Blame view
fvn_integ/dqk15.f90
6.47 KB
06ed2f4ac git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
! ! fvn comment : ! Unmodified quadpack routine from http://www.netlib.org/quadpack ! subroutine dqk15(f,a,b,result,abserr,resabs,resasc) !***begin prologue dqk15 !***date written 800101 (yymmdd) !***revision date 830518 (yymmdd) !***category no. h2a1a2 !***keywords 15-point gauss-kronrod rules !***author piessens,robert,appl. math. & progr. div. - k.u.leuven ! de doncker,elise,appl. math. & progr. div - k.u.leuven !***purpose to compute i = integral of f over (a,b), with error ! estimate ! j = integral of abs(f) over (a,b) !***description ! ! integration rules ! standard fortran subroutine ! double precision version ! ! parameters ! on entry ! f - double precision ! function subprogram defining the integrand ! function f(x). the actual name for f needs to be ! declared e x t e r n a l in the calling program. ! ! a - double precision ! lower limit of integration ! ! b - double precision ! upper limit of integration ! ! on return ! result - double precision ! approximation to the integral i ! result is computed by applying the 15-point ! kronrod rule (resk) obtained by optimal addition ! of abscissae to the7-point gauss rule(resg). ! ! abserr - double precision ! estimate of the modulus of the absolute error, ! which should not exceed abs(i-result) ! ! resabs - double precision ! approximation to the integral j ! ! resasc - double precision ! approximation to the integral of abs(f-i/(b-a)) ! over (a,b) ! !***references (none) !***routines called d1mach !***end prologue dqk15 ! double precision a,absc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1, & epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, & resg,resk,reskh,result,uflow,wg,wgk,xgk integer j,jtw,jtwm1 external f ! dimension fv1(7),fv2(7),wg(4),wgk(8),xgk(8) ! ! the abscissae and weights are given for the interval (-1,1). ! because of symmetry only the positive abscissae and their ! corresponding weights are given. ! ! xgk - abscissae of the 15-point kronrod rule ! xgk(2), xgk(4), ... abscissae of the 7-point ! gauss rule ! xgk(1), xgk(3), ... abscissae which are optimally ! added to the 7-point gauss rule ! ! wgk - weights of the 15-point kronrod rule ! ! wg - weights of the 7-point gauss rule ! ! ! gauss quadrature weights and kronron quadrature abscissae and weights ! as evaluated with 80 decimal digit arithmetic by l. w. fullerton, ! bell labs, nov. 1981. ! data wg ( 1) / 0.129484966168869693270611432679082d0 / data wg ( 2) / 0.279705391489276667901467771423780d0 / data wg ( 3) / 0.381830050505118944950369775488975d0 / data wg ( 4) / 0.417959183673469387755102040816327d0 / ! data xgk ( 1) / 0.991455371120812639206854697526329d0 / data xgk ( 2) / 0.949107912342758524526189684047851d0 / data xgk ( 3) / 0.864864423359769072789712788640926d0 / data xgk ( 4) / 0.741531185599394439863864773280788d0 / data xgk ( 5) / 0.586087235467691130294144838258730d0 / data xgk ( 6) / 0.405845151377397166906606412076961d0 / data xgk ( 7) / 0.207784955007898467600689403773245d0 / data xgk ( 8) / 0.000000000000000000000000000000000d0 / ! data wgk ( 1) / 0.022935322010529224963732008058970d0 / data wgk ( 2) / 0.063092092629978553290700663189204d0 / data wgk ( 3) / 0.104790010322250183839876322541518d0 / data wgk ( 4) / 0.140653259715525918745189590510238d0 / data wgk ( 5) / 0.169004726639267902826583426598550d0 / data wgk ( 6) / 0.190350578064785409913256402421014d0 / data wgk ( 7) / 0.204432940075298892414161999234649d0 / data wgk ( 8) / 0.209482141084727828012999174891714d0 / ! ! ! list of major variables ! ----------------------- ! ! centr - mid point of the interval ! hlgth - half-length of the interval ! absc - abscissa ! fval* - function value ! resg - result of the 7-point gauss formula ! resk - result of the 15-point kronrod formula ! reskh - approximation to the mean value of f over (a,b), ! i.e. to i/(b-a) ! ! machine dependent constants ! --------------------------- ! ! epmach is the largest relative spacing. ! uflow is the smallest positive magnitude. ! !***first executable statement dqk15 epmach = d1mach(4) uflow = d1mach(1) ! centr = 0.5d+00*(a+b) hlgth = 0.5d+00*(b-a) dhlgth = dabs(hlgth) ! ! compute the 15-point kronrod approximation to ! the integral, and estimate the absolute error. ! fc = f(centr) resg = fc*wg(4) resk = fc*wgk(8) resabs = dabs(resk) do 10 j=1,3 jtw = j*2 absc = hlgth*xgk(jtw) fval1 = f(centr-absc) fval2 = f(centr+absc) fv1(jtw) = fval1 fv2(jtw) = fval2 fsum = fval1+fval2 resg = resg+wg(j)*fsum resk = resk+wgk(jtw)*fsum resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) 10 continue do 15 j = 1,4 jtwm1 = j*2-1 absc = hlgth*xgk(jtwm1) fval1 = f(centr-absc) fval2 = f(centr+absc) fv1(jtwm1) = fval1 fv2(jtwm1) = fval2 fsum = fval1+fval2 resk = resk+wgk(jtwm1)*fsum resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) 15 continue reskh = resk*0.5d+00 resasc = wgk(8)*dabs(fc-reskh) do 20 j=1,7 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) 20 continue result = resk*hlgth resabs = resabs*dhlgth resasc = resasc*dhlgth abserr = dabs((resk-resg)*hlgth) if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) & abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00) if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 & ((epmach*0.5d+02)*resabs,abserr) return end subroutine |