690 | 30 iflag = 2 | |
CALL fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | 721 | 691 | CALL fdjac2(fcn, m, n, x, fvec, fjac, iflag, epsfcn) | |
nfev = nfev + n | 722 | 692 | nfev = nfev + n | |
IF (iflag < 0) GO TO 300 | 723 | 693 | IF (iflag < 0) GO TO 300 | |
724 | 694 | |||
! If requested, call fcn to enable printing of iterates. | 725 | 695 | ! If requested, call fcn to enable printing of iterates. | |
726 | 696 | |||
IF (nprint <= 0) GO TO 40 | 727 | 697 | IF (nprint <= 0) GO TO 40 | |
iflag = 0 | 728 | 698 | iflag = 0 | |
IF (MOD(iter-1,nprint) == 0) CALL fcn(m, n, x, fvec, iflag) | 729 | 699 | IF (MOD(iter-1,nprint) == 0) CALL fcn(m, n, x, fvec, iflag) | |
IF (iflag < 0) GO TO 300 | 730 | 700 | IF (iflag < 0) GO TO 300 | |
731 | 701 | |||
! Compute the qr factorization of the jacobian. | 732 | 702 | ! Compute the qr factorization of the jacobian. | |
733 | 703 | |||
40 CALL qrfac(m, n, fjac, .true., ipvt, wa1, wa2) | 734 | 704 | 40 CALL qrfac(m, n, fjac, .true., ipvt, wa1, wa2) | |
735 | 705 | |||
! On the first iteration and if mode is 1, scale according | 736 | 706 | ! On the first iteration and if mode is 1, scale according | |
! to the norms of the columns of the initial jacobian. | 737 | 707 | ! to the norms of the columns of the initial jacobian. | |
738 | 708 | |||
IF (iter /= 1) GO TO 80 | 739 | 709 | IF (iter /= 1) GO TO 80 | |
IF (mode == 2) GO TO 60 | 740 | 710 | IF (mode == 2) GO TO 60 | |
DO j = 1, n | 741 | 711 | DO j = 1, n | |
diag(j) = wa2(j) | 742 | 712 | diag(j) = wa2(j) | |
IF (wa2(j) == zero) diag(j) = one | 743 | 713 | IF (wa2(j) == zero) diag(j) = one | |
END DO | 744 | 714 | END DO | |
745 | 715 | |||
! On the first iteration, calculate the norm of the scaled x | 746 | 716 | ! On the first iteration, calculate the norm of the scaled x | |
! and initialize the step bound delta. | 747 | 717 | ! and initialize the step bound delta. | |
748 | 718 | |||
60 wa3(1:n) = diag(1:n)*x(1:n) | 749 | 719 | 60 wa3(1:n) = diag(1:n)*x(1:n) | |
xnorm = enorm(n, wa3) | 750 | 720 | xnorm = enorm(n, wa3) | |
delta = factor*xnorm | 751 | 721 | delta = factor*xnorm | |
IF (delta == zero) delta = factor | 752 | 722 | IF (delta == zero) delta = factor | |
753 | 723 | |||
! Form (q transpose)*fvec and store the first n components in qtf. | 754 | 724 | ! Form (q transpose)*fvec and store the first n components in qtf. | |
755 | 725 | |||
80 wa4(1:m) = fvec(1:m) | 756 | 726 | 80 wa4(1:m) = fvec(1:m) | |
DO j = 1, n | 757 | 727 | DO j = 1, n | |
IF (fjac(j,j) == zero) GO TO 120 | 758 | 728 | IF (fjac(j,j) == zero) GO TO 120 | |
sum = DOT_PRODUCT( fjac(j:m,j), wa4(j:m) ) | 759 | 729 | sum = DOT_PRODUCT( fjac(j:m,j), wa4(j:m) ) | |
temp = -sum/fjac(j,j) | 760 | 730 | temp = -sum/fjac(j,j) | |
DO i = j, m | 761 | 731 | DO i = j, m | |
wa4(i) = wa4(i) + fjac(i,j)*temp | 762 | 732 | wa4(i) = wa4(i) + fjac(i,j)*temp | |
END DO | 763 | 733 | END DO | |
120 fjac(j,j) = wa1(j) | 764 | 734 | 120 fjac(j,j) = wa1(j) | |
qtf(j) = wa4(j) | 765 | 735 | qtf(j) = wa4(j) | |
END DO | 766 | 736 | END DO | |
767 | 737 | |||
! compute the norm of the scaled gradient. | 768 | 738 | ! compute the norm of the scaled gradient. | |
769 | 739 | |||
gnorm = zero | 770 | 740 | gnorm = zero | |
IF (fnorm == zero) GO TO 170 | 771 | 741 | IF (fnorm == zero) GO TO 170 | |
DO j = 1, n | 772 | 742 | DO j = 1, n | |
l = ipvt(j) | 773 | 743 | l = ipvt(j) | |
IF (wa2(l) == zero) CYCLE | 774 | 744 | IF (wa2(l) == zero) CYCLE | |
sum = zero | 775 | 745 | sum = zero | |
DO i = 1, j | 776 | 746 | DO i = 1, j | |
sum = sum + fjac(i,j)*(qtf(i)/fnorm) | 777 | 747 | sum = sum + fjac(i,j)*(qtf(i)/fnorm) | |
END DO | 778 | 748 | END DO | |
gnorm = MAX(gnorm, ABS(sum/wa2(l))) | 779 | 749 | gnorm = MAX(gnorm, ABS(sum/wa2(l))) | |
END DO | 780 | 750 | END DO | |
781 | 751 | |||
! test for convergence of the gradient norm. | 782 | 752 | ! test for convergence of the gradient norm. | |
783 | 753 | |||
170 IF (gnorm <= gtol) info = 4 | 784 | 754 | 170 IF (gnorm <= gtol) info = 4 | |
IF (info /= 0) GO TO 300 | 785 | 755 | IF (info /= 0) GO TO 300 | |
786 | 756 | |||
! rescale if necessary. | 787 | 757 | ! rescale if necessary. | |
788 | 758 | |||
IF (mode == 2) GO TO 200 | 789 | 759 | IF (mode == 2) GO TO 200 | |
DO j = 1, n | 790 | 760 | DO j = 1, n | |
diag(j) = MAX(diag(j), wa2(j)) | 791 | 761 | diag(j) = MAX(diag(j), wa2(j)) | |
END DO | 792 | 762 | END DO | |
793 | 763 | |||
! beginning of the inner loop. | 794 | 764 | ! beginning of the inner loop. | |
795 | 765 | |||
! determine the Levenberg-Marquardt parameter. | 796 | 766 | ! determine the Levenberg-Marquardt parameter. | |
797 | 767 | |||
200 CALL lmpar(n, fjac, ipvt, diag, qtf, delta, par, wa1, wa2) | 798 | 768 | 200 CALL lmpar(n, fjac, ipvt, diag, qtf, delta, par, wa1, wa2) | |
799 | 769 | |||
! store the direction p and x + p. calculate the norm of p. | 800 | 770 | ! store the direction p and x + p. calculate the norm of p. | |
801 | 771 | |||
DO j = 1, n | 802 | 772 | DO j = 1, n | |
wa1(j) = -wa1(j) | 803 | 773 | wa1(j) = -wa1(j) | |
wa2(j) = x(j) + wa1(j) | 804 | 774 | wa2(j) = x(j) + wa1(j) | |
wa3(j) = diag(j)*wa1(j) | 805 | 775 | wa3(j) = diag(j)*wa1(j) | |
END DO | 806 | 776 | END DO | |
pnorm = enorm(n, wa3) | 807 | 777 | pnorm = enorm(n, wa3) | |
808 | 778 | |||
! on the first iteration, adjust the initial step bound. | 809 | 779 | ! on the first iteration, adjust the initial step bound. | |
810 | 780 | |||
IF (iter == 1) delta = MIN(delta, pnorm) | 811 | 781 | IF (iter == 1) delta = MIN(delta, pnorm) | |
812 | 782 | |||
