Commit 0c3098aed95e9e568f02887c9ae6145422e8d857

Authored by cwaterkeyn
1 parent e711bb807c

ChW 02/2010 for type definitions and dcmplx replacements in accordance to ANSI

git-svn-id: https://lxsd.femto-st.fr/svn/fvn@69 b657c933-2333-4658-acf2-d3c7c2708721

Showing 27 changed files with 107 additions and 100 deletions Inline Diff

complex(8) function z0lgmc (z) 1 1 complex(kind(1.d0)) function z0lgmc (z)
implicit none 2 2 implicit none
c august 1980 edition. w. fullerton c3, los alamos scientific lab. 3 3 c august 1980 edition. w. fullerton c3, los alamos scientific lab.
c 4 4 c
c evaluate (z+0.5)*clog((z+1.0)/z) - 1.0 with relative error accuracy. 5 5 c evaluate (z+0.5)*clog((z+1.0)/z) - 1.0 with relative error accuracy.
c let q = 1.0/z so that 6 6 c let q = 1.0/z so that
c (z+0.5)*clog(1+1/z) - 1 = (z+0.5)*(clog(1+q) - q + q*q/2) - q*q/4 7 7 c (z+0.5)*clog(1+1/z) - 1 = (z+0.5)*(clog(1+q) - q + q*q/2) - q*q/4
c = (z+0.5)*q**3*c9ln2r(q) - q**2/4, 8 8 c = (z+0.5)*q**3*c9ln2r(q) - q**2/4,
c where c9ln2r is (clog(1+q) - q + 0.5*q**2) / q**3. 9 9 c where c9ln2r is (clog(1+q) - q + 0.5*q**2) / q**3.
c 10 10 c
complex(8) z, q, z9ln2r 11 11 complex(kind(1.d0)) z, q, z9ln2r
real(8) zabsz 12 12 real(kind(1.d0)) zabsz
13 13
external z9ln2r 14 14 external z9ln2r
c 15 15 c
zabsz = abs(z) 16 16 zabsz = abs(z)
c 17 17 c
q = 1.0/z 18 18 q = 1.0/z
if (zabsz.le.1.23) z0lgmc = (z+0.5)*log(1.0+q) - 1.0 19 19 if (zabsz.le.1.23) z0lgmc = (z+0.5)*log(1.0+q) - 1.0
if (zabsz.gt.1.23) z0lgmc = ((1.+.5*q)*z9ln2r(q) - .25) * q**2 20 20 if (zabsz.gt.1.23) z0lgmc = ((1.+.5*q)*z9ln2r(q) - .25) * q**2
c 21 21 c
return 22 22 return
end 23 23 end
24 24
complex(8) function z8lgmc (zin) 1 1 complex(kind(1.d0)) function z8lgmc (zin)
implicit none 2 2 implicit none
c may 1978 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c may 1978 edition. w. fullerton, c3, los alamos scientific lab.
c 4 4 c
c compute the log gamma correction term for almost all z so that 5 5 c compute the log gamma correction term for almost all z so that
c clog(cgamma(z)) = 0.5*alog(2.*pi) + (z-0.5)*clog(z) - z + c8lgmc(z) 6 6 c clog(cgamma(z)) = 0.5*alog(2.*pi) + (z-0.5)*clog(z) - z + c8lgmc(z)
c this routine is valid even when real(z) is negative or when cabs(z) 7 7 c this routine is valid even when real(z) is negative or when cabs(z)
c is small. 8 8 c is small.
c when real(z) is negative, c8lgmc merely returns a correction which 9 9 c when real(z) is negative, c8lgmc merely returns a correction which
c may be wrong by a multiple of 2*pi*i. 10 10 c may be wrong by a multiple of 2*pi*i.
c 11 11 c
complex(8) zin, z, corr, z9lgmc, z0lgmc, zexp, zlnrel 12 12 complex(kind(1.d0)) zin, z, corr, z9lgmc, z0lgmc, zexp, zlnrel
real(8) d1mach,pi,bound,sqeps,eps,x,y,absz,test 13 13 real(kind(1.d0)) d1mach,pi,bound,sqeps,eps,x,y,absz,test
integer nterm,n,i,irold,ir 14 14 integer nterm,n,i,irold,ir
15 c complex(kind(1.d0)) tmp_arg
external z0lgmc, z9lgmc, zlnrel, 15 16 external z0lgmc, z9lgmc, zlnrel,
1 d1mach 16 17 1 d1mach
data pi / 3.1415926535 8979324d0 / 17 18 data pi / 3.1415926535 8979324d0 /
data bound, sqeps, eps / 3*0.0 / 18 19 data bound, sqeps, eps / 3*0.0 /
c 19 20 c
if (bound.ne.0.0) go to 10 20 21 if (bound.ne.0.0) go to 10
nterm = -0.30*log(d1mach(3)) 21 22 nterm = -0.30*log(d1mach(3))
bound = 0.1170*dble(nterm)* 22 23 bound = 0.1170*dble(nterm)*
1 (0.1*d1mach(3))**(-1.0/(2.0*dble(nterm)-1.0)) 23 24 1 (0.1*d1mach(3))**(-1.0/(2.0*dble(nterm)-1.0))
eps = 10.0*d1mach(4) 24 25 eps = 10.0*d1mach(4)
sqeps = sqrt (d1mach(4)) 25 26 sqeps = sqrt (d1mach(4))
c 26 27 c
10 z = zin 27 28 10 z = zin
x = real(z) 28 29 x = real(z)
y = aimag(z) 29 30 y = aimag(z)
if (x.lt.0.0) z = -z 30 31 if (x.lt.0.0) z = -z
c 31 32 c
corr = (0.0, 0.0) 32 33 corr = (0.0, 0.0)
if (x.gt.bound .or. abs(y).ge.bound) go to 30 33 34 if (x.gt.bound .or. abs(y).ge.bound) go to 30
absz = abs(z) 34 35 absz = abs(z)
if (absz.ge.bound) go to 30 35 36 if (absz.ge.bound) go to 30
c 36 37 c
if (x.eq.0.0 .and. y.eq.0.0) call seteru ( 37 38 if (x.eq.0.0 .and. y.eq.0.0) call seteru (
1 57hz8lgmc log gamma correction term is infinite for z = 0.0, 38 39 1 57hz8lgmc log gamma correction term is infinite for z = 0.0,
2 57, 3, 2) 39 40 2 57, 3, 2)
c 40 41 c
n = sqrt (bound**2-y**2) - abs(x) + 1.0 41 42 n = sqrt (bound**2-y**2) - abs(x) + 1.0
do 20 i=1,n 42 43 do 20 i=1,n
corr = corr + z0lgmc(z) 43 44 corr = corr + z0lgmc(z)
z = z + 1.0 44 45 z = z + 1.0
20 continue 45 46 20 continue
c 46 47 c
30 z8lgmc = z9lgmc(z) + corr 47 48 30 z8lgmc = z9lgmc(z) + corr
if (x.gt.0.0) return 48 49 if (x.gt.0.0) return
c 49 50 c
call entsrc (irold, 1) 50 51 call entsrc (irold, 1)
test = 1.0 51 52 test = 1.0
if (x.lt.(-0.5)) test = abs ((z-aint(x-0.5))/z) 52 53 if (x.lt.(-0.5)) test = abs ((z-aint(x-0.5))/z)
if (test.lt.eps) call seteru ( 53 54 if (test.lt.eps) call seteru (
1 31hz8lgmc z is a negative integer, 31, 2, 2) 54 55 1 31hz8lgmc z is a negative integer, 31, 2, 2)
c 55 56 c
z = zin 56 57 z = zin
if (y.lt.0.0) z = conjg(z) 57 58 if (y.lt.0.0) z = conjg(z)
corr = -dcmplx(0.0,pi) + zlnrel(-exp(dcmplx(0.,2.*pi)*z)) 58 59 c tmp_arg = -exp(cmplx(0.,2.*pi,kind(1.d0))*z)
60 corr = -cmplx(0.0,pi,kind(1.d0)) +
61 1 zlnrel(-exp(cmplx(0.,2.*pi,kind(1.d0))*z))
if (y.lt.0.0) corr = conjg(corr) 59 62 if (y.lt.0.0) corr = conjg(corr)
c 60 63 c
z8lgmc = corr - z8lgmc 61 64 z8lgmc = corr - z8lgmc
c 62 65 c
call erroff 63 66 call erroff
call entsrc (ir, irold) 64 67 call entsrc (ir, irold)
if (test.lt.sqeps) call seteru ( 63hc8lgmc answer lt half precisi 65 68 if (test.lt.sqeps) call seteru ( 63hc8lgmc answer lt half precisi
1on, z too near a negative integer, 63, 1, 1) 66 69 1on, z too near a negative integer, 63, 1, 1)
c 67 70 c
return 68 71 return
end 69 72 end
70 73
complex(8) function z9lgmc (zin) 1 1 complex(kind(1.d0)) function z9lgmc (zin)
implicit none 2 2 implicit none
c april 1978 edition. w. fullerton c3, los alamos scientific lab. 3 3 c april 1978 edition. w. fullerton c3, los alamos scientific lab.
