Blame view

fvn_sparse/UMFPACK/Doc/UserGuide.stex 110 KB
422234dc3   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
  %-------------------------------------------------------------------------------
  % The UserGuide.stex file.  Processed into UserGuide.tex via sed.
  %-------------------------------------------------------------------------------
  
  \documentclass[11pt]{article}
  
  
  ewcommand{\m}[1]{{\bf{#1}}}       % for matrices and vectors
  
  ewcommand{\tr}{^{\sf T}}          % transpose
  
  ewcommand{\he}{^{\sf H}}          % complex conjugate transpose
  
  ewcommand{\implies}{\rightarrow}
  
  \topmargin 0in
  \textheight 9in
  \oddsidemargin 0pt
  \evensidemargin 0pt
  \textwidth 6.5in
  
  \begin{document}
  
  \author{Timothy A. Davis \\
  Dept. of Computer and Information Science and Engineering \\
  Univ. of Florida, Gainesville, FL}
  \title{UMFPACK Version 5.1 User Guide}
  \date{May 31, 2007}
  \maketitle
  
  %-------------------------------------------------------------------------------
  \begin{abstract}
      UMFPACK is a set of routines for solving unsymmetric sparse linear
      systems, $\m{Ax}=\m{b}$, using the Unsymmetric MultiFrontal method
      and direct sparse LU factorization.  It is written in ANSI/ISO C, with a
      MATLAB interface.  UMFPACK relies on the Level-3 Basic
      Linear Algebra Subprograms (dense matrix multiply) for its performance.
      This code works on Windows and many versions of Unix (Sun Solaris,
      Red Hat Linux, IBM AIX, SGI IRIX, and Compaq Alpha).
  \end{abstract}
  %-------------------------------------------------------------------------------
  
  Technical Report TR-04-003 (revised)
  
  UMFPACK Version 5.1, Copyright\copyright 1995-2006 by Timothy A. Davis.
  All Rights Reserved.
  UMFPACK is available under alternate licences; contact T. Davis for details.
  
  {\bf UMFPACK License:}
      Your use or distribution of UMFPACK or any modified version of
      UMFPACK implies that you agree to this License.
  
      This library is free software; you can redistribute it and/or
      modify it under the terms of the GNU Lesser General Public
      License as published by the Free Software Foundation; either
      version 2.1 of the License, or (at your option) any later version.
  
      This library is distributed in the hope that it will be useful,
      but WITHOUT ANY WARRANTY; without even the implied warranty of
      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      Lesser General Public License for more details.
  
      You should have received a copy of the GNU Lesser General Public
      License along with this library; if not, write to the Free Software
      Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301
      USA
  
      Permission is hereby granted to use or copy this program under the
      terms of the GNU LGPL, provided that the Copyright, this License,
      and the Availability of the original version is retained on all copies.
      User documentation of any code that uses this code or any modified
      version of this code must cite the Copyright, this License, the
      Availability note, and "Used by permission." Permission to modify
      the code and to distribute modified code is granted, provided the
      Copyright, this License, and the Availability note are retained,
      and a notice that the code was modified is included.
  
  {\bf Availability:}
      http://www.cise.ufl.edu/research/sparse/umfpack
  
  {\bf Acknowledgments:}
  
      This work was supported by the National Science Foundation, under
      grants DMS-9504974, DMS-9803599, and CCR-0203270.
      The upgrade to Version 4.1 and the inclusion of the
      symmetric and 2-by-2 pivoting strategies
      were done while the author was on sabbatical at
      Stanford University and Lawrence Berkeley National Laboratory.
  