! evaluate the function at x + p and calculate its norm. | 813 | 783 | ! evaluate the function at x + p and calculate its norm. | |
814 | 784 | |||
iflag = 1 | 815 | 785 | iflag = 1 | |
CALL fcn(m, n, wa2, wa4, iflag) | 816 | 786 | CALL fcn(m, n, wa2, wa4, iflag) | |
nfev = nfev + 1 | 817 | 787 | nfev = nfev + 1 | |
IF (iflag < 0) GO TO 300 | 818 | 788 | IF (iflag < 0) GO TO 300 | |
fnorm1 = enorm(m, wa4) | 819 | 789 | fnorm1 = enorm(m, wa4) | |
820 | 790 | |||
! compute the scaled actual reduction. | 821 | 791 | ! compute the scaled actual reduction. | |
822 | 792 | |||
actred = -one | 823 | 793 | actred = -one | |
IF (p1*fnorm1 < fnorm) actred = one - (fnorm1/fnorm)**2 | 824 | 794 | IF (p1*fnorm1 < fnorm) actred = one - (fnorm1/fnorm)**2 | |
825 | 795 | |||
! Compute the scaled predicted reduction and | 826 | 796 | ! Compute the scaled predicted reduction and | |
! the scaled directional derivative. | 827 | 797 | ! the scaled directional derivative. | |
828 | 798 | |||
DO j = 1, n | 829 | 799 | DO j = 1, n | |
wa3(j) = zero | 830 | 800 | wa3(j) = zero | |
l = ipvt(j) | 831 | 801 | l = ipvt(j) | |
temp = wa1(l) | 832 | 802 | temp = wa1(l) | |
DO i = 1, j | 833 | 803 | DO i = 1, j | |
wa3(i) = wa3(i) + fjac(i,j)*temp | 834 | 804 | wa3(i) = wa3(i) + fjac(i,j)*temp | |
END DO | 835 | 805 | END DO | |
END DO | 836 | 806 | END DO | |
temp1 = enorm(n,wa3)/fnorm | 837 | 807 | temp1 = enorm(n,wa3)/fnorm | |
temp2 = (SQRT(par)*pnorm)/fnorm | 838 | 808 | temp2 = (SQRT(par)*pnorm)/fnorm | |
prered = temp1**2 + temp2**2/p5 | 839 | 809 | prered = temp1**2 + temp2**2/p5 | |
dirder = -(temp1**2 + temp2**2) | 840 | 810 | dirder = -(temp1**2 + temp2**2) | |
841 | 811 | |||
! compute the ratio of the actual to the predicted reduction. | 842 | 812 | ! compute the ratio of the actual to the predicted reduction. | |
843 | 813 | |||
ratio = zero | 844 | 814 | ratio = zero | |
IF (prered /= zero) ratio = actred/prered | 845 | 815 | IF (prered /= zero) ratio = actred/prered | |
846 | 816 | |||
! update the step bound. | 847 | 817 | ! update the step bound. | |
848 | 818 | |||
IF (ratio <= p25) THEN | 849 | 819 | IF (ratio <= p25) THEN | |
IF (actred >= zero) temp = p5 | 850 | 820 | IF (actred >= zero) temp = p5 | |
IF (actred < zero) temp = p5*dirder/(dirder + p5*actred) | 851 | 821 | IF (actred < zero) temp = p5*dirder/(dirder + p5*actred) | |
IF (p1*fnorm1 >= fnorm .OR. temp < p1) temp = p1 | 852 | 822 | IF (p1*fnorm1 >= fnorm .OR. temp < p1) temp = p1 | |
delta = temp*MIN(delta,pnorm/p1) | 853 | 823 | delta = temp*MIN(delta,pnorm/p1) | |
par = par/temp | 854 | 824 | par = par/temp | |
ELSE | 855 | 825 | ELSE | |
IF (par /= zero .AND. ratio < p75) GO TO 260 | 856 | 826 | IF (par /= zero .AND. ratio < p75) GO TO 260 | |
delta = pnorm/p5 | 857 | 827 | delta = pnorm/p5 | |
par = p5*par | 858 | 828 | par = p5*par | |
END IF | 859 | 829 | END IF | |
860 | 830 | |||
! test for successful iteration. | 861 | 831 | ! test for successful iteration. | |
862 | 832 | |||
260 IF (ratio < p0001) GO TO 290 | 863 | 833 | 260 IF (ratio < p0001) GO TO 290 | |
864 | 834 | |||
! successful iteration. update x, fvec, and their norms. | 865 | 835 | ! successful iteration. update x, fvec, and their norms. | |
866 | 836 | |||
DO j = 1, n | 867 | 837 | DO j = 1, n | |
x(j) = wa2(j) | 868 | 838 | x(j) = wa2(j) | |
wa2(j) = diag(j)*x(j) | 869 | 839 | wa2(j) = diag(j)*x(j) | |
END DO | 870 | 840 | END DO | |
fvec(1:m) = wa4(1:m) | 871 | 841 | fvec(1:m) = wa4(1:m) | |
xnorm = enorm(n, wa2) | 872 | 842 | xnorm = enorm(n, wa2) | |
fnorm = fnorm1 | 873 | 843 | fnorm = fnorm1 | |
iter = iter + 1 | 874 | 844 | iter = iter + 1 | |
875 | 845 | |||
! tests for convergence. | 876 | 846 | ! tests for convergence. | |
877 | 847 | |||
290 IF (ABS(actred) <= ftol .AND. prered <= ftol .AND. p5*ratio <= one) info = 1 | 878 | 848 | 290 IF (ABS(actred) <= ftol .AND. prered <= ftol .AND. p5*ratio <= one) info = 1 | |
IF (delta <= xtol*xnorm) info = 2 | 879 | 849 | IF (delta <= xtol*xnorm) info = 2 | |
IF (ABS(actred) <= ftol .AND. prered <= ftol & | 880 | 850 | IF (ABS(actred) <= ftol .AND. prered <= ftol & | |
.AND. p5*ratio <= one .AND. info == 2) info = 3 | 881 | 851 | .AND. p5*ratio <= one .AND. info == 2) info = 3 | |
IF (info /= 0) GO TO 300 | 882 | 852 | IF (info /= 0) GO TO 300 | |
883 | 853 | |||
! tests for termination and stringent tolerances. | 884 | 854 | ! tests for termination and stringent tolerances. | |
885 | 855 | |||
IF (nfev >= maxfev) info = 5 | 886 | 856 | IF (nfev >= maxfev) info = 5 | |
IF (ABS(actred) <= epsmch .AND. prered <= epsmch & | 887 | 857 | IF (ABS(actred) <= epsmch .AND. prered <= epsmch & | |
.AND. p5*ratio <= one) info = 6 | 888 | 858 | .AND. p5*ratio <= one) info = 6 | |
IF (delta <= epsmch*xnorm) info = 7 | 889 | 859 | IF (delta <= epsmch*xnorm) info = 7 | |
IF (gnorm <= epsmch) info = 8 | 890 | 860 | IF (gnorm <= epsmch) info = 8 | |
IF (info /= 0) GO TO 300 | 891 | 861 | IF (info /= 0) GO TO 300 | |
892 | 862 | |||
! end of the inner loop. repeat if iteration unsuccessful. | 893 | 863 | ! end of the inner loop. repeat if iteration unsuccessful. | |
894 | 864 | |||
IF (ratio < p0001) GO TO 200 | 895 | 865 | IF (ratio < p0001) GO TO 200 | |
896 | 866 | |||
! end of the outer loop. | 897 | 867 | ! end of the outer loop. | |
898 | 868 | |||
GO TO 30 | 899 | 869 | GO TO 30 | |
900 | 870 | |||
! termination, either normal or user imposed. | 901 | 871 | ! termination, either normal or user imposed. | |
902 | 872 | |||
300 IF (iflag < 0) info = iflag | 903 | 873 | 300 IF (iflag < 0) info = iflag | |
iflag = 0 | 904 | 874 | iflag = 0 | |