c 4 4 c
c compute the log gamma correction term for large cabs(z) when real(z) 5 5 c compute the log gamma correction term for large cabs(z) when real(z)
c .ge. 0.0 and for large abs(aimag(y)) when real(z) .lt. 0.0. we find 6 6 c .ge. 0.0 and for large abs(aimag(y)) when real(z) .lt. 0.0. we find
c c9lgmc so that 7 7 c c9lgmc so that
c clog(cgamma(z)) = 0.5*alog(2.*pi) + (z-0.5)*clog(z) - z + c9lgmc(z). 8 8 c clog(cgamma(z)) = 0.5*alog(2.*pi) + (z-0.5)*clog(z) - z + c9lgmc(z).
c 9 9 c
complex(8) zin, z, z2inv 10 10 complex(kind(1.d0)) zin, z, z2inv
real(8) d1mach,bern,xbig,xmax,bound,cabsz,x,y 11 11 real(kind(1.d0)) d1mach,bern,xbig,xmax,bound,cabsz,x,y
integer nterm,i,ndx 12 12 integer nterm,i,ndx
external d1mach 13 13 external d1mach
c 14 14 c
dimension bern(11) 15 15 dimension bern(11)
data bern( 1) / .08333333333 3333333e0 / 16 16 data bern( 1) / .08333333333 3333333e0 /
data bern( 2) / -.002777777777 7777778e0 / 17 17 data bern( 2) / -.002777777777 7777778e0 /
data bern( 3) / .0007936507936 5079365e0 / 18 18 data bern( 3) / .0007936507936 5079365e0 /
data bern( 4) / -.0005952380952 3809524e0 / 19 19 data bern( 4) / -.0005952380952 3809524e0 /
data bern( 5) / .0008417508417 5084175e0 / 20 20 data bern( 5) / .0008417508417 5084175e0 /
data bern( 6) / -.001917526917 5269175e0 / 21 21 data bern( 6) / -.001917526917 5269175e0 /
data bern( 7) / .006410256410 2564103e0 / 22 22 data bern( 7) / .006410256410 2564103e0 /
data bern( 8) / -.02955065359 4771242e0 / 23 23 data bern( 8) / -.02955065359 4771242e0 /
data bern( 9) / .1796443723 6883057e0 / 24 24 data bern( 9) / .1796443723 6883057e0 /
data bern(10) / -1.392432216 9059011e0 / 25 25 data bern(10) / -1.392432216 9059011e0 /
data bern(11) / 13.40286404 4168392e0 / 26 26 data bern(11) / 13.40286404 4168392e0 /
c 27 27 c
data nterm, bound, xbig, xmax / 0, 3*0.0 / 28 28 data nterm, bound, xbig, xmax / 0, 3*0.0 /
c 29 29 c
if (nterm.ne.0) go to 10 30 30 if (nterm.ne.0) go to 10
c 31 31 c
nterm = -0.30*log(d1mach(3)) 32 32 nterm = -0.30*log(d1mach(3))
bound = 0.1170*dble(nterm)* 33 33 bound = 0.1170*dble(nterm)*
1 (0.1*d1mach(3))**(-1./(2.*dble(nterm)-1.)) 34 34 1 (0.1*d1mach(3))**(-1./(2.*dble(nterm)-1.))
xbig = 1.0/sqrt(d1mach(3)) 35 35 xbig = 1.0/sqrt(d1mach(3))
xmax = exp (min(log(d1mach(2)/12.0), -log(12.*d1mach(1))) ) 36 36 xmax = exp (min(log(d1mach(2)/12.0), -log(12.*d1mach(1))) )
c 37 37 c
10 z = zin 38 38 10 z = zin
x = real (z) 39 39 x = real (z)
y = aimag(z) 40 40 y = aimag(z)
cabsz = abs(z) 41 41 cabsz = abs(z)
c 42 42 c
if (x.lt.0.0 .and. abs(y).lt.bound) call seteru ( 69hc9lgmc c9lgm 43 43 if (x.lt.0.0 .and. abs(y).lt.bound) call seteru ( 69hc9lgmc c9lgm
1c not valid for negative real(z) and small abs(aimag(z)), 69, 2,2) 44 44 1c not valid for negative real(z) and small abs(aimag(z)), 69, 2,2)
if (cabsz.lt.bound) call seteru ( 45 45 if (cabsz.lt.bound) call seteru (
1 42hz9lgmc z9lgmc not valid for small cabs(z), 42, 3, 2) 46 46 1 42hz9lgmc z9lgmc not valid for small cabs(z), 42, 3, 2)
c 47 47 c
if (cabsz.ge.xmax) go to 50 48 48 if (cabsz.ge.xmax) go to 50
c 49 49 c
if (cabsz.ge.xbig) z9lgmc = 1.0/(12.0*z) 50 50 if (cabsz.ge.xbig) z9lgmc = 1.0/(12.0*z)
if (cabsz.ge.xbig) return 51 51 if (cabsz.ge.xbig) return
c 52 52 c
z2inv = 1.0/z**2 53 53 z2inv = 1.0/z**2
z9lgmc = (0.0, 0.0) 54 54 z9lgmc = (0.0, 0.0)
do 40 i=1,nterm 55 55 do 40 i=1,nterm
ndx = nterm + 1 - i 56 56 ndx = nterm + 1 - i
z9lgmc = bern(ndx) + z9lgmc*z2inv 57 57 z9lgmc = bern(ndx) + z9lgmc*z2inv
40 continue 58 58 40 continue
c 59 59 c
z9lgmc = z9lgmc/z 60 60 z9lgmc = z9lgmc/z
return 61 61 return
c 62 62 c
50 z9lgmc = (0.0, 0.0) 63 63 50 z9lgmc = (0.0, 0.0)
call seteru (34hz9lgmc z so big z9lgmc underflows, 34, 1, 0) 64 64 call seteru (34hz9lgmc z so big z9lgmc underflows, 34, 1, 0)
return 65 65 return
c 66 66 c
end 67 67 end
68 68
complex(8) function z9ln2r (z) 1 1 complex(kind(1.d0)) function z9ln2r (z)
implicit none 2 2 implicit none
c april 1978 edition. w. fullerton c3, los alamos scientific lab. 3 3 c april 1978 edition. w. fullerton c3, los alamos scientific lab.
c 4 4 c
c evaluate clog(1+z) from 2-nd order with relative error accuracy so 5 5 c evaluate clog(1+z) from 2-nd order with relative error accuracy so
c that clog(1+z) = z - z**2/2 + z**3*c9ln2r(z). 6 6 c that clog(1+z) = z - z**2/2 + z**3*c9ln2r(z).
c 7 7 c
c now clog(1+z) = 0.5*alog(1+2*x+cabs(z)**2) + i*carg(1+z), 8 8 c now clog(1+z) = 0.5*alog(1+2*x+cabs(z)**2) + i*carg(1+z),
c where x = real(z) and y = aimag(z). 9 9 c where x = real(z) and y = aimag(z).