  %-------------------------------------------------------------------------------
  
  ewpage
  %-------------------------------------------------------------------------------
  
  \tableofcontents
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{Overview}
  %-------------------------------------------------------------------------------
  
  UMFPACK\footnote{Pronounced with two syllables: umph-pack}
  Version 5.0 is a set of routines for solving systems of linear
  equations, $\m{Ax}=\m{b}$, when $\m{A}$ is sparse and unsymmetric.  It is based
  on the Unsymmetric-pattern MultiFrontal method \cite{DavisDuff97,DavisDuff99}.
  UMFPACK factorizes
  $\m{PAQ}$, $\m{PRAQ}$, or $\m{PR}^{-1}\m{AQ}$ into the product $\m{LU}$,
  where $\m{L}$ and $\m{U}$
  are lower and upper triangular, respectively, $\m{P}$ and $\m{Q}$ are
  permutation matrices, and $\m{R}$ is a diagonal matrix of row scaling factors
  (or $\m{R}=\m{I}$ if row-scaling is not used).  Both $\m{P}$ and $\m{Q}$ are
  chosen to reduce fill-in (new nonzeros in $\m{L}$ and $\m{U}$ that are not
  present in $\m{A}$).  The permutation $\m{P}$ has the dual role of reducing
  fill-in and maintaining numerical accuracy (via relaxed partial pivoting
  and row interchanges).
  
  The sparse matrix $\m{A}$ can be square or rectangular, singular
  or non-singular, and real or complex (or any combination).  Only square
  matrices $\m{A}$ can be used to solve $\m{Ax}=\m{b}$ or related systems.
  Rectangular matrices can only be factorized.
  
  UMFPACK first finds a column pre-ordering that reduces fill-in, without regard
  to numerical values.  It scales and analyzes the matrix, and then automatically
  selects one of three strategies for pre-ordering the rows and columns:
  {\em unsymmetric},
  {\em 2-by-2}, and
  {\em symmetric}.  These strategies are described below.
  
  First, all pivots with zero Markowitz cost are eliminated and placed in the
  LU factors.  The remaining submatrix $\m{S}$ is then analyzed.
  The following rules are applied, and the first one that matches defines
  the strategy.
  
  \begin{itemize}
  \item Rule 1: $\m{A}$ rectangular $\implies$ unsymmetric.
  \item Rule 2:
      If the zero-Markowitz elimination results in a rectangular $\m{S}$,
      or an $\m{S}$ whose diagonal has not been preserved, the
      unsymmetric strategy is used.
  \item The symmetry $\sigma_1$ of $\m{S}$ is computed.  It is defined as
      the number of {\em matched} off-diagonal entries, divided by the
      total number of off-diagonal entries.  An entry $s_{ij}$ is matched
      if $s_{ji}$ is also an entry.  They need not be numerically equal.
      An {\em entry} is a value in $\m{A}$ which is present
      in the input data structure.  All nonzeros are entries, but some entries
      may be numerically zero.
      Rule 3: $\sigma_1 < 0.1 \implies$ unsymmetric.
      The matrix is very unsymmetric.
  \item Let $d$ be the number of nonzero entries on the diagonal of $\m{S}$.
      Let $\m{S}$ be $
  u$-by-$
  u$.
      Rule 4: $(\sigma_1 \ge 0.7) \:\wedge\: (d = 
  u) \implies$ symmetric.
      The matrix has a nearly symmetric nonzero pattern, and a zero-free
      diagonal.
  \end{itemize}
  
  If the strategy has not yet been determined,
  the 2-by-2 strategy is attempted.  A row permutation $\m{P}_2$
  is found which attempts to reduce the number of small
  diagonal entries of $\m{P}_2 \m{S}$.
  An entry $s_{ij}$ is determined to be small if
  $|s_{ij}| < 0.01 \max |s_{*j}|$, or large otherwise.
  If $s_{ii}$ is numerically small, the method attempts to swap
  two rows $i$ and $j$, such that both $s_{ij}$ and $s_{ji}$ are large.
  Once these rows are swapped,
  they remain in place.  Let $\sigma_2$ be the symmetry of $\m{P}_2 \m{S}$,
  and let $d_2$ be the number of nonzero entries (either small or large)
  on the diagonal of $\m{P}_2 \m{S}$.
  