IF (nprint > 0) CALL fcn(m, n, x, fvec, iflag) | 905 | 875 | IF (nprint > 0) CALL fcn(m, n, x, fvec, iflag) | |
RETURN | 906 | 876 | RETURN | |
907 | 877 | |||
! last card of subroutine lmdif. | 908 | 878 | ! last card of subroutine lmdif. | |
909 | 879 | |||
END SUBROUTINE lmdif | 910 | 880 | END SUBROUTINE lmdif | |
911 | 881 | |||
912 | 882 | |||
! ********** | 913 | 883 | ! ********** | |
914 | 884 | |||
915 | 885 | ! lmpar | ||
886 | ! MINPACK Subroutine (http://www.netlib.org/minpack) | |||
887 | ! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |||
SUBROUTINE lmpar(n, r, ipvt, diag, qtb, delta, par, x, sdiag) | 916 | 888 | SUBROUTINE lmpar(n, r, ipvt, diag, qtb, delta, par, x, sdiag) | |
917 | 889 | |||
! Code converted using TO_F90 by Alan Miller | 918 | 890 | ! Code converted using TO_F90 by Alan Miller | |
! Date: 1999-12-09 Time: 12:46:12 | 919 | 891 | ! Date: 1999-12-09 Time: 12:46:12 | |
920 | 892 | |||
! N.B. Arguments LDR, WA1 & WA2 have been removed. | 921 | 893 | ! N.B. Arguments LDR, WA1 & WA2 have been removed. | |
922 | 894 | |||
INTEGER, PARAMETER :: dp = 8 | 923 | 895 | INTEGER, PARAMETER :: dp = dp_kind | |
INTEGER, INTENT(IN) :: n | 924 | 896 | INTEGER, INTENT(IN) :: n | |
REAL (dp), INTENT(IN OUT) :: r(:,:) | 925 | 897 | REAL (dp), INTENT(IN OUT) :: r(:,:) | |
INTEGER, INTENT(IN) :: ipvt(:) | 926 | 898 | INTEGER, INTENT(IN) :: ipvt(:) | |
REAL (dp), INTENT(IN) :: diag(:) | 927 | 899 | REAL (dp), INTENT(IN) :: diag(:) | |
REAL (dp), INTENT(IN) :: qtb(:) | 928 | 900 | REAL (dp), INTENT(IN) :: qtb(:) | |
REAL (dp), INTENT(IN) :: delta | 929 | 901 | REAL (dp), INTENT(IN) :: delta | |
REAL (dp), INTENT(OUT) :: par | 930 | 902 | REAL (dp), INTENT(OUT) :: par | |
REAL (dp), INTENT(OUT) :: x(:) | 931 | 903 | REAL (dp), INTENT(OUT) :: x(:) | |
REAL (dp), INTENT(OUT) :: sdiag(:) | 932 | 904 | REAL (dp), INTENT(OUT) :: sdiag(:) | |
933 | 905 | |||
! ********** | 934 | 906 | ! ********** | |
935 | 907 | |||
! subroutine lmpar | 936 | 908 | ! subroutine lmpar | |
937 | 909 | |||
! Given an m by n matrix a, an n by n nonsingular diagonal matrix d, | 938 | 910 | ! Given an m by n matrix a, an n by n nonsingular diagonal matrix d, | |
! an m-vector b, and a positive number delta, the problem is to determine a | 939 | 911 | ! an m-vector b, and a positive number delta, the problem is to determine a | |
! value for the parameter par such that if x solves the system | 940 | 912 | ! value for the parameter par such that if x solves the system | |
941 | 913 | |||
! a*x = b , sqrt(par)*d*x = 0 , | 942 | 914 | ! a*x = b , sqrt(par)*d*x = 0 , | |
943 | 915 | |||
! in the least squares sense, and dxnorm is the euclidean | 944 | 916 | ! in the least squares sense, and dxnorm is the euclidean | |
! norm of d*x, then either par is zero and | 945 | 917 | ! norm of d*x, then either par is zero and | |
946 | 918 | |||
! (dxnorm-delta) <= 0.1*delta , | 947 | 919 | ! (dxnorm-delta) <= 0.1*delta , | |
948 | 920 | |||
! or par is positive and | 949 | 921 | ! or par is positive and | |
950 | 922 | |||
! abs(dxnorm-delta) <= 0.1*delta . | 951 | 923 | ! abs(dxnorm-delta) <= 0.1*delta . | |
952 | 924 | |||
! This subroutine completes the solution of the problem if it is provided | 953 | 925 | ! This subroutine completes the solution of the problem if it is provided | |
! with the necessary information from the r factorization, with column | 954 | 926 | ! with the necessary information from the r factorization, with column | |
! qpivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | 955 | 927 | ! qpivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |
! q has orthogonal columns, and r is an upper triangular matrix with diagonal | 956 | 928 | ! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |
! elements of nonincreasing magnitude, then lmpar expects the full upper | 957 | 929 | ! elements of nonincreasing magnitude, then lmpar expects the full upper | |
! triangle of r, the permutation matrix p, and the first n components of | 958 | 930 | ! triangle of r, the permutation matrix p, and the first n components of | |
! (q transpose)*b. | 959 | 931 | ! (q transpose)*b. | |
! On output lmpar also provides an upper triangular matrix s such that | 960 | 932 | ! On output lmpar also provides an upper triangular matrix s such that | |
961 | 933 | |||
! t t t | 962 | 934 | ! t t t | |
! p *(a *a + par*d*d)*p = s *s . | 963 | 935 | ! p *(a *a + par*d*d)*p = s *s . | |
964 | 936 | |||
! s is employed within lmpar and may be of separate interest. | 965 | 937 | ! s is employed within lmpar and may be of separate interest. | |
966 | 938 | |||
! Only a few iterations are generally needed for convergence of the algorithm. | 967 | 939 | ! Only a few iterations are generally needed for convergence of the algorithm. | |
! If, however, the limit of 10 iterations is reached, then the output par | 968 | 940 | ! If, however, the limit of 10 iterations is reached, then the output par | |
! will contain the best value obtained so far. | 969 | 941 | ! will contain the best value obtained so far. | |
970 | 942 | |||
! the subroutine statement is | 971 | 943 | ! the subroutine statement is | |
972 | 944 | |||
! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, wa1,wa2) | 973 | 945 | ! subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, wa1,wa2) | |
974 | 946 | |||
! where | 975 | 947 | ! where | |
976 | 948 | |||
! n is a positive integer input variable set to the order of r. | 977 | 949 | ! n is a positive integer input variable set to the order of r. | |
978 | 950 | |||