c we find 10 10 c we find
c z**3 * c9ln2r(z) = -x*cabs(z)**2 - 0.25*cabs(z)**4 11 11 c z**3 * c9ln2r(z) = -x*cabs(z)**2 - 0.25*cabs(z)**4
c + (2*x+cabs(z)**2)**3 * r9ln2r(2*x+cabs(z)**2) 12 12 c + (2*x+cabs(z)**2)**3 * r9ln2r(2*x+cabs(z)**2)
c + i * (carg(1+z) + (x-1)*y) 13 13 c + i * (carg(1+z) + (x-1)*y)
c the imaginary part must be evaluated carefully as 14 14 c the imaginary part must be evaluated carefully as
c (atan(y/(1+x)) - y/(1+x)) + y/(1+x) - (1-x)*y 15 15 c (atan(y/(1+x)) - y/(1+x)) + y/(1+x) - (1-x)*y
c = (y/(1+x))**3 * r9atn1(y/(1+x)) + x**2*y/(1+x) 16 16 c = (y/(1+x))**3 * r9atn1(y/(1+x)) + x**2*y/(1+x)
c 17 17 c
c now we divide through by z**3 carefully. write 18 18 c now we divide through by z**3 carefully. write
c 1/z**3 = (x-i*y)/cabs(z)**3 * (1/cabs(z)**3) 19 19 c 1/z**3 = (x-i*y)/cabs(z)**3 * (1/cabs(z)**3)
c then c9ln2r(z) = ((x-i*y)/cabs(z))**3 * (-x/cabs(z) - cabs(z)/4 20 20 c then c9ln2r(z) = ((x-i*y)/cabs(z))**3 * (-x/cabs(z) - cabs(z)/4
c + 0.5*((2*x+cabs(z)**2)/cabs(z))**3 * r9ln2r(2*x+cabs(z)**2) 21 21 c + 0.5*((2*x+cabs(z)**2)/cabs(z))**3 * r9ln2r(2*x+cabs(z)**2)
c + i*y/(cabs(z)*(1+x)) * ((x/cabs(z))**2 + 22 22 c + i*y/(cabs(z)*(1+x)) * ((x/cabs(z))**2 +
c + (y/(cabs(z)*(1+x)))**2 * r9atn1(y/(1+x)) ) ) 23 23 c + (y/(cabs(z)*(1+x)))**2 * r9atn1(y/(1+x)) ) )
c 24 24 c
c if we let xz = x/cabs(z) and yz = y/cabs(z) we may write 25 25 c if we let xz = x/cabs(z) and yz = y/cabs(z) we may write
c c9ln2r(z) = (xz-i*yz)**3 * (-xz - cabs(z)/4 26 26 c c9ln2r(z) = (xz-i*yz)**3 * (-xz - cabs(z)/4
c + 0.5*(2*xz+cabs(z))**3 * r9ln2r(2*x+cabs(z)**2) 27 27 c + 0.5*(2*xz+cabs(z))**3 * r9ln2r(2*x+cabs(z)**2)
c + i*yz/(1+x) * (xz**2 + (yz/(1+x))**2*r9atn1(y/(1+x)) )) 28 28 c + i*yz/(1+x) * (xz**2 + (yz/(1+x))**2*r9atn1(y/(1+x)) ))
c 29 29 c
complex(8) z 30 30 complex(kind(1.d0)) z
real(8) x,y,xz,yz,cabsz,d9ln2r,d9atn1,arg,rpart,aipart,y1x 31 31 real(kind(1.d0)) x,y,xz,yz,cabsz,d9ln2r,d9atn1,arg,rpart,aipart,
32 1 y1x
32 33
external d9atn1, d9ln2r 33 34 external d9atn1, d9ln2r
c 34 35 c
x = real (z) 35 36 x = real (z)
y = aimag (z) 36 37 y = aimag (z)
c 37 38 c
cabsz = abs(z) 38 39 cabsz = abs(z)
if (cabsz.gt.0.8125) go to 20 39 40 if (cabsz.gt.0.8125) go to 20
c 40 41 c
z9ln2r = dcmplx (1.0/3.0, 0.0) 41 42 z9ln2r = cmplx (1.0/3.0, 0.0, kind(1.d0))
if (cabsz.eq.0.0) return 42 43 if (cabsz.eq.0.0) return
c 43 44 c
xz = x/cabsz 44 45 xz = x/cabsz
yz = y/cabsz 45 46 yz = y/cabsz
c 46 47 c
arg = 2.0*xz + cabsz 47 48 arg = 2.0*xz + cabsz
rpart = 0.5*arg**3*d9ln2r(cabsz*arg) - xz - 0.25*cabsz 48 49 rpart = 0.5*arg**3*d9ln2r(cabsz*arg) - xz - 0.25*cabsz
y1x = yz/(1.0+x) 49 50 y1x = yz/(1.0+x)
aipart = y1x * (xz**2 + y1x**2*d9atn1(cabsz*y1x) ) 50 51 aipart = y1x * (xz**2 + y1x**2*d9atn1(cabsz*y1x) )
c 51 52 c
z9ln2r = dcmplx(xz,-yz)**3 * dcmplx(rpart,aipart) 52 53 z9ln2r = cmplx(xz,-yz,kind(1.d0))**3 *
54 1 cmplx(rpart,aipart,kind(1.d0))
return 53 55 return
c 54 56 c
20 z9ln2r = (log(1.0+z) - z*(1.0-0.5*z)) / z**3 55 57 20 z9ln2r = (log(1.0+z) - z*(1.0-0.5*z)) / z**3
return 56 58 return
c 57 59 c
end 58 60 end
59 61
complex(8) function zacos (z) 1 1 complex(kind(1.d0)) function zacos (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z, zasin 4 4 complex(kind(1.d0)) z, zasin
real(8) pi2 5 5 real(kind(1.d0)) pi2
external zasin 6 6 external zasin
data pi2 /1.5707963267 9489661923d0/ 7 7 data pi2 /1.5707963267 9489661923d0/
c 8 8 c
zacos = pi2 - zasin (z) 9 9 zacos = pi2 - zasin (z)
c 10 10 c
return 11 11 return
end 12 12 end
13 13
complex(8) function zacosh (z) 1 1 complex(kind(1.d0)) function zacosh (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z, ci, zacos 4 4 complex(kind(1.d0)) z, ci, zacos
external zacos 5 5 external zacos
data ci /(0.d0,1.d0)/ 6 6 data ci /(0.d0,1.d0)/
c 7 7 c
zacosh = ci*zacos(z) 8 8 zacosh = ci*zacos(z)
c 9 9 c
return 10 10 return
end 11 11 end
12 12
real(8) function zarg (z) 1 1 real(kind(1.d0)) function zarg (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z 4 4 complex(kind(1.d0)) z
5 5
c 6 6 c
zarg = 0.0 7 7 zarg = 0.0
if (real(z).ne.0. .or. aimag(z).ne.0.) zarg = 8 8 if (real(z).ne.0. .or. aimag(z).ne.0.) zarg =
1 atan2 (aimag(z), real(z)) 9 9 1 atan2 (aimag(z), real(z))
c 10 10 c
return 11 11 return
end 12 12 end
13 13
complex(8) function zasin (zinp) 1 1 complex(kind(1.d0)) function zasin (zinp)
implicit none 2 2 implicit none
c august 1980 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c august 1980 edition. w. fullerton, c3, los alamos scientific lab.
c 4 4 c
c ref -- l. l. pennisi, elements of complex variables, holt, rinehart 5 5 c ref -- l. l. pennisi, elements of complex variables, holt, rinehart
c and winston, 1963. page 126. 6 6 c and winston, 1963. page 126.
c 7 7 c
complex(8) zinp, z, z2, sqzp1, ci 8 8 complex(kind(1.d0)) zinp, z, z2, sqzp1, ci
real(8) d1mach,pi2,pi,rmin,r 9 9 real(kind(1.d0)) d1mach,pi2,pi,rmin,r
integer nterms,i,twoi 10 10 integer nterms,i,twoi
external d1mach 11 11 external d1mach
12 12
data pi2 /1.5707963267 9489661923d0/ 13 13 data pi2 /1.5707963267 9489661923d0/
data pi /3.1415926535 8979324d0/ 14 14 data pi /3.1415926535 8979324d0/
data ci /(0.,1.)/ 15 15 data ci /(0.,1.)/
data nterms, rmin / 0, 0.0 / 16 16 data nterms, rmin / 0, 0.0 /
c 17 17 c
if (nterms.ne.0) go to 10 18 18 if (nterms.ne.0) go to 10
c nterms = alog(eps)/alog(rmax) where rmax = 0.1 19 19 c nterms = alog(eps)/alog(rmax) where rmax = 0.1
nterms = -0.4343*log(d1mach(3)) + 1.0 20 20 nterms = -0.4343*log(d1mach(3)) + 1.0
rmin = sqrt (6.0*d1mach(3)) 21 21 rmin = sqrt (6.0*d1mach(3))
c 22 22 c
10 z = zinp 23 23 10 z = zinp
r = abs (z) 24 24 r = abs (z)
if (r.gt.0.1) go to 30 25 25 if (r.gt.0.1) go to 30
c 26 26 c
zasin = z 27 27 zasin = z
if (r.lt.rmin) return 28 28 if (r.lt.rmin) return
c 29 29 c
zasin = (0.0, 0.0) 30 30 zasin = (0.0, 0.0)
z2 = z*z 31 31 z2 = z*z
do 20 i=1,nterms 32 32 do 20 i=1,nterms
twoi = 2*(nterms-i) + 1 33 33 twoi = 2*(nterms-i) + 1
zasin = 1.0/twoi + twoi*zasin*z2/(twoi+1.0) 34 34 zasin = 1.0/twoi + twoi*zasin*z2/(twoi+1.0)
20 continue 35 35 20 continue
zasin = z*zasin 36 36 zasin = z*zasin
return 37 37 return
c 38 38 c
30 if (real(zinp).lt.0.0) z = -zinp 39 39 30 if (real(zinp).lt.0.0) z = -zinp
c 40 40 c
sqzp1 = sqrt (z+1.0) 41 41 sqzp1 = sqrt (z+1.0)
if (aimag(sqzp1).lt.0.) sqzp1 = -sqzp1 42 42 if (aimag(sqzp1).lt.0.) sqzp1 = -sqzp1
zasin = pi2 - ci * log (z + sqzp1*sqrt(z-1.0)) 43 43 zasin = pi2 - ci * log (z + sqzp1*sqrt(z-1.0))
c 44 44 c
if (real(zasin).gt.pi2) zasin = pi - zasin 45 45 if (real(zasin).gt.pi2) zasin = pi - zasin
if (real(zasin).le.(-pi2)) zasin = -pi - zasin 46 46 if (real(zasin).le.(-pi2)) zasin = -pi - zasin
if (real(zinp).lt.0.) zasin = -zasin 47 47 if (real(zinp).lt.0.) zasin = -zasin
c 48 48 c
return 49 49 return
end 50 50 end
51 51
complex(8) function zasinh (z) 1 1 complex(kind(1.d0)) function zasinh (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex z, ci, zasin 4 4 complex z, ci, zasin
external zasin 5 5 external zasin
data ci /(0.,1.)/ 6 6 data ci /(0.,1.)/
c 7 7 c
zasinh = -ci*zasin (ci*z) 8 8 zasinh = -ci*zasin (ci*z)
c 9 9 c
return 10 10 return
end 11 11 end
12 12
complex(8) function zatan (z) 1 1 complex(kind(1.d0)) function zatan (z)
implicit none 2 2 implicit none
c jan 1984 edition. w. fullerton, los alamos scientific lab. 3 3 c jan 1984 edition. w. fullerton, los alamos scientific lab.