  \begin{itemize}
  \item Rule 5:
      ($\sigma_2 > 1.1 \sigma_1) \:\wedge\: (d_2 > 0.9 
  u) \implies$ 2-by-2.
      The 2-by-2 permutation has made the matrix significantly more symmetric.
  \item Rule 6: $\sigma_2 < 0.7 \sigma_1 \implies$ unsymmetric.
      The 2-by-2 strategy has significantly deteriorated the symmetry,
  \item Rule 7: $\sigma_2 < 0.25 \implies$ unsymmetric.
      The matrix is still very unsymmetric.
  \item Rule 8: $\sigma_2 \ge 0.51 \implies$ 2-by-2.
      The matrix is roughly symmetric.
  \item Rule 9: $\sigma_2 \ge 0.999 \sigma_1 \implies$ 2-by-2.
      The 2-by-2 permutation has preserved symmetry, or made it only
      slightly worse.
  \item Rule 10: if no rule has yet triggered, use the unsymmetric strategy.
  \end{itemize}
  
  Each strategy is described below:
  \begin{itemize}
  \item {\em unsymmetric}:
  The column pre-ordering of $\m{S}$ is computed by a modified version of COLAMD
  \cite{DavisGilbertLarimoreNg00_algo,DavisGilbertLarimoreNg00,Larimore98}.
  The method finds a symmetric permutation $\m{Q}$ of the matrix $\m{S}\tr\m{S}$
  (without forming $\m{S}\tr\m{S}$ explicitly).  This is a good choice for
  $\m{Q}$, since the Cholesky factors of $\m{(SQ)\tr(SQ)}$ are an upper bound (in
  terms of nonzero pattern) of the factor $\m{U}$ for the unsymmetric LU
  factorization ($\m{PSQ}=\m{LU}$) regardless of the choice of $\m{P}$
  \cite{GeorgeNg85,GeorgeNg87,GilbertNg93}.  This modified version of
  COLAMD also computes the column elimination tree and post-orders the
  tree.  It finds the upper bound on the number of nonzeros in L and U.
  It also has a different threshold for determining dense rows and columns.
  During factorization, the column pre-ordering can be modified.
  Columns within a single super-column can be reshuffled, to reduce fill-in.
  Threshold partial pivoting is used with no preference given to the diagonal
  entry.  Within a given pivot column $j$, an entry $a_{ij}$ can be chosen if
  $|a_{ij}| \ge 0.1 \max |a_{*j}|$.  Among those numerically acceptable
  entries, the sparsest row $i$ is chosen as the pivot row.
  
  \item {\em 2-by-2}:
  The symmetric strategy (see below) is applied to the matrix $\m{P}_2 \m{S}$,
  rather than $\m{S}$.
  
  \item {\em symmetric}:
  The column ordering is computed from AMD
  \cite{AmestoyDavisDuff96,AmestoyDavisDuff03},
  applied to the pattern of $\m{S}+\m{S}\tr$
  followed by a post-ordering of the supernodal elimination
  tree of $\m{S}+\m{S}\tr$.
  No modification of the column pre-ordering is made during numerical
  factorization.  Threshold partial pivoting is used, with a strong
  preference given to the diagonal entry.  The diagonal entry is chosen if
  $a_{jj} \ge 0.001 \max |a_{*j}|$.  Otherwise, a sparse row is selected,
  using the same method used by the unsymmetric strategy.
  
  \end{itemize}
  
  The symmetric and 2-by-2 strategies, and their automatic selection,
  are new to Version 4.1.  Version 4.0 only used the unsymmetric strategy.
  
  Once the strategy is selected,
  the factorization of the matrix $\m{A}$ is broken down into the factorization
  of a sequence of dense rectangular frontal matrices.  The frontal matrices are
  related to each other by a supernodal column elimination tree, in which each
  node in the tree represents one frontal matrix.  This analysis phase also
  determines upper bounds on the memory usage, the floating-point operation count,
  and the number of nonzeros in the LU factors.
  