! r is an n by n array. on input the full upper triangle | 979 | 951 | ! r is an n by n array. on input the full upper triangle | |
! must contain the full upper triangle of the matrix r. | 980 | 952 | ! must contain the full upper triangle of the matrix r. | |
! On output the full upper triangle is unaltered, and the | 981 | 953 | ! On output the full upper triangle is unaltered, and the | |
! strict lower triangle contains the strict upper triangle | 982 | 954 | ! strict lower triangle contains the strict upper triangle | |
! (transposed) of the upper triangular matrix s. | 983 | 955 | ! (transposed) of the upper triangular matrix s. | |
984 | 956 | |||
! ldr is a positive integer input variable not less than n | 985 | 957 | ! ldr is a positive integer input variable not less than n | |
! which specifies the leading dimension of the array r. | 986 | 958 | ! which specifies the leading dimension of the array r. | |
987 | 959 | |||
! ipvt is an integer input array of length n which defines the | 988 | 960 | ! ipvt is an integer input array of length n which defines the | |
! permutation matrix p such that a*p = q*r. column j of p | 989 | 961 | ! permutation matrix p such that a*p = q*r. column j of p | |
! is column ipvt(j) of the identity matrix. | 990 | 962 | ! is column ipvt(j) of the identity matrix. | |
991 | 963 | |||
! diag is an input array of length n which must contain the | 992 | 964 | ! diag is an input array of length n which must contain the | |
! diagonal elements of the matrix d. | 993 | 965 | ! diagonal elements of the matrix d. | |
994 | 966 | |||
! qtb is an input array of length n which must contain the first | 995 | 967 | ! qtb is an input array of length n which must contain the first | |
! n elements of the vector (q transpose)*b. | 996 | 968 | ! n elements of the vector (q transpose)*b. | |
997 | 969 | |||
! delta is a positive input variable which specifies an upper | 998 | 970 | ! delta is a positive input variable which specifies an upper | |
! bound on the euclidean norm of d*x. | 999 | 971 | ! bound on the euclidean norm of d*x. | |
1000 | 972 | |||
! par is a nonnegative variable. on input par contains an | 1001 | 973 | ! par is a nonnegative variable. on input par contains an | |
! initial estimate of the levenberg-marquardt parameter. | 1002 | 974 | ! initial estimate of the levenberg-marquardt parameter. | |
! on output par contains the final estimate. | 1003 | 975 | ! on output par contains the final estimate. | |
1004 | 976 | |||
! x is an output array of length n which contains the least | 1005 | 977 | ! x is an output array of length n which contains the least | |
! squares solution of the system a*x = b, sqrt(par)*d*x = 0, | 1006 | 978 | ! squares solution of the system a*x = b, sqrt(par)*d*x = 0, | |
! for the output par. | 1007 | 979 | ! for the output par. | |
1008 | 980 | |||
! sdiag is an output array of length n which contains the | 1009 | 981 | ! sdiag is an output array of length n which contains the | |
! diagonal elements of the upper triangular matrix s. | 1010 | 982 | ! diagonal elements of the upper triangular matrix s. | |
1011 | 983 | |||
! wa1 and wa2 are work arrays of length n. | 1012 | 984 | ! wa1 and wa2 are work arrays of length n. | |
1013 | 985 | |||
! subprograms called | 1014 | 986 | ! subprograms called | |
1015 | 987 | |||
! minpack-supplied ... dpmpar,enorm,qrsolv | 1016 | 988 | ! minpack-supplied ... dpmpar,enorm,qrsolv | |
1017 | 989 | |||
! fortran-supplied ... ABS,MAX,MIN,SQRT | 1018 | 990 | ! fortran-supplied ... ABS,MAX,MIN,SQRT | |
1019 | 991 | |||
! argonne national laboratory. minpack project. march 1980. | 1020 | 992 | ! argonne national laboratory. minpack project. march 1980. | |
! burton s. garbow, kenneth e. hillstrom, jorge j. more | 1021 | 993 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1022 | 994 | |||
! ********** | 1023 | 995 | ! ********** | |
INTEGER :: iter, j, jm1, jp1, k, l, nsing | 1024 | 996 | INTEGER :: iter, j, jm1, jp1, k, l, nsing | |
REAL (dp) :: dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp | 1025 | 997 | REAL (dp) :: dxnorm, dwarf, fp, gnorm, parc, parl, paru, sum, temp | |
REAL (dp) :: wa1(n), wa2(n) | 1026 | 998 | REAL (dp) :: wa1(n), wa2(n) | |
REAL (dp), PARAMETER :: p1 = 0.1_dp, p001 = 0.001_dp, zero = 0.0_dp | 1027 | 999 | REAL (dp), PARAMETER :: p1 = 0.1_dp, p001 = 0.001_dp, zero = 0.0_dp | |
1028 | 1000 | |||
! dwarf is the smallest positive magnitude. | 1029 | 1001 | ! dwarf is the smallest positive magnitude. | |
1030 | 1002 | |||
dwarf = TINY(zero) | 1031 | 1003 | dwarf = TINY(zero) | |
1032 | 1004 | |||
! compute and store in x the gauss-newton direction. if the | 1033 | 1005 | ! compute and store in x the gauss-newton direction. if the | |
! jacobian is rank-deficient, obtain a least squares solution. | 1034 | 1006 | ! jacobian is rank-deficient, obtain a least squares solution. | |
1035 | 1007 | |||
nsing = n | 1036 | 1008 | nsing = n | |
DO j = 1, n | 1037 | 1009 | DO j = 1, n | |
wa1(j) = qtb(j) | 1038 | 1010 | wa1(j) = qtb(j) | |
IF (r(j,j) == zero .AND. nsing == n) nsing = j - 1 | 1039 | 1011 | IF (r(j,j) == zero .AND. nsing == n) nsing = j - 1 | |
IF (nsing < n) wa1(j) = zero | 1040 | 1012 | IF (nsing < n) wa1(j) = zero | |
END DO | 1041 | 1013 | END DO | |
1042 | 1014 | |||
DO k = 1, nsing | 1043 | 1015 | DO k = 1, nsing | |
j = nsing - k + 1 | 1044 | 1016 | j = nsing - k + 1 | |
wa1(j) = wa1(j)/r(j,j) | 1045 | 1017 | wa1(j) = wa1(j)/r(j,j) | |
temp = wa1(j) | 1046 | 1018 | temp = wa1(j) | |
jm1 = j - 1 | 1047 | 1019 | jm1 = j - 1 | |