c 4 4 c
complex(8) z, z2 5 5 complex(kind(1.d0)) z, z2
real(8) pi2,sqeps,rmin,rmax,r2sml,r,d1mach,x,y,r2,xans,yans 6 6 real(kind(1.d0)) pi2,sqeps,rmin,rmax,r2sml,r,x,y,r2,xans,yans
external d1mach 7 7 real(kind(1.d0)) d1mach
integer nterms,i,twoi 8 8 integer nterms,i,twoi
data pi2 /1.5707963267 9489661923d0 / 9 9 data pi2 /1.5707963267 9489661923d0 /
data nterms, sqeps, rmin, rmax, r2sml / 0, 4*0.0 / 10 10 data nterms, sqeps, rmin, rmax, r2sml / 0, 4*0.0d0 /
11 external d1mach
12
c 11 13 c
if (nterms.ne.0) go to 10 12 14 if (nterms.ne.0) go to 10
c nterms = alog(eps)/alog(rbnd) where rbnd = 0.1 13 15 c nterms = alog(eps)/alog(rbnd) where rbnd = 0.1
nterms = -0.4343*log(d1mach(3)) + 1.0 14 16 nterms = -0.4343*log(d1mach(3)) + 1.0
sqeps = sqrt (d1mach(4)) 15 17 sqeps = sqrt (d1mach(4))
rmin = sqrt (3.0*d1mach(3)) 16 18 rmin = sqrt (3.0*d1mach(3))
rmax = 1.0/d1mach(3) 17 19 rmax = 1.0/d1mach(3)
r2sml = 10.0*d1mach (4) 18 20 r2sml = 10.0*d1mach (4)
c 19 21 c
10 r = abs(z) 20 22 10 r = abs(z)
if (r.gt.0.1) go to 30 21 23 if (r.gt.0.1) go to 30
c 22 24 c
zatan = z 23 25 zatan = z
if (r.lt.rmin) return 24 26 if (r.lt.rmin) return
c 25 27 c
zatan = (0.0, 0.0) 26 28 zatan = (0.0, 0.0)
z2 = z*z 27 29 z2 = z*z
do 20 i=1,nterms 28 30 do 20 i=1,nterms
twoi = 2*(nterms-i) + 1 29 31 twoi = 2*(nterms-i) + 1
zatan = 1.0/twoi - z2*zatan 30 32 zatan = 1.0/twoi - z2*zatan
20 continue 31 33 20 continue
zatan = z*zatan 32 34 zatan = z*zatan
return 33 35 return
c 34 36 c
30 if (r.gt.rmax) go to 50 35 37 30 if (r.gt.rmax) go to 50
x = real(z) 36 38 x = real(z)
y = aimag(z) 37 39 y = aimag(z)
r2 = r*r 38 40 r2 = r*r
c 39 41 c
if (abs(r2-1.0).gt.sqeps) go to 40 40 42 if (abs(r2-1.0).gt.sqeps) go to 40
if (r2+2.0*y+1.0.lt.r2sml .or. r2-2.0*y+1.0.lt.r2sml) call 41 43 if (r2+2.0*y+1.0.lt.r2sml .or. r2-2.0*y+1.0.lt.r2sml) call
1 seteru ( 42 44 1 seteru (
2 55hzatan no precision because z is too close to +i or -i, 43 45 2 55hzatan no precision because z is too close to +i or -i,
3 55, 2, 2) 44 46 3 55, 2, 2)
if (abs(dcmplx(1.0,0.0)+z*z).lt.sqeps) call seteru ( 45 47 if (abs(cmplx(1.0d0,0.0d0,kind(1.d0))+z*z).lt.sqeps) call seteru (
1 50hzatan answer lt half precision, z**2 close to -1, 50, 1, 1) 46 48 1 50hzatan answer lt half precision, z**2 close to -1, 50, 1, 1)
c 47 49 c
40 xans = 0.5*atan2 (2.0*x, 1.0-r2) 48 50 40 xans = 0.5*atan2 (2.0*x, 1.0-r2)
yans = 0.25*log((r2+2.0*y+1.0)/(r2-2.0*y+1.0)) 49 51 yans = 0.25*log((r2+2.0*y+1.0)/(r2-2.0*y+1.0))
zatan = dcmplx (xans, yans) 50 52 zatan = cmplx (xans, yans, kind(1.d0))
return 51 53 return
c 52 54 c
50 zatan = dcmplx (pi2, 0.0) 53 55 50 zatan = cmplx (pi2, 0.0d0, kind(1.d0))
if (real(z).lt.0.0) zatan = dcmplx (-pi2, 0.0) 54 56 if (real(z).lt.0.0) zatan = cmplx (-pi2, 0.0d0, kind(1.d0))
return 55 57 return
c 56 58 c
end 57 59 end
58 60
complex(8) function zatan2 (csn, ccs) 1 1 complex(kind(1.d0)) function zatan2 (csn, ccs)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) csn, ccs, zatan 4 4 complex(kind(1.d0)) csn, ccs, zatan
real(8) pi 5 5 real(kind(1.d0)) pi
external zatan 6 6 external zatan
data pi / 3.1415926535 8979323846d0 / 7 7 data pi / 3.1415926535 8979323846d0 /
c 8 8 c
if (abs(ccs).eq.0.) go to 10 9 9 if (abs(ccs).eq.0.) go to 10
c 10 10 c
zatan2 = zatan (csn/ccs) 11 11 zatan2 = zatan (csn/ccs)
if (real(ccs).lt.0.) zatan2 = zatan2 + pi 12 12 if (real(ccs).lt.0.) zatan2 = zatan2 + pi
if (real(zatan2).gt.pi) zatan2 = zatan2 - 2.0*pi 13 13 if (real(zatan2).gt.pi) zatan2 = zatan2 - 2.0*pi
return 14 14 return
c 15 15 c
10 if (abs(csn).eq.0.) call seteru ( 16 16 10 if (abs(csn).eq.0.) call seteru (
1 34hzatan2 called with both args zero, 34, 1, 2) 17 17 1 34hzatan2 called with both args zero, 34, 1, 2)
c 18 18 c
zatan2 = dcmplx (sign(0.5*pi,real(csn)), 0.0) 19 19 zatan2 = cmplx (sign(0.5*pi,real(csn)), 0.0, kind(1.d0))
c 20 20 c
return 21 21 return
end 22 22 end
23 23
complex(8) function zatanh (z) 1 1 complex(kind(1.d0)) function zatanh (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z, ci, zatan 4 4 complex(kind(1.d0)) z, ci, zatan
external zatan 5 5 external zatan
data ci /(0.,1.)/ 6 6 data ci /(0.,1.)/
c 7 7 c
zatanh = -ci*zatan(ci*z) 8 8 zatanh = -ci*zatan(ci*z)
c 9 9 c
return 10 10 return
end 11 11 end
12 12
complex(8) function zbeta (a, b) 1 1 complex(kind(1.d0)) function zbeta (a, b)
implicit none 2 2 implicit none
c july 1977 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c july 1977 edition. w. fullerton, c3, los alamos scientific lab.
complex(8) a, b, zgamma, zlbeta 4 4 complex(kind(1.d0)) a, b, zgamma, zlbeta
real(8) xmax,xmin 5 5 real(kind(1.d0)) xmax,xmin
external zgamma, zlbeta 6 6 external zgamma, zlbeta
data xmax / 0.0 / 7 7 data xmax / 0.0 /
c 8 8 c
if (xmax.eq.0.0) call d9gaml (xmin, xmax) 9 9 if (xmax.eq.0.0) call d9gaml (xmin, xmax)
c 10 10 c
if (real(a).le.0.0 .or. real(b).le.0.0) call seteru ( 11 11 if (real(a).le.0.0 .or. real(b).le.0.0) call seteru (
1 48hzbeta real part of both arguments must be gt 0, 48, 1, 2) 12 12 1 48hzbeta real part of both arguments must be gt 0, 48, 1, 2)
c 13 13 c
if (real(a)+real(b).lt.xmax) zbeta = zgamma(a) * (zgamma(b)/ 14 14 if (real(a)+real(b).lt.xmax) zbeta = zgamma(a) * (zgamma(b)/
1 zgamma(a+b) ) 15 15 1 zgamma(a+b) )
if (real(a)+real(b).lt.xmax) return 16 16 if (real(a)+real(b).lt.xmax) return
c 17 17 c
zbeta = exp (zlbeta(a, b)) 18 18 zbeta = exp (zlbeta(a, b))
c 19 19 c
return 20 20 return
end 21 21 end
22 22
complex(8) function zcbrt (z) 1 1 complex(kind(1.d0)) function zcbrt (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z 4 4 complex(kind(1.d0)) z
real(8) theta,zarg,r,dcbrt 5 5 real(kind(1.d0)) theta,zarg,r,dcbrt
external zarg, dcbrt 6 6 external zarg, dcbrt
c 7 7 c
theta = zarg(z) / 3.0 8 8 theta = zarg(z) / 3.0
r = dcbrt (abs(z)) 9 9 r = dcbrt (abs(z))
c 10 10 c
zcbrt = dcmplx (r*cos(theta), r*sin(theta)) 11 11 zcbrt = cmplx (r*cos(theta), r*sin(theta), kind(1.d0))
c 12 12 c
return 13 13 return
end 14 14 end
15 15
complex(8) function zcosh (z) 1 1 complex(kind(1.d0)) function zcosh (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z, ci 4 4 complex(kind(1.d0)) z, ci
data ci /(0.,1.)/ 5 5 data ci /(0.,1.)/
c 6 6 c
zcosh = cos (ci*z) 7 7 zcosh = cos (ci*z)
c 8 8 c
return 9 9 return
end 10 10 end
11 11
complex(8) function zcot (z) 1 1 complex(kind(1.d0)) function zcot (z)
implicit none 2 2 implicit none
c march 1979 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c march 1979 edition. w. fullerton, c3, los alamos scientific lab.