  UMFPACK factorizes each {\em chain} of frontal matrices in a single working
  array, similar to how the unifrontal method \cite{dusc:96} factorizes the whole
  matrix.  A chain of frontal matrices is a sequence of fronts where the parent
  of front $i$ is $i$+1 in the supernodal column elimination tree.  For the
  nonsingular matrices factorized with the unsymmetric strategy, there are
  exactly the same number of chains as there are leaves in the supernodal
  column elimination tree.  UMFPACK is an
  outer-product based, right-looking method.  At the $k$-th step of Gaussian
  elimination, it represents the updated submatrix $\m{A}_k$ as an implicit
  summation of a set of dense sub-matrices (referred to as {\em elements},
  borrowing a phrase from finite-element methods) that arise when the frontal
  matrices are factorized and their pivot rows and columns eliminated.
  
  Each frontal matrix represents the elimination of one or more columns;
  each column of $\m{A}$ will be eliminated in a specific frontal matrix,
  and which frontal matrix will be used for which column is determined by
  the pre-analysis phase.  The pre-analysis phase also determines the worst-case
  size of each frontal matrix so that they can hold any candidate pivot column
  and any candidate pivot row.  From the perspective of the analysis phase, any
  candidate pivot column in the frontal matrix is identical (in terms of nonzero
  pattern), and so is any row.  However, the numeric factorization phase has
  more information than the analysis phase.  It uses this information to reorder
  the columns within each frontal matrix to reduce fill-in.  Similarly, since
  the number of nonzeros in each row and column are maintained (more precisely,
  COLMMD-style approximate degrees \cite{GilbertMolerSchreiber}), a pivot row can
  be selected based on sparsity-preserving criteria (low degree) as well as
  numerical considerations (relaxed threshold partial pivoting).
  
  When the symmetric or 2-by-2 strategies are used,
  the column preordering is not refined during numeric factorization.
  Row pivoting for sparsity and numerical accuracy is performed if the
  diagonal entry is too small.
  
  More details of the method, including experimental results, are
  described in \cite{Davis03,Davis03_algo}, available at
  http://www.cise.ufl.edu/tech-reports.
  
  %-------------------------------------------------------------------------------
  \section{Availability}
  %-------------------------------------------------------------------------------
  
  In addition to appearing as a Collected Algorithm of the ACM,
  UMFPACK is available at http://www.cise.ufl.edu/research/sparse.
  It is included as a built-in routine in MATLAB.
  Version 4.0 (in MATLAB 6.5)
  does not have the symmetric or 2-by-2 strategies and it takes
  less advantage of the level-3
  BLAS \cite{DaydeDuff99,ACM679a,ATLAS,GotoVandeGeijn02}.
  Versions 5.0 through v4.1 tend to be much faster than Version 4.0,
  particularly on unsymmetric matrices with mostly symmetric
  nonzero pattern (such as finite element and circuit simulation matrices).
  Version 3.0 and following make
  use of a modified version of COLAMD V2.0 by Timothy A.~Davis, Stefan
  Larimore, John Gilbert, and Esmond Ng.  The original COLAMD V2.1 is available in
  as a built-in routine in MATLAB V6.0 (or later), and at
  http://www.cise.ufl.edu/research/sparse.
  These codes are also available in Netlib \cite{netlib} at
  http://www.netlib.org.
  UMFPACK Versions 2.2.1 and earlier, co-authored with Iain Duff,
  are available at http://www.cise.ufl.edu/research/sparse and as
  MA38 (functionally equivalent to Version 2.2.1) in the Harwell
  Subroutine Library.
  
  %-------------------------------------------------------------------------------
  \section{Primary changes from prior versions}
  %-------------------------------------------------------------------------------
  
  A detailed list of changes is in the {\tt ChangeLog} file.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 5.1.0}
  %-------------------------------------------------------------------------------
  
  Port of MATLAB interface to 64-bit MATLAB.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 5.0.3}
  %-------------------------------------------------------------------------------
  
  Renamed the MATLAB function to {\tt umfpack2}, so as not to confict with
  itself (the MATLAB built-in version of UMFPACK).
  