wa1(1:jm1) = wa1(1:jm1) - r(1:jm1,j)*temp | 1048 | 1020 | wa1(1:jm1) = wa1(1:jm1) - r(1:jm1,j)*temp | |
END DO | 1049 | 1021 | END DO | |
1050 | 1022 | |||
DO j = 1, n | 1051 | 1023 | DO j = 1, n | |
l = ipvt(j) | 1052 | 1024 | l = ipvt(j) | |
x(l) = wa1(j) | 1053 | 1025 | x(l) = wa1(j) | |
END DO | 1054 | 1026 | END DO | |
1055 | 1027 | |||
! initialize the iteration counter. | 1056 | 1028 | ! initialize the iteration counter. | |
! evaluate the function at the origin, and test | 1057 | 1029 | ! evaluate the function at the origin, and test | |
! for acceptance of the gauss-newton direction. | 1058 | 1030 | ! for acceptance of the gauss-newton direction. | |
1059 | 1031 | |||
iter = 0 | 1060 | 1032 | iter = 0 | |
wa2(1:n) = diag(1:n)*x(1:n) | 1061 | 1033 | wa2(1:n) = diag(1:n)*x(1:n) | |
dxnorm = enorm(n, wa2) | 1062 | 1034 | dxnorm = enorm(n, wa2) | |
fp = dxnorm - delta | 1063 | 1035 | fp = dxnorm - delta | |
IF (fp <= p1*delta) GO TO 220 | 1064 | 1036 | IF (fp <= p1*delta) GO TO 220 | |
1065 | 1037 | |||
! if the jacobian is not rank deficient, the newton | 1066 | 1038 | ! if the jacobian is not rank deficient, the newton | |
! step provides a lower bound, parl, for the zero of | 1067 | 1039 | ! step provides a lower bound, parl, for the zero of | |
! the function. Otherwise set this bound to zero. | 1068 | 1040 | ! the function. Otherwise set this bound to zero. | |
1069 | 1041 | |||
parl = zero | 1070 | 1042 | parl = zero | |
IF (nsing < n) GO TO 120 | 1071 | 1043 | IF (nsing < n) GO TO 120 | |
DO j = 1, n | 1072 | 1044 | DO j = 1, n | |
l = ipvt(j) | 1073 | 1045 | l = ipvt(j) | |
wa1(j) = diag(l)*(wa2(l)/dxnorm) | 1074 | 1046 | wa1(j) = diag(l)*(wa2(l)/dxnorm) | |
END DO | 1075 | 1047 | END DO | |
DO j = 1, n | 1076 | 1048 | DO j = 1, n | |
sum = DOT_PRODUCT( r(1:j-1,j), wa1(1:j-1) ) | 1077 | 1049 | sum = DOT_PRODUCT( r(1:j-1,j), wa1(1:j-1) ) | |
wa1(j) = (wa1(j) - sum)/r(j,j) | 1078 | 1050 | wa1(j) = (wa1(j) - sum)/r(j,j) | |
END DO | 1079 | 1051 | END DO | |
temp = enorm(n,wa1) | 1080 | 1052 | temp = enorm(n,wa1) | |
parl = ((fp/delta)/temp)/temp | 1081 | 1053 | parl = ((fp/delta)/temp)/temp | |
1082 | 1054 | |||
! calculate an upper bound, paru, for the zero of the function. | 1083 | 1055 | ! calculate an upper bound, paru, for the zero of the function. | |
1084 | 1056 | |||
120 DO j = 1, n | 1085 | 1057 | 120 DO j = 1, n | |
sum = DOT_PRODUCT( r(1:j,j), qtb(1:j) ) | 1086 | 1058 | sum = DOT_PRODUCT( r(1:j,j), qtb(1:j) ) | |
l = ipvt(j) | 1087 | 1059 | l = ipvt(j) | |
wa1(j) = sum/diag(l) | 1088 | 1060 | wa1(j) = sum/diag(l) | |
END DO | 1089 | 1061 | END DO | |
gnorm = enorm(n,wa1) | 1090 | 1062 | gnorm = enorm(n,wa1) | |
paru = gnorm/delta | 1091 | 1063 | paru = gnorm/delta | |
IF (paru == zero) paru = dwarf/MIN(delta,p1) | 1092 | 1064 | IF (paru == zero) paru = dwarf/MIN(delta,p1) | |
1093 | 1065 | |||
! if the input par lies outside of the interval (parl,paru), | 1094 | 1066 | ! if the input par lies outside of the interval (parl,paru), | |
! set par to the closer endpoint. | 1095 | 1067 | ! set par to the closer endpoint. | |
1096 | 1068 | |||
par = MAX(par,parl) | 1097 | 1069 | par = MAX(par,parl) | |
par = MIN(par,paru) | 1098 | 1070 | par = MIN(par,paru) | |
IF (par == zero) par = gnorm/dxnorm | 1099 | 1071 | IF (par == zero) par = gnorm/dxnorm | |
1100 | 1072 | |||
! beginning of an iteration. | 1101 | 1073 | ! beginning of an iteration. | |
1102 | 1074 | |||
150 iter = iter + 1 | 1103 | 1075 | 150 iter = iter + 1 | |
1104 | 1076 | |||
! evaluate the function at the current value of par. | 1105 | 1077 | ! evaluate the function at the current value of par. | |
1106 | 1078 | |||
IF (par == zero) par = MAX(dwarf, p001*paru) | 1107 | 1079 | IF (par == zero) par = MAX(dwarf, p001*paru) | |
temp = SQRT(par) | 1108 | 1080 | temp = SQRT(par) | |
wa1(1:n) = temp*diag(1:n) | 1109 | 1081 | wa1(1:n) = temp*diag(1:n) | |
CALL qrsolv(n, r, ipvt, wa1, qtb, x, sdiag) | 1110 | 1082 | CALL qrsolv(n, r, ipvt, wa1, qtb, x, sdiag) | |
wa2(1:n) = diag(1:n)*x(1:n) | 1111 | 1083 | wa2(1:n) = diag(1:n)*x(1:n) | |
dxnorm = enorm(n, wa2) | 1112 | 1084 | dxnorm = enorm(n, wa2) | |
temp = fp | 1113 | 1085 | temp = fp | |
fp = dxnorm - delta | 1114 | 1086 | fp = dxnorm - delta | |
1115 | 1087 | |||
! if the function is small enough, accept the current value | 1116 | 1088 | ! if the function is small enough, accept the current value | |
! of par. also test for the exceptional cases where parl | 1117 | 1089 | ! of par. also test for the exceptional cases where parl | |
! is zero or the number of iterations has reached 10. | 1118 | 1090 | ! is zero or the number of iterations has reached 10. | |
1119 | 1091 | |||
IF (ABS(fp) <= p1*delta .OR. parl == zero .AND. fp <= temp & | 1120 | 1092 | IF (ABS(fp) <= p1*delta .OR. parl == zero .AND. fp <= temp & | |
.AND. temp < zero .OR. iter == 10) GO TO 220 | 1121 | 1093 | .AND. temp < zero .OR. iter == 10) GO TO 220 | |
1122 | 1094 | |||
! compute the newton correction. | 1123 | 1095 | ! compute the newton correction. | |
1124 | 1096 | |||
DO j = 1, n | 1125 | 1097 | DO j = 1, n | |
l = ipvt(j) | 1126 | 1098 | l = ipvt(j) | |
wa1(j) = diag(l)*(wa2(l)/dxnorm) | 1127 | 1099 | wa1(j) = diag(l)*(wa2(l)/dxnorm) | |
END DO | 1128 | 1100 | END DO | |
DO j = 1, n | 1129 | 1101 | DO j = 1, n | |
wa1(j) = wa1(j)/sdiag(j) | 1130 | 1102 | wa1(j) = wa1(j)/sdiag(j) | |
temp = wa1(j) | 1131 | 1103 | temp = wa1(j) | |
jp1 = j + 1 | 1132 | 1104 | jp1 = j + 1 | |
wa1(jp1:n) = wa1(jp1:n) - r(jp1:n,j)*temp | 1133 | 1105 | wa1(jp1:n) = wa1(jp1:n) - r(jp1:n,j)*temp | |
END DO | 1134 | 1106 | END DO | |