complex(8) z 4 4 complex(kind(1.d0)) z
real(8) d1mach 5 5 real(kind(1.d0)) d1mach
real(8) eps, xmax, ylarge, ybig, rmin, ymin 6 6 real(kind(1.d0)) eps, xmax, ylarge, ybig, rmin, ymin
real(8) x,y,x2,y2,sn2x,den 7 7 real(kind(1.d0)) x,y,x2,y2,sn2x,den
integer irold,irold2 8 8 integer irold,irold2
external d1mach 9 9 external d1mach
data eps, xmax, ylarge, ybig, rmin, ymin / 5*0.0, 1.5 / 10 10 data eps, xmax, ylarge, ybig, rmin, ymin / 5*0.0, 1.5 /
c 11 11 c
if (eps.ne.0.0) go to 10 12 12 if (eps.ne.0.0) go to 10
eps = d1mach(4) 13 13 eps = d1mach(4)
xmax = 1.0/eps 14 14 xmax = 1.0/eps
ylarge = -0.5*log(0.5*d1mach(3)) 15 15 ylarge = -0.5*log(0.5*d1mach(3))
ybig = -0.5*log(0.5*sqrt(d1mach(3))) 16 16 ybig = -0.5*log(0.5*sqrt(d1mach(3)))
rmin = exp (max(log(d1mach(1)), -log(d1mach(2))) + 0.01) 17 17 rmin = exp (max(log(d1mach(1)), -log(d1mach(2))) + 0.01)
c 18 18 c
10 x = real (z) 19 19 10 x = real (z)
y = aimag (z) 20 20 y = aimag (z)
if (abs(y).gt.ylarge) go to 30 21 21 if (abs(y).gt.ylarge) go to 30
c 22 22 c
x2 = 2.0*x 23 23 x2 = 2.0*x
y2 = 2.0*y 24 24 y2 = 2.0*y
if (abs(x2).gt.xmax) go to 20 25 25 if (abs(x2).gt.xmax) go to 20
if ( abs(z).lt.rmin) call seteru (55hzcot abs(z) is zero or so 26 26 if ( abs(z).lt.rmin) call seteru (55hzcot abs(z) is zero or so
1 small that zcot overflows, 55, 5, 2) 27 27 1 small that zcot overflows, 55, 5, 2)
c 28 28 c
call entsrc (irold, 1) 29 29 call entsrc (irold, 1)
sn2x = sin(x2) 30 30 sn2x = sin(x2)
call erroff 31 31 call erroff
den = cosh(y2) - cos(x2) 32 32 den = cosh(y2) - cos(x2)
call erroff 33 33 call erroff
call entsrc (irold2, irold) 34 34 call entsrc (irold2, irold)
c 35 35 c
if (den.lt.x*x2*eps*eps) call seteru (74hzcot cot is nearly sin 36 36 if (den.lt.x*x2*eps*eps) call seteru (74hzcot cot is nearly sin
1gular, x is near a multiple of pi and y is near 0, 74, 3, 2) 37 37 1gular, x is near a multiple of pi and y is near 0, 74, 3, 2)
if (den.lt.x*x2*eps .and. abs(x).gt.0.5) call seteru (65hzcot a 38 38 if (den.lt.x*x2*eps .and. abs(x).gt.0.5) call seteru (65hzcot a
1nswer is lt half precision, x is near pi and y is near 0, 65, 1,1) 39 39 1nswer is lt half precision, x is near pi and y is near 0, 65, 1,1)
c 40 40 c
zcot = dcmplx (sn2x/den, -sinh(y2)/den) 41 41 zcot = cmplx (sn2x/den, -sinh(y2)/den, kind(1.d0))
return 42 42 return
c 43 43 c
20 if (abs(y).lt.ymin) call seteru (75hzcot answer would have no p 44 44 20 if (abs(y).lt.ymin) call seteru (75hzcot answer would have no p
1recision, abs(x) is very big and abs(y) small, 75, 4, 2) 45 45 1recision, abs(x) is very big and abs(y) small, 75, 4, 2)
if (abs(y).lt.ybig) call seteru (69hzcot answer lt half precisi 46 46 if (abs(y).lt.ybig) call seteru (69hzcot answer lt half precisi
1on, abs(x) is very big and abs(y) small, 69, 2, 1) 47 47 1on, abs(x) is very big and abs(y) small, 69, 2, 1)
c 48 48 c
zcot = dcmplx (0.0, 1.0/tanh(y2)) 49 49 zcot = cmplx (0.0, 1.0/tanh(y2), kind(1.d0))
return 50 50 return
c 51 51 c
30 zcot = dcmplx (0.0, sign (1.0d0, y)) 52 52 30 zcot = cmplx (0.0, sign (1.0d0, y), kind(1.d0))
return 53 53 return
c 54 54 c
end 55 55 end
56 56
complex(8) function zexprl (z) 1 1 complex(kind(1.d0)) function zexprl (z)
implicit none 2 2 implicit none
c august 1980 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c august 1980 edition. w. fullerton, c3, los alamos scientific lab.
c 4 4 c
c evaluate (cexp(z)-1)/z . for small cabs(z), we use the taylor 5 5 c evaluate (cexp(z)-1)/z . for small cabs(z), we use the taylor
c series. we could instead use the expression 6 6 c series. we could instead use the expression
c cexprl(z) = (exp(x)*exp(i*y)-1)/z 7 7 c cexprl(z) = (exp(x)*exp(i*y)-1)/z
c = (x*exprel(x) * (1 - 2*sin(y/2)**2) - 2*sin(y/2)**2 8 8 c = (x*exprel(x) * (1 - 2*sin(y/2)**2) - 2*sin(y/2)**2
c + i*sin(y)*(1+x*exprel(x))) / z 9 9 c + i*sin(y)*(1+x*exprel(x))) / z
c 10 10 c
complex(8) z 11 11 complex(kind(1.d0)) z
real(8) sqeps,r,xn,xln,rbnd,d1mach,alneps 12 12 real(kind(1.d0)) sqeps,r,xn,xln,rbnd,d1mach,alneps
external d1mach 13 13 external d1mach
integer nterms,irold,irold2,i 14 14 integer nterms,irold,irold2,i
data nterms, rbnd, sqeps / 0, 2*0.0 / 15 15 data nterms, rbnd, sqeps / 0, 2*0.0 /
c 16 16 c
if (nterms.ne.0) go to 10 17 17 if (nterms.ne.0) go to 10
alneps = log(d1mach(3)) 18 18 alneps = log(d1mach(3))
xn = 3.72 - 0.3*alneps 19 19 xn = 3.72 - 0.3*alneps
xln = log((xn+1.0)/1.36) 20 20 xln = log((xn+1.0)/1.36)
nterms = xn - (xn*xln+alneps)/(xln+1.36) + 1.5 21 21 nterms = xn - (xn*xln+alneps)/(xln+1.36) + 1.5
rbnd = d1mach(3) 22 22 rbnd = d1mach(3)
sqeps = 0.0 23 23 sqeps = 0.0
c 24 24 c
10 r = abs(z) 25 25 10 r = abs(z)
if (r.le.0.5) go to 20 26 26 if (r.le.0.5) go to 20
c 27 27 c
call entsrc (irold, 1) 28 28 call entsrc (irold, 1)
zexprl = (exp(z) - 1.0) / z 29 29 zexprl = (exp(z) - 1.0) / z
call erroff 30 30 call erroff
call entsrc (irold2, irold) 31 31 call entsrc (irold2, irold)
if (abs(real(z)).lt.sqeps .and. abs(zexprl).lt.sqeps) call 32 32 if (abs(real(z)).lt.sqeps .and. abs(zexprl).lt.sqeps) call
1 seteru (41hzexprl answer lt half prec, z near ni2pi, 33 33 1 seteru (41hzexprl answer lt half prec, z near ni2pi,
2 41, 1, 1) 34 34 2 41, 1, 1)
return 35 35 return
c 36 36 c
20 zexprl = (1.0, 0.0) 37 37 20 zexprl = (1.0, 0.0)
if (r.lt.rbnd) return 38 38 if (r.lt.rbnd) return
c 39 39 c
zexprl = (0.0, 0.0) 40 40 zexprl = (0.0, 0.0)
do 30 i=1,nterms 41 41 do 30 i=1,nterms
zexprl = 1.0 + zexprl*z/dble(nterms+2-i) 42 42 zexprl = 1.0 + zexprl*z/dble(nterms+2-i)
30 continue 43 43 30 continue
c 44 44 c
return 45 45 return
end 46 46 end
47 47
complex(8) function zgamma (z) 1 1 complex(kind(1.d0)) function zgamma (z)
implicit none 2 2 implicit none
c july 1977 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c july 1977 edition. w. fullerton, c3, los alamos scientific lab.