  %-------------------------------------------------------------------------------
  \subsection{Version 5.0}
  %-------------------------------------------------------------------------------
  
  Changed {\tt long} to {\tt UF\_long}, controlled by the {\tt UFconfig.h}
  file.  A {\tt UF\_long} is normally just {\tt long}, except on the Windows 64
  (WIN64) platform.  In that case, it becomes {\tt \_\_int64}.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 4.6}
  %-------------------------------------------------------------------------------
  
  Added additional options to {\tt umf\_solve.c}.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 4.5}
  %-------------------------------------------------------------------------------
  
  Added function pointers for malloc, calloc, realloc, free, printf, hypot,
  and complex divisiion, so that these functions can be redefined at run-time.
  Added a version number so you can determine the
  version of UMFPACK at run time or compile time.  UMFPACK requires AMD v2.0
  or later.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 4.4}
  %-------------------------------------------------------------------------------
  
  Bug fix in strategy selection in {\tt umfpack\_*\_qsymbolic}.
  Added packed complex case for all complex input/output arguments.
  Added {\tt umfpack\_get\_determinant}.
  Added minimal support for Microsoft Visual Studio
  (the {\tt umf\_multicompile.c} file).
  
  %-------------------------------------------------------------------------------
  \subsection{Version 4.3.1}
  %-------------------------------------------------------------------------------
  
  Minor bug fix in the forward/backsolve.  This bug had the effect of turning
  off iterative refinement when solving $\m{A}\tr\m{x}=\m{b}$ after factorizing
  $\m{A}$.  UMFPACK mexFunction now factorizes $\m{A}\tr$ in its forward-slash
  operation.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 4.3}
  %-------------------------------------------------------------------------------
  
  No changes are visible to the C or MATLAB user, except the presence of
  one new control parameter in the {\tt Control} array,
  and three new statistics in the {\tt Info} array.
  The primary change is the addition of an (optional) drop tolerance.
  
  %-------------------------------------------------------------------------------
  \subsection{Version 4.1}
  %-------------------------------------------------------------------------------
  
  The following is a summary of the main changes that are visible to the C
  or MATLAB user:
  
  \begin{enumerate}
  
  \item New ordering strategies added.  No changes are required in user code
      (either C or MATLAB) to use the new default strategy, which is an automatic
      selection of the unsymmetric, symmetric, or 2-by-2 strategies.
  
  \item Row scaling added.  This is only visible to the MATLAB caller when using
      the form {\tt [L,U,P,Q,R] = umfpack (A)}, to retrieve the LU factors.
      Likewise, it is only visible to the C caller when the LU factors are
      retrieved, or when solving systems with just $\m{L}$ or $\m{U}$.
      New C-callable and MATLAB-callable routines are included to get and to
      apply the scale factors computed by UMFPACK.  Row scaling is enabled by
      default, but can be disabled.  Row scaling usually leads to a better
      factorization, particularly when the symmetric strategy is used.
  
  \item Error code {\tt UMFPACK\_ERROR\_problem\_to\_large} removed.
      Version 4.0 would generate this error when the upper bound memory usage
      exceeded 2GB (for the {\tt int} version), even when the actual memory
      usage was less than this.  The new version properly handles this case,
      and can successfully factorize the matrix if sufficient memory is
      available.
  
  \item New control parameters and statistics provided.
  
  \item The AMD symmetric approximate minimum degree ordering routine added
      \cite{AmestoyDavisDuff96,AmestoyDavisDuff03}.
      It is used by UMFPACK, and can also be called independently from C or
      MATLAB.
  
  \item The {\tt umfpack} mexFunction now returns permutation matrices, not
      permutation vectors, when using the form {\tt [L,U,P,Q] = umfpack (A)}
      or the new form {\tt [L,U,P,Q,R] = umfpack (A)}.
  