temp = enorm(n,wa1) | 1135 | 1107 | temp = enorm(n,wa1) | |
parc = ((fp/delta)/temp)/temp | 1136 | 1108 | parc = ((fp/delta)/temp)/temp | |
1137 | 1109 | |||
! depending on the sign of the function, update parl or paru. | 1138 | 1110 | ! depending on the sign of the function, update parl or paru. | |
1139 | 1111 | |||
IF (fp > zero) parl = MAX(parl,par) | 1140 | 1112 | IF (fp > zero) parl = MAX(parl,par) | |
IF (fp < zero) paru = MIN(paru,par) | 1141 | 1113 | IF (fp < zero) paru = MIN(paru,par) | |
1142 | 1114 | |||
! compute an improved estimate for par. | 1143 | 1115 | ! compute an improved estimate for par. | |
1144 | 1116 | |||
par = MAX(parl, par+parc) | 1145 | 1117 | par = MAX(parl, par+parc) | |
1146 | 1118 | |||
! end of an iteration. | 1147 | 1119 | ! end of an iteration. | |
1148 | 1120 | |||
GO TO 150 | 1149 | 1121 | GO TO 150 | |
1150 | 1122 | |||
! termination. | 1151 | 1123 | ! termination. | |
1152 | 1124 | |||
220 IF (iter == 0) par = zero | 1153 | 1125 | 220 IF (iter == 0) par = zero | |
RETURN | 1154 | 1126 | RETURN | |
1155 | 1127 | |||
! last card of subroutine lmpar. | 1156 | 1128 | ! last card of subroutine lmpar. | |
1157 | 1129 | |||
END SUBROUTINE lmpar | 1158 | 1130 | END SUBROUTINE lmpar | |
1159 | 1131 | |||
1160 | 1132 | |||
1161 | 1133 | ! qrfac | ||
1134 | ! MINPACK Subroutine (http://www.netlib.org/minpack) | |||
1135 | ! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |||
SUBROUTINE qrfac(m, n, a, pivot, ipvt, rdiag, acnorm) | 1162 | 1136 | SUBROUTINE qrfac(m, n, a, pivot, ipvt, rdiag, acnorm) | |
1163 | 1137 | |||
! Code converted using TO_F90 by Alan Miller | 1164 | 1138 | ! Code converted using TO_F90 by Alan Miller | |
! Date: 1999-12-09 Time: 12:46:17 | 1165 | 1139 | ! Date: 1999-12-09 Time: 12:46:17 | |
1166 | 1140 | |||
! N.B. Arguments LDA, LIPVT & WA have been removed. | 1167 | 1141 | ! N.B. Arguments LDA, LIPVT & WA have been removed. | |
INTEGER, PARAMETER :: dp = 8 | 1168 | 1142 | INTEGER, PARAMETER :: dp = dp_kind | |
INTEGER, INTENT(IN) :: m | 1169 | 1143 | INTEGER, INTENT(IN) :: m | |
INTEGER, INTENT(IN) :: n | 1170 | 1144 | INTEGER, INTENT(IN) :: n | |
REAL (dp), INTENT(IN OUT) :: a(:,:) | 1171 | 1145 | REAL (dp), INTENT(IN OUT) :: a(:,:) | |
LOGICAL, INTENT(IN) :: pivot | 1172 | 1146 | LOGICAL, INTENT(IN) :: pivot | |
INTEGER, INTENT(OUT) :: ipvt(:) | 1173 | 1147 | INTEGER, INTENT(OUT) :: ipvt(:) | |
REAL (dp), INTENT(OUT) :: rdiag(:) | 1174 | 1148 | REAL (dp), INTENT(OUT) :: rdiag(:) | |
REAL (dp), INTENT(OUT) :: acnorm(:) | 1175 | 1149 | REAL (dp), INTENT(OUT) :: acnorm(:) | |
1176 | 1150 | |||
! ********** | 1177 | 1151 | ! ********** | |
1178 | 1152 | |||
! subroutine qrfac | 1179 | 1153 | ! subroutine qrfac | |
1180 | 1154 | |||
! This subroutine uses Householder transformations with column pivoting | 1181 | 1155 | ! This subroutine uses Householder transformations with column pivoting | |
! (optional) to compute a qr factorization of the m by n matrix a. | 1182 | 1156 | ! (optional) to compute a qr factorization of the m by n matrix a. | |
! That is, qrfac determines an orthogonal matrix q, a permutation matrix p, | 1183 | 1157 | ! That is, qrfac determines an orthogonal matrix q, a permutation matrix p, | |
! and an upper trapezoidal matrix r with diagonal elements of nonincreasing | 1184 | 1158 | ! and an upper trapezoidal matrix r with diagonal elements of nonincreasing | |
! magnitude, such that a*p = q*r. The householder transformation for | 1185 | 1159 | ! magnitude, such that a*p = q*r. The householder transformation for | |
! column k, k = 1,2,...,min(m,n), is of the form | 1186 | 1160 | ! column k, k = 1,2,...,min(m,n), is of the form | |
1187 | 1161 | |||
! t | 1188 | 1162 | ! t | |
! i - (1/u(k))*u*u | 1189 | 1163 | ! i - (1/u(k))*u*u | |
1190 | 1164 | |||
! where u has zeros in the first k-1 positions. The form of this | 1191 | 1165 | ! where u has zeros in the first k-1 positions. The form of this | |
! transformation and the method of pivoting first appeared in the | 1192 | 1166 | ! transformation and the method of pivoting first appeared in the | |
! corresponding linpack subroutine. | 1193 | 1167 | ! corresponding linpack subroutine. | |
1194 | 1168 | |||
! the subroutine statement is | 1195 | 1169 | ! the subroutine statement is | |
1196 | 1170 | |||
! subroutine qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) | 1197 | 1171 | ! subroutine qrfac(m, n, a, lda, pivot, ipvt, lipvt, rdiag, acnorm, wa) | |
1198 | 1172 | |||
! N.B. 3 of these arguments have been omitted in this version. | 1199 | 1173 | ! N.B. 3 of these arguments have been omitted in this version. | |
1200 | 1174 | |||
! where | 1201 | 1175 | ! where | |
1202 | 1176 | |||
! m is a positive integer input variable set to the number of rows of a. | 1203 | 1177 | ! m is a positive integer input variable set to the number of rows of a. | |
1204 | 1178 | |||
! n is a positive integer input variable set to the number of columns of a. | 1205 | 1179 | ! n is a positive integer input variable set to the number of columns of a. | |
1206 | 1180 | |||
! a is an m by n array. On input a contains the matrix for | 1207 | 1181 | ! a is an m by n array. On input a contains the matrix for | |
! which the qr factorization is to be computed. On output | 1208 | 1182 | ! which the qr factorization is to be computed. On output | |
! the strict upper trapezoidal part of a contains the strict | 1209 | 1183 | ! the strict upper trapezoidal part of a contains the strict | |
! upper trapezoidal part of r, and the lower trapezoidal | 1210 | 1184 | ! upper trapezoidal part of r, and the lower trapezoidal | |