c a preliminary version that is portable, but not accurate enough. 4 4 c a preliminary version that is portable, but not accurate enough.
complex(8) z, zlngam 5 5 complex(kind(1.d0)) z, zlngam
external zlngam 6 6 external zlngam
c 7 7 c
zgamma = exp (zlngam(z)) 8 8 zgamma = exp (zlngam(z))
c 9 9 c
return 10 10 return
end 11 11 end
12 12
complex(8) function zgamr (z) 1 1 complex(kind(1.d0)) function zgamr (z)
implicit none 2 2 implicit none
c july 1977 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c july 1977 edition. w. fullerton, c3, los alamos scientific lab.
c this version is an inaccurate preliminary one. eventually this 4 4 c this version is an inaccurate preliminary one. eventually this
c routine should be a fundamental routine with no dependence on cgamma. 5 5 c routine should be a fundamental routine with no dependence on cgamma.
c 6 6 c
complex(8) z, zlngam 7 7 complex(kind(1.d0)) z, zlngam
real(8) x 8 8 real(kind(1.d0)) x
integer irold,ir 9 9 integer irold,ir
external zlngam 10 10 external zlngam
c 11 11 c
zgamr = (0.0, 0.0) 12 12 zgamr = (0.0, 0.0)
x = real (z) 13 13 x = real (z)
if (x.le.0.0 .and. aint(x).eq.x .and. 0.0.eq.aimag(z)) return 14 14 if (x.le.0.0 .and. aint(x).eq.x .and. 0.0.eq.aimag(z)) return
c 15 15 c
call entsrc (irold, 1) 16 16 call entsrc (irold, 1)
zgamr = zlngam(z) 17 17 zgamr = zlngam(z)
call erroff 18 18 call erroff
call entsrc (ir, irold) 19 19 call entsrc (ir, irold)
zgamr = exp (-zgamr) 20 20 zgamr = exp (-zgamr)
c 21 21 c
return 22 22 return
end 23 23 end
24 24
complex(8) function zlbeta (a, b) 1 1 complex(kind(1.d0)) function zlbeta (a, b)
implicit none 2 2 implicit none
c july 1977 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c july 1977 edition. w. fullerton, c3, los alamos scientific lab.
c a preliminary version that is portable, but not accurate enough. 4 4 c a preliminary version that is portable, but not accurate enough.
complex(8) a, b, zlngam 5 5 complex(kind(1.d0)) a, b, zlngam
external zlngam 6 6 external zlngam
c 7 7 c
if (real(a).le.0.0 .or. real(b).le.0.0) call seteru ( 8 8 if (real(a).le.0.0 .or. real(b).le.0.0) call seteru (
1 48hclbeta real part of both arguments must be gt 0, 48, 1, 2) 9 9 1 48hclbeta real part of both arguments must be gt 0, 48, 1, 2)
c 10 10 c
zlbeta = zlngam(a) + zlngam(b) - zlngam(a+b) 11 11 zlbeta = zlngam(a) + zlngam(b) - zlngam(a+b)
c 12 12 c
return 13 13 return
end 14 14 end
15 15
complex(8) function zlngam (zin) 1 1 complex(kind(1.d0)) function zlngam (zin)
implicit none 2 2 implicit none
c august 1980 edition. w. fullerton c3, los alamos scientific lab. 3 3 c august 1980 edition. w. fullerton c3, los alamos scientific lab.
c eventually clngam should make use of c8lgmc for all z except for 4 4 c eventually clngam should make use of c8lgmc for all z except for
c z in the vicinity of 1 and 2. 5 5 c z in the vicinity of 1 and 2.
complex(8) zin, z, corr, zlnrel, z9lgmc 6 6 complex(kind(1.d0)) zin, z, corr, zlnrel, z9lgmc
real(8) d1mach,pi,sq2pil,bound,dxrel,rmax,cabsz 7 7 real(kind(1.d0)) d1mach,pi,sq2pil,bound,dxrel,rmax,cabsz
real(8) x,y,argsum,zarg 8 8 real(kind(1.d0)) x,y,argsum,zarg
integer irold,ir,i,n 9 9 integer irold,ir,i,n
external z9lgmc, zarg, zlnrel,d1mach 10 10 external z9lgmc, zarg, zlnrel,d1mach
data pi / 3.1415926535 8979324e0 / 11 11 data pi / 3.1415926535 8979324d0 /
data sq2pil / 0.9189385332 0467274e0 / 12 12 data sq2pil / 0.9189385332 0467274d0 /
c 13 13 c
data bound, dxrel, rmax / 3*0.0 / 14 14 data bound, dxrel, rmax / 3*0.0 /
c 15 15 c
if (bound.ne.0.) go to 10 16 16 if (bound.ne.0.) go to 10
n = -0.30*log(d1mach(3)) 17 17 n = -0.30*log(d1mach(3))
c bound = n*(0.1*eps)**(-1/(2*n-1))/(pi*exp(1)) 18 18 c bound = n*(0.1*eps)**(-1/(2*n-1))/(pi*exp(1))
bound = 0.1171*dble(n)*(0.1*d1mach(3))**(-1./(2.*dble(n)-1.)) 19 19 bound = 0.1171*dble(n)*(0.1*d1mach(3))**(-1./(2.*dble(n)-1.))
dxrel = sqrt (d1mach(4)) 20 20 dxrel = sqrt (d1mach(4))
rmax = d1mach(2)/log(d1mach(2)) 21 21 rmax = d1mach(2)/log(d1mach(2))
c 22 22 c
10 z = zin 23 23 10 z = zin
x = real(zin) 24 24 x = real(zin)
y = aimag(zin) 25 25 y = aimag(zin)
c 26 26 c
corr = (0.0, 0.0) 27 27 corr = (0.0, 0.0)
cabsz = abs(z) 28 28 cabsz = abs(z)
if (cabsz.gt.rmax) call seteru ( 29 29 if (cabsz.gt.rmax) call seteru (
1 44hzlngam abs(z) so large result may overflow, 44, 2, 2) 30 30 1 44hzlngam abs(z) so large result may overflow, 44, 2, 2)
if (x.ge.0.0 .and. cabsz.gt.bound) go to 50 31 31 if (x.ge.0.0 .and. cabsz.gt.bound) go to 50
if (x.lt.0.0 .and. abs(y).gt.bound) go to 50 32 32 if (x.lt.0.0 .and. abs(y).gt.bound) go to 50
c 33 33 c
if (cabsz.lt.bound) go to 20 34 34 if (cabsz.lt.bound) go to 20
c 35 35 c
c use the reflection formula for real(z) negative, cabs(z) large, and 36 36 c use the reflection formula for real(z) negative, cabs(z) large, and
c abs(aimag(y)) small. 37 37 c abs(aimag(y)) small.
c 38 38 c
call entsrc (irold, 1) 39 39 call entsrc (irold, 1)
if (y.gt.0.0) z = conjg (z) 40 40 if (y.gt.0.0) z = conjg (z)
corr = exp (-dcmplx(0.0,2.0*pi)*z) 41 41 corr = exp (-cmplx(0.0,2.0*pi,kind(1.d0))*z)
if (real(corr).eq.1.0 .and. aimag(corr).eq.0.0) call seteru ( 42 42 if (real(corr).eq.1.0 .and. aimag(corr).eq.0.0) call seteru (
1 31hzlngam z is a negative integer, 31, 3, 2) 43 43 1 31hzlngam z is a negative integer, 31, 3, 2)
c 44 44 c
zlngam = sq2pil + 1.0 - dcmplx(0.0,pi)*(z-0.5) - zlnrel(-corr) 45 45 zlngam = sq2pil + 1.0 - cmplx(0.0,pi,kind(1.d0))*(z-0.5) -
1 + (z-0.5)*log(1.0-z) - z - z9lgmc(1.0-z) 46 46 1 zlnrel(-corr) + (z-0.5)*log(1.0-z) - z - z9lgmc(1.0-z)
if (y.gt.0.0) zlngam = conjg (zlngam) 47 47 if (y.gt.0.0) zlngam = conjg (zlngam)
c 48 48 c
call erroff 49 49 call erroff
call entsrc (ir, irold) 50 50 call entsrc (ir, irold)
if (abs(y).gt.dxrel) return 51 51 if (abs(y).gt.dxrel) return
c X in sequence field on next line is to preserve trailing blank 52 52 c X in sequence field on next line is to preserve trailing blank
if (0.5* abs((1.-corr)*zlngam/z).lt.dxrel) call seteru (68hzlngam X 53 53 if (0.5* abs((1.-corr)*zlngam/z).lt.dxrel) call seteru (68hzlngam X
1 answer lt half precision because z too near negative integer, 68, 54 54 1 answer lt half precision because z too near negative integer, 68,
2 1, 1) 55 55 2 1, 1)
return 56 56 return
c 57 57 c
c use the recursion relation for cabs(z) small. 58 58 c use the recursion relation for cabs(z) small.
c 59 59 c
20 if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30 60 60 20 if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30
if ( abs((z-aint(x-0.5))/x).lt.dxrel) call seteru ( 68hzlngam ans 61 61 if ( abs((z-aint(x-0.5))/x).lt.dxrel) call seteru ( 68hzlngam ans
1wer lt half precision because z too near negative integer, 68,1,1) 62 62 1wer lt half precision because z too near negative integer, 68,1,1)
c 63 63 c
30 n = sqrt (bound**2 - y**2) - x + 1.0 64 64 30 n = sqrt (bound**2 - y**2) - x + 1.0
argsum = 0.0 65 65 argsum = 0.0
corr = (1.0, 0.0) 66 66 corr = (1.0, 0.0)
do 40 i=1,n 67 67 do 40 i=1,n
argsum = argsum + zarg(z) 68 68 argsum = argsum + zarg(z)
corr = z*corr 69 69 corr = z*corr
z = 1.0 + z 70 70 z = 1.0 + z
40 continue 71 71 40 continue
c 72 72 c
if (real(corr).eq.0.0 .and. aimag(corr).eq.0.0) call seteru ( 73 73 if (real(corr).eq.0.0 .and. aimag(corr).eq.0.0) call seteru (
1 31hzlngam z is a negative integer, 31, 3, 2) 74 74 1 31hzlngam z is a negative integer, 31, 3, 2)
corr = -dcmplx (log(abs(corr)), argsum) 75 75 corr = -cmplx (log(abs(corr)), argsum, kind(1.d0))
c 76 76 c
c use stirling-s approximation for large z. 77 77 c use stirling-s approximation for large z.
c 78 78 c
50 zlngam = sq2pil + (z-0.5)*log(z) - z + corr + z9lgmc(z) 79 79 50 zlngam = sq2pil + (z-0.5)*log(z) - z + corr + z9lgmc(z)
return 80 80 return
c 81 81 c
end 82 82 end
83 83
complex(8) function zlnrel (z) 1 1 complex(kind(1.d0)) function zlnrel (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
c 4 4 c
c clnrel(z) = clog(1+z) with relative error accuracy near z = 0. 5 5 c clnrel(z) = clog(1+z) with relative error accuracy near z = 0.
c let rho = cabs(z) and 6 6 c let rho = cabs(z) and
c r**2 = cabs(1+z)**2 = (1+x)**2 + y**2 = 1 + 2*x + rho**2 . 7 7 c r**2 = cabs(1+z)**2 = (1+x)**2 + y**2 = 1 + 2*x + rho**2 .
c now if rho is small we may evaluate clnrel(z) accurately by 8 8 c now if rho is small we may evaluate clnrel(z) accurately by
c clog(1+z) = cmplx (alog(r), carg(1+z)) 9 9 c clog(1+z) = cmplx (alog(r), carg(1+z))
c = cmplx (0.5*alog(r**2), carg(1+z)) 10 10 c = cmplx (0.5*alog(r**2), carg(1+z))
c = cmplx (0.5*alnrel(2*x+rho**2), carg(1+z)) 11 11 c = cmplx (0.5*alnrel(2*x+rho**2), carg(1+z))
c 12 12 c
complex(8) z 13 13 complex(kind(1.d0)) z
real(8) dlnrel,d1mach,zarg,sqeps,x,rho 14 14 real(kind(1.d0)) dlnrel,d1mach,zarg,sqeps,x,rho
external dlnrel, zarg, d1mach 15 15 external dlnrel, zarg, d1mach
data sqeps /0.0/ 16 16 data sqeps /0.0/
c 17 17 c
if (sqeps.eq.0.) sqeps = sqrt (d1mach(4)) 18 18 if (sqeps.eq.0.) sqeps = sqrt (d1mach(4))
c 19 19 c
if ( abs(1.+z).lt.sqeps) call seteru ( 20 20 if ( abs(1.+z).lt.sqeps) call seteru (
1 54hzlnrel answer lt half precision because z too near -1, 54, 21 21 1 54hzlnrel answer lt half precision because z too near -1, 54,
2 1, 1) 22 22 2 1, 1)
c 23 23 c
rho = abs(z) 24 24 rho = abs(z)
if (rho.gt.0.375) zlnrel = log (1.0+z) 25 25 if (rho.gt.0.375) zlnrel = log (1.0+z)
if (rho.gt.0.375) return 26 26 if (rho.gt.0.375) return
c 27 27 c
x = real(z) 28 28 x = real(z)
zlnrel = dcmplx (0.5*dlnrel(2.*x+rho**2), zarg(1.0+z)) 29 29 zlnrel = cmplx (0.5*dlnrel(2.*x+rho**2), zarg(1.0+z), kind(1.d0))
c 30 30 c
return 31 31 return
end 32 32 end
33 33
complex(8) function zlog10 (z) 1 1 complex(kind(1.d0)) function zlog10 (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z 4 4 complex(kind(1.d0)) z
real(8) aloge 5 5 real(kind(1.d0)) aloge
data aloge / 0.4342944819 0325182765d0 / 6 6 data aloge / 0.4342944819 0325182765d0 /
c 7 7 c
zlog10 = aloge * log(z) 8 8 zlog10 = aloge * log(z)
c 9 9 c
return 10 10 return
end 11 11 end
12 12
complex(8) function zpsi (zin) 1 1 complex(kind(1.d0)) function zpsi (zin)
implicit none 2 2 implicit none
c may 1978 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c may 1978 edition. w. fullerton, c3, los alamos scientific lab.
complex(8) zin, z, z2inv, corr, zcot 4 4 complex(kind(1.d0)) zin, z, z2inv, corr, zcot
dimension bern(13) 5 5 dimension bern(13)
real(8) bern,d1mach,pi,bound, dxrel, rmin, rbig 6 6 real(kind(1.d0)) bern,d1mach,pi,bound, dxrel, rmin, rbig
real(8) x,y,cabsz 7 7 real(kind(1.d0)) x,y,cabsz
integer nterm,ndx,n,i 8 8 integer nterm,ndx,n,i
external zcot, d1mach 9 9 external zcot, d1mach
c 10 10 c
data bern( 1) / .8333333333 3333333 e-1 / 11 11 data bern( 1) / .8333333333 3333333 e-1 /
data bern( 2) / -.8333333333 3333333 e-2 / 12 12 data bern( 2) / -.8333333333 3333333 e-2 /
data bern( 3) / .3968253968 2539683 e-2 / 13 13 data bern( 3) / .3968253968 2539683 e-2 /
data bern( 4) / -.4166666666 6666667 e-2 / 14 14 data bern( 4) / -.4166666666 6666667 e-2 /
data bern( 5) / .7575757575 7575758 e-2 / 15 15 data bern( 5) / .7575757575 7575758 e-2 /
data bern( 6) / -.2109279609 2796093 e-1 / 16 16 data bern( 6) / -.2109279609 2796093 e-1 /
data bern( 7) / .8333333333 3333333 e-1 / 17 17 data bern( 7) / .8333333333 3333333 e-1 /
data bern( 8) / -.4432598039 2156863 e0 / 18 18 data bern( 8) / -.4432598039 2156863 e0 /
data bern( 9) / .3053954330 2701197 e1 / 19 19 data bern( 9) / .3053954330 2701197 e1 /
data bern(10) / -.2645621212 1212121 e2 / 20 20 data bern(10) / -.2645621212 1212121 e2 /
data bern(11) / .2814601449 2753623 e3 / 21 21 data bern(11) / .2814601449 2753623 e3 /
data bern(12) / -.3454885393 7728938 e4 / 22 22 data bern(12) / -.3454885393 7728938 e4 /
data bern(13) / .5482758333 3333333 e5 / 23 23 data bern(13) / .5482758333 3333333 e5 /
c 24 24 c
data pi / 3.141592653 589793 e0 / 25 25 data pi / 3.141592653 589793 e0 /
data nterm, bound, dxrel, rmin, rbig / 0, 4*0.0 / 26 26 data nterm, bound, dxrel, rmin, rbig / 0, 4*0.0 /
c 27 27 c
if (nterm.ne.0) go to 10 28 28 if (nterm.ne.0) go to 10
nterm = -0.30*log(d1mach(3)) 29 29 nterm = -0.30*log(d1mach(3))
c maybe bound = n*(0.1*eps)**(-1/(2*n-1)) / (pi*exp(1)) 30 30 c maybe bound = n*(0.1*eps)**(-1/(2*n-1)) / (pi*exp(1))
bound = 0.1171*dble(nterm) * 31 31 bound = 0.1171*dble(nterm) *
1 (0.1*d1mach(3))**(-1.0/(2.0*dble(nterm)-1.0)) 32 32 1 (0.1*d1mach(3))**(-1.0/(2.0*dble(nterm)-1.0))
dxrel = sqrt(d1mach(4)) 33 33 dxrel = sqrt(d1mach(4))
rmin = exp (max(log(d1mach(1)), -log(d1mach(2))) + 0.011 ) 34 34 rmin = exp (max(log(d1mach(1)), -log(d1mach(2))) + 0.011 )
rbig = 1.0/d1mach(3) 35 35 rbig = 1.0/d1mach(3)
c 36 36 c
10 z = zin 37 37 10 z = zin
x = real(z) 38 38 x = real(z)
y = aimag(z) 39 39 y = aimag(z)
if (y.lt.0.0) z = conjg(z) 40 40 if (y.lt.0.0) z = conjg(z)
c 41 41 c
corr = (0.0, 0.0) 42 42 corr = (0.0, 0.0)
cabsz = abs(z) 43 43 cabsz = abs(z)
if (x.ge.0.0 .and. cabsz.gt.bound) go to 50 44 44 if (x.ge.0.0 .and. cabsz.gt.bound) go to 50
if (x.lt.0.0 .and. abs(y).gt.bound) go to 50 45 45 if (x.lt.0.0 .and. abs(y).gt.bound) go to 50
c 46 46 c
if (cabsz.lt.bound) go to 20 47 47 if (cabsz.lt.bound) go to 20
c 48 48 c
c use the reflection formula for real(z) negative, cabs(z) large, and 49 49 c use the reflection formula for real(z) negative, cabs(z) large, and
c abs(aimag(y)) small. 50 50 c abs(aimag(y)) small.