! part of a contains a factored form of q (the non-trivial | 1211 | 1185 | ! part of a contains a factored form of q (the non-trivial | |
! elements of the u vectors described above). | 1212 | 1186 | ! elements of the u vectors described above). | |
1213 | 1187 | |||
! lda is a positive integer input variable not less than m | 1214 | 1188 | ! lda is a positive integer input variable not less than m | |
! which specifies the leading dimension of the array a. | 1215 | 1189 | ! which specifies the leading dimension of the array a. | |
1216 | 1190 | |||
! pivot is a logical input variable. If pivot is set true, | 1217 | 1191 | ! pivot is a logical input variable. If pivot is set true, | |
! then column pivoting is enforced. If pivot is set false, | 1218 | 1192 | ! then column pivoting is enforced. If pivot is set false, | |
! then no column pivoting is done. | 1219 | 1193 | ! then no column pivoting is done. | |
1220 | 1194 | |||
! ipvt is an integer output array of length lipvt. ipvt | 1221 | 1195 | ! ipvt is an integer output array of length lipvt. ipvt | |
! defines the permutation matrix p such that a*p = q*r. | 1222 | 1196 | ! defines the permutation matrix p such that a*p = q*r. | |
! Column j of p is column ipvt(j) of the identity matrix. | 1223 | 1197 | ! Column j of p is column ipvt(j) of the identity matrix. | |
! If pivot is false, ipvt is not referenced. | 1224 | 1198 | ! If pivot is false, ipvt is not referenced. | |
1225 | 1199 | |||
! lipvt is a positive integer input variable. If pivot is false, | 1226 | 1200 | ! lipvt is a positive integer input variable. If pivot is false, | |
! then lipvt may be as small as 1. If pivot is true, then | 1227 | 1201 | ! then lipvt may be as small as 1. If pivot is true, then | |
! lipvt must be at least n. | 1228 | 1202 | ! lipvt must be at least n. | |
1229 | 1203 | |||
! rdiag is an output array of length n which contains the | 1230 | 1204 | ! rdiag is an output array of length n which contains the | |
! diagonal elements of r. | 1231 | 1205 | ! diagonal elements of r. | |
1232 | 1206 | |||
! acnorm is an output array of length n which contains the norms of the | 1233 | 1207 | ! acnorm is an output array of length n which contains the norms of the | |
! corresponding columns of the input matrix a. | 1234 | 1208 | ! corresponding columns of the input matrix a. | |
! If this information is not needed, then acnorm can coincide with rdiag. | 1235 | 1209 | ! If this information is not needed, then acnorm can coincide with rdiag. | |
1236 | 1210 | |||
! wa is a work array of length n. If pivot is false, then wa | 1237 | 1211 | ! wa is a work array of length n. If pivot is false, then wa | |
! can coincide with rdiag. | 1238 | 1212 | ! can coincide with rdiag. | |
1239 | 1213 | |||
! subprograms called | 1240 | 1214 | ! subprograms called | |
1241 | 1215 | |||
! minpack-supplied ... dpmpar,enorm | 1242 | 1216 | ! minpack-supplied ... dpmpar,enorm | |
1243 | 1217 | |||
! fortran-supplied ... MAX,SQRT,MIN | 1244 | 1218 | ! fortran-supplied ... MAX,SQRT,MIN | |
1245 | 1219 | |||
! argonne national laboratory. minpack project. march 1980. | 1246 | 1220 | ! argonne national laboratory. minpack project. march 1980. | |
! burton s. garbow, kenneth e. hillstrom, jorge j. more | 1247 | 1221 | ! burton s. garbow, kenneth e. hillstrom, jorge j. more | |
1248 | 1222 | |||
! ********** | 1249 | 1223 | ! ********** | |
INTEGER :: i, j, jp1, k, kmax, minmn | 1250 | 1224 | INTEGER :: i, j, jp1, k, kmax, minmn | |
REAL (dp) :: ajnorm, epsmch, sum, temp, wa(n) | 1251 | 1225 | REAL (dp) :: ajnorm, epsmch, sum, temp, wa(n) | |
REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp | 1252 | 1226 | REAL (dp), PARAMETER :: one = 1.0_dp, p05 = 0.05_dp, zero = 0.0_dp | |
1253 | 1227 | |||
! epsmch is the machine precision. | 1254 | 1228 | ! epsmch is the machine precision. | |
1255 | 1229 | |||
epsmch = EPSILON(zero) | 1256 | 1230 | epsmch = EPSILON(zero) | |
1257 | 1231 | |||
! compute the initial column norms and initialize several arrays. | 1258 | 1232 | ! compute the initial column norms and initialize several arrays. | |
1259 | 1233 | |||
DO j = 1, n | 1260 | 1234 | DO j = 1, n | |
acnorm(j) = enorm(m,a(1:,j)) | 1261 | 1235 | acnorm(j) = enorm(m,a(1:,j)) | |
rdiag(j) = acnorm(j) | 1262 | 1236 | rdiag(j) = acnorm(j) | |
wa(j) = rdiag(j) | 1263 | 1237 | wa(j) = rdiag(j) | |
IF (pivot) ipvt(j) = j | 1264 | 1238 | IF (pivot) ipvt(j) = j | |
END DO | 1265 | 1239 | END DO | |
1266 | 1240 | |||
! Reduce a to r with Householder transformations. | 1267 | 1241 | ! Reduce a to r with Householder transformations. | |
1268 | 1242 | |||
minmn = MIN(m,n) | 1269 | 1243 | minmn = MIN(m,n) | |
DO j = 1, minmn | 1270 | 1244 | DO j = 1, minmn | |
IF (.NOT.pivot) GO TO 40 | 1271 | 1245 | IF (.NOT.pivot) GO TO 40 | |
1272 | 1246 | |||
! Bring the column of largest norm into the pivot position. | 1273 | 1247 | ! Bring the column of largest norm into the pivot position. | |
1274 | 1248 | |||
kmax = j | 1275 | 1249 | kmax = j | |
DO k = j, n | 1276 | 1250 | DO k = j, n | |
IF (rdiag(k) > rdiag(kmax)) kmax = k | 1277 | 1251 | IF (rdiag(k) > rdiag(kmax)) kmax = k | |
END DO | 1278 | 1252 | END DO | |
IF (kmax == j) GO TO 40 | 1279 | 1253 | IF (kmax == j) GO TO 40 | |
DO i = 1, m | 1280 | 1254 | DO i = 1, m | |
temp = a(i,j) | 1281 | 1255 | temp = a(i,j) | |
a(i,j) = a(i,kmax) | 1282 | 1256 | a(i,j) = a(i,kmax) | |
a(i,kmax) = temp | 1283 | 1257 | a(i,kmax) = temp | |
END DO | 1284 | 1258 | END DO | |
rdiag(kmax) = rdiag(j) | 1285 | 1259 | rdiag(kmax) = rdiag(j) | |
wa(kmax) = wa(j) | 1286 | 1260 | wa(kmax) = wa(j) | |
k = ipvt(j) | 1287 | 1261 | k = ipvt(j) | |
ipvt(j) = ipvt(kmax) | 1288 | 1262 | ipvt(j) = ipvt(kmax) | |
ipvt(kmax) = k | 1289 | 1263 | ipvt(kmax) = k | |
1290 | 1264 | |||
! Compute the Householder transformation to reduce the | 1291 | 1265 | ! Compute the Householder transformation to reduce the | |
! j-th column of a to a multiple of the j-th unit vector. | 1292 | 1266 | ! j-th column of a to a multiple of the j-th unit vector. | |
1293 | 1267 | |||
40 ajnorm = enorm(m-j+1, a(j:,j)) | 1294 | 1268 | 40 ajnorm = enorm(m-j+1, a(j:,j)) | |
IF (ajnorm == zero) CYCLE | 1295 | 1269 | IF (ajnorm == zero) CYCLE | |
IF (a(j,j) < zero) ajnorm = -ajnorm | 1296 | 1270 | IF (a(j,j) < zero) ajnorm = -ajnorm | |
a(j:m,j) = a(j:m,j)/ajnorm | 1297 | 1271 | a(j:m,j) = a(j:m,j)/ajnorm | |
a(j,j) = a(j,j) + one | 1298 | 1272 | a(j,j) = a(j,j) + one | |
1299 | 1273 | |||
! Apply the transformation to the remaining columns and update the norms. | 1300 | 1274 | ! Apply the transformation to the remaining columns and update the norms. | |
1301 | 1275 | |||
jp1 = j + 1 | 1302 | 1276 | jp1 = j + 1 | |
DO k = jp1, n | 1303 | 1277 | DO k = jp1, n | |
sum = DOT_PRODUCT( a(j:m,j), a(j:m,k) ) | 1304 | 1278 | sum = DOT_PRODUCT( a(j:m,j), a(j:m,k) ) | |
temp = sum/a(j,j) | 1305 | 1279 | temp = sum/a(j,j) | |
a(j:m,k) = a(j:m,k) - temp*a(j:m,j) | 1306 | 1280 | a(j:m,k) = a(j:m,k) - temp*a(j:m,j) | |
IF (.NOT.pivot .OR. rdiag(k) == zero) CYCLE | 1307 | 1281 | IF (.NOT.pivot .OR. rdiag(k) == zero) CYCLE | |
temp = a(j,k)/rdiag(k) | 1308 | 1282 | temp = a(j,k)/rdiag(k) | |
rdiag(k) = rdiag(k)*SQRT(MAX(zero, one-temp**2)) | 1309 | 1283 | rdiag(k) = rdiag(k)*SQRT(MAX(zero, one-temp**2)) | |
IF (p05*(rdiag(k)/wa(k))**2 > epsmch) CYCLE | 1310 | 1284 | IF (p05*(rdiag(k)/wa(k))**2 > epsmch) CYCLE | |
rdiag(k) = enorm(m-j, a(jp1:,k)) | 1311 | 1285 | rdiag(k) = enorm(m-j, a(jp1:,k)) | |
wa(k) = rdiag(k) | 1312 | 1286 | wa(k) = rdiag(k) | |
END DO | 1313 | 1287 | END DO | |
rdiag(j) = -ajnorm | 1314 | 1288 | rdiag(j) = -ajnorm | |
END DO | 1315 | 1289 | END DO | |
RETURN | 1316 | 1290 | RETURN | |
1317 | 1291 | |||
! last card of subroutine qrfac. | 1318 | 1292 | ! last card of subroutine qrfac. | |
1319 | 1293 | |||
END SUBROUTINE qrfac | 1320 | 1294 | END SUBROUTINE qrfac | |
1321 | 1295 | |||
1322 | 1296 | |||
1323 | 1297 | ! qrsolv | ||
1298 | ! MINPACK Subroutine (http://www.netlib.org/minpack) | |||
1299 | ! Converted to fortran90 by Alan Miller amiller @ bigpond.net.au | |||
SUBROUTINE qrsolv(n, r, ipvt, diag, qtb, x, sdiag) | 1324 | 1300 | SUBROUTINE qrsolv(n, r, ipvt, diag, qtb, x, sdiag) | |
1325 | 1301 | |||
! N.B. Arguments LDR & WA have been removed. | 1326 | 1302 | ! N.B. Arguments LDR & WA have been removed. | |
INTEGER, PARAMETER :: dp = 8 | 1327 | 1303 | INTEGER, PARAMETER :: dp = dp_kind | |
INTEGER, INTENT(IN) :: n | 1328 | 1304 | INTEGER, INTENT(IN) :: n | |
REAL (dp), INTENT(IN OUT) :: r(:,:) | 1329 | 1305 | REAL (dp), INTENT(IN OUT) :: r(:,:) | |
INTEGER, INTENT(IN) :: ipvt(:) | 1330 | 1306 | INTEGER, INTENT(IN) :: ipvt(:) | |
REAL (dp), INTENT(IN) :: diag(:) | 1331 | 1307 | REAL (dp), INTENT(IN) :: diag(:) | |
REAL (dp), INTENT(IN) :: qtb(:) | 1332 | 1308 | REAL (dp), INTENT(IN) :: qtb(:) | |
REAL (dp), INTENT(OUT) :: x(:) | 1333 | 1309 | REAL (dp), INTENT(OUT) :: x(:) | |
REAL (dp), INTENT(OUT) :: sdiag(:) | 1334 | 1310 | REAL (dp), INTENT(OUT) :: sdiag(:) | |
1335 | 1311 | |||
! ********** | 1336 | 1312 | ! ********** | |
1337 | 1313 | |||
! subroutine qrsolv | 1338 | 1314 | ! subroutine qrsolv | |
1339 | 1315 | |||
! Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b, | 1340 | 1316 | ! Given an m by n matrix a, an n by n diagonal matrix d, and an m-vector b, | |
! the problem is to determine an x which solves the system | 1341 | 1317 | ! the problem is to determine an x which solves the system | |
1342 | 1318 | |||
! a*x = b , d*x = 0 , | 1343 | 1319 | ! a*x = b , d*x = 0 , | |
1344 | 1320 | |||
! in the least squares sense. | 1345 | 1321 | ! in the least squares sense. | |
1346 | 1322 | |||
! This subroutine completes the solution of the problem if it is provided | 1347 | 1323 | ! This subroutine completes the solution of the problem if it is provided | |
! with the necessary information from the qr factorization, with column | 1348 | 1324 | ! with the necessary information from the qr factorization, with column | |
! pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | 1349 | 1325 | ! pivoting, of a. That is, if a*p = q*r, where p is a permutation matrix, | |
! q has orthogonal columns, and r is an upper triangular matrix with diagonal | 1350 | 1326 | ! q has orthogonal columns, and r is an upper triangular matrix with diagonal | |
! elements of nonincreasing magnitude, then qrsolv expects the full upper | 1351 | 1327 | ! elements of nonincreasing magnitude, then qrsolv expects the full upper | |
! triangle of r, the permutation matrix p, and the first n components of | 1352 | 1328 | ! triangle of r, the permutation matrix p, and the first n components of | |
! (q transpose)*b. The system a*x = b, d*x = 0, is then equivalent to | 1353 | 1329 | ! (q transpose)*b. The system a*x = b, d*x = 0, is then equivalent to | |
1354 | 1330 | |||
! t t | 1355 | 1331 | ! t t | |
! r*z = q *b , p *d*p*z = 0 , | 1356 | 1332 | ! r*z = q *b , p *d*p*z = 0 , | |
1357 | 1333 | |||
! where x = p*z. if this system does not have full rank, | 1358 | 1334 | ! where x = p*z. if this system does not have full rank, |