c 51 51 c
corr = -pi*zcot(pi*z) 52 52 corr = -pi*zcot(pi*z)
z = 1.0 - z 53 53 z = 1.0 - z
go to 50 54 54 go to 50
c 55 55 c
c use the recursion relation for cabs(z) small. 56 56 c use the recursion relation for cabs(z) small.
c 57 57 c
20 if (cabsz.lt.rmin) call seteru ( 58 58 20 if (cabsz.lt.rmin) call seteru (
1 56hzpsi zpsi called with z so near 0 that zpsi overflows, 59 59 1 56hzpsi zpsi called with z so near 0 that zpsi overflows,
1 56, 2, 2) 60 60 1 56, 2, 2)
c 61 61 c
if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30 62 62 if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30
if ( abs((z-aint(x-0.5))/x).lt.dxrel) call seteru ( 63 63 if ( abs((z-aint(x-0.5))/x).lt.dxrel) call seteru (
1 68hzpsi answer lt half precision because z too near negative 64 64 1 68hzpsi answer lt half precision because z too near negative
2integer, 68, 1, 1) 65 65 2integer, 68, 1, 1)
if (y.eq.0.0 .and. x.eq.aint(x)) call seteru ( 66 66 if (y.eq.0.0 .and. x.eq.aint(x)) call seteru (
1 31hzpsi z is a negative integer, 31, 3, 2) 67 67 1 31hzpsi z is a negative integer, 31, 3, 2)
c 68 68 c
30 n = sqrt(bound**2-y**2) - x + 1.0 69 69 30 n = sqrt(bound**2-y**2) - x + 1.0
do 40 i=1,n 70 70 do 40 i=1,n
corr = corr - 1.0/z 71 71 corr = corr - 1.0/z
z = z + 1.0 72 72 z = z + 1.0
40 continue 73 73 40 continue
c 74 74 c
c now evaluate the asymptotic series for suitably large z. 75 75 c now evaluate the asymptotic series for suitably large z.
c 76 76 c
50 if (cabsz.gt.rbig) zpsi = log(z) + corr 77 77 50 if (cabsz.gt.rbig) zpsi = log(z) + corr
if (cabsz.gt.rbig) go to 70 78 78 if (cabsz.gt.rbig) go to 70
c 79 79 c
zpsi = (0.0, 0.0) 80 80 zpsi = (0.0, 0.0)
z2inv = 1.0/z**2 81 81 z2inv = 1.0/z**2
do 60 i=1,nterm 82 82 do 60 i=1,nterm
ndx = nterm + 1 - i 83 83 ndx = nterm + 1 - i
zpsi = bern(ndx) + z2inv*zpsi 84 84 zpsi = bern(ndx) + z2inv*zpsi
60 continue 85 85 60 continue
zpsi = log(z) - 0.5/z - zpsi*z2inv + corr 86 86 zpsi = log(z) - 0.5/z - zpsi*z2inv + corr
c 87 87 c
70 if (y.lt.0.0) zpsi = conjg(zpsi) 88 88 70 if (y.lt.0.0) zpsi = conjg(zpsi)
c 89 89 c
return 90 90 return
end 91 91 end
92 92
complex(8) function zsinh (z) 1 1 complex(kind(1.d0)) function zsinh (z)
implicit none 2 2 implicit none
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 3 3 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z, ci 4 4 complex(kind(1.d0)) z, ci
data ci /(0.,1.)/ 5 5 data ci /(0.,1.)/
c 6 6 c
zsinh = -ci*sin(ci*z) 7 7 zsinh = -ci*sin(ci*z)
c 8 8 c
return 9 9 return
end 10 10 end
11 11
complex(8) function ztan (z) 1 1 complex(kind(1.d0)) function ztan (z)
implicit none 2 2 implicit none
c march 1979 edition. w. fullerton, c3, los alamos scientific lab. 3 3 c march 1979 edition. w. fullerton, c3, los alamos scientific lab.
complex(8) z 4 4 complex(kind(1.d0)) z
real(8) d1mach,eps, xmax, ylarge, ybig, ymin,sn2x,den 5 5 real(kind(1.d0)) d1mach,eps, xmax, ylarge, ybig, ymin,sn2x,den
real(8) x,y,x2,y2 6 6 real(kind(1.d0)) x,y,x2,y2
integer irold,irold2 7 7 integer irold,irold2
external d1mach 8 8 external d1mach
data eps, xmax, ylarge, ybig, ymin / 4*0.0, 1.50 / 9 9 data eps, xmax, ylarge, ybig, ymin / 4*0.0, 1.50 /
c 10 10 c
if (eps.ne.0.0) go to 10 11 11 if (eps.ne.0.0) go to 10
eps = d1mach(4) 12 12 eps = d1mach(4)
xmax = 1.0/eps 13 13 xmax = 1.0/eps
ylarge = -0.5*log(0.5*d1mach(3)) 14 14 ylarge = -0.5*log(0.5*d1mach(3))
ybig = -0.5*log(0.5*sqrt(d1mach(3))) 15 15 ybig = -0.5*log(0.5*sqrt(d1mach(3)))
c 16 16 c
10 x = real(z) 17 17 10 x = real(z)
y = aimag(z) 18 18 y = aimag(z)
if (abs(y).gt.ylarge) go to 30 19 19 if (abs(y).gt.ylarge) go to 30
c 20 20 c
x2 = 2.0*x 21 21 x2 = 2.0*x
y2 = 2.0*y 22 22 y2 = 2.0*y
if (abs(x2).gt.xmax) go to 20 23 23 if (abs(x2).gt.xmax) go to 20
c 24 24 c
call entsrc (irold, 1) 25 25 call entsrc (irold, 1)
sn2x = sin(x2) 26 26 sn2x = sin(x2)
call erroff 27 27 call erroff
den = cos(x2) + cosh(y2) 28 28 den = cos(x2) + cosh(y2)
call erroff 29 29 call erroff
call entsrc (irold2, irold) 30 30 call entsrc (irold2, irold)
c 31 31 c
if (den.lt.x*x2*eps*eps) call seteru ( 72hztan tan is nearly si 32 32 if (den.lt.x*x2*eps*eps) call seteru ( 72hztan tan is nearly si
1ngular, x is near pi/2 or 3*pi/2 and y is near 0, 72, 3, 2) 33 33 1ngular, x is near pi/2 or 3*pi/2 and y is near 0, 72, 3, 2)
if (den.lt.x*x2*eps) call seteru (74hztan answer lt half precis 34 34 if (den.lt.x*x2*eps) call seteru (74hztan answer lt half precis
1ion, x is near pi/2 or 3*pi/2 and y is near 0, 74, 1, 1) 35 35 1ion, x is near pi/2 or 3*pi/2 and y is near 0, 74, 1, 1)
c 36 36 c
ztan = dcmplx (sn2x/den, sinh(y2)/den) 37 37 ztan = cmplx (sn2x/den, sinh(y2)/den, kind(1.d0))
return 38 38 return
c 39 39 c
20 if (abs(y).lt.ymin) call seteru (75hztan answer would have no p 40 40 20 if (abs(y).lt.ymin) call seteru (75hztan answer would have no p
1recision, abs(x) is very big and abs(y) small, 75, 4, 2) 41 41 1recision, abs(x) is very big and abs(y) small, 75, 4, 2)
if (abs(y).lt.ybig) call seteru (69hztan answer lt half precisi 42 42 if (abs(y).lt.ybig) call seteru (69hztan answer lt half precisi
1on, abs(x) is very big and abs(y) small, 69, 2, 1) 43 43 1on, abs(x) is very big and abs(y) small, 69, 2, 1)
c 44 44 c
ztan = dcmplx (0.0, tanh(y2)) 45 45 ztan = cmplx (0.0, tanh(y2), kind(1.d0))
return 46 46 return
c 47 47 c
30 ztan = dcmplx (0.0, -sign(1.0d0, y)) 48 48 30 ztan = cmplx (0.0, -sign(1.0d0, y), kind(1.d0))
return 49 49 return
c 50 50 c
end 51 51 end
52 52
complex(8) function ztanh (z) 1 1 complex(kind(1.d0)) function ztanh (z)
c april 1977 version. w. fullerton, c3, los alamos scientific lab. 2 2 c april 1977 version. w. fullerton, c3, los alamos scientific lab.
complex(8) z, ci, ztan 3 3 complex(kind(1.d0)) z, ci, ztan
external ztan 4 4 external ztan
data ci /(0.,1.)/ 5 5 data ci /(0.,1.)/
c 6 6 c
ztanh = -ci*ztan(ci*z) 7 7 ztanh = -ci*ztan(ci*z)
c 8 8 c
return 9 9 return
end 10 10 end
11 11