  \item New arguments added to the user-callable routines
      {\tt umfpack\_*\_symbolic},
      {\tt umfpack\_*\_qsymbolic},
      {\tt umfpack\_*\_get\_numeric}, and
      {\tt umfpack\_*\_get\_symbolic}.
      The symbolic analysis now makes use of the numerical values of the matrix
      $\m{A}$, to guide the 2-by-2 strategy.  The subsequent matrix passed to
      the numeric factorization step does not have to have the same numerical
      values.  All of the new arguments are optional.  If you do not wish to
      include them, simply pass {\tt NULL} pointers instead.  The 2-by-2 strategy
      will assume all entries are numerically large, for example.
  
  \item New routines added to save and load the {\tt Numeric} and {\tt Symbolic}
      objects to and from a binary file.
  
  \item A Fortran interface added.  It provides access to a subset of
      UMFPACK's features.
  
  \item You can compute an incomplete LU factorization, by dropping small
      entries from $\m{L}$ and $\m{U}$.  By default, no nonzero entry is
      dropped, no matter how small in absolute value.  This feature is new
      to Version 4.3.
  
  \end{enumerate}
  
  %-------------------------------------------------------------------------------
  \section{Using UMFPACK in MATLAB}
  %-------------------------------------------------------------------------------
  
  The easiest way to use UMFPACK is within MATLAB.  Version 4.3 is a built-in
  routine in MATLAB 7.0.4, and is used in {\tt x = A}$\backslash${\tt b} when
  {\tt A} is sparse, square, unsymmetric (or symmetric but not positive definite),
  and with nonzero entries that are not confined in a narrow band.
  It is also used for the {\tt [L,U,P,Q] = lu (A)} usage of {\tt lu}.
  Type {\tt help lu} in MATLAB 6.5 or later for more details.
  
  To use the UMFPACK mexFunction, you must download and compile it,
  since the mexFunction itself is not part of MATLAB.
  The following discussion assumes that
  you have MATLAB Version 6.0 or later (which includes the BLAS, and the
  {\tt colamd} ordering routine).  To compile both the UMFPACK and AMD
  mexFunctions, just type {\tt make} in the Unix system shell,
  while in the {\tt UMFPACK} directory.
  You can also type {\tt umfpack\_make} in MATLAB, if you are in the
  {\tt UMFPACK/MATLAB} directory, or if that directory is in your MATLAB path.
  This works on any system with MATLAB, including Windows.
  See Section~\ref{Install} for more details on how to install UMFPACK.
  Once installed, the UMFPACK mexFunction can analyze, factor, and solve linear
  systems.  Table~\ref{matlab} summarizes some of the more common uses
  of the UMFPACK mexFunction within MATLAB.
  
  An optional input argument can be used to modify the control parameters for
  UMFPACK, and an optional output argument provides statistics on the 
  factorization.
  
  Refer to the AMD User Guide for more details about the AMD mexFunction.
  
  \begin{table}
  \caption{Using UMFPACK's MATLAB interface}
  \label{matlab}
  \vspace{0.1in}
  {\footnotesize
  \begin{tabular}{l|l|l}
  \hline
  Function & Using UMFPACK & MATLAB 6.0 equivalent \\
  \hline
   & & \\
  \begin{minipage}[t]{1.5in}
  Solve $\m{Ax}=\m{b}$.
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  x = umfpack (A,'\',b) ;
  \end{verbatim}
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  x = A \ b ;
  \end{verbatim}
  \end{minipage}
   \\
   & & \\
  \hline
   & & \\
  \begin{minipage}[t]{1.5in}
  Solve $\m{Ax}=\m{b}$ using a different row and column pre-ordering
  (symmetric ordering).
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  S = spones (A) ;
  Q = symamd (S+S') ;
  Control = umfpack ;
  Control (6) = 3 ;
  x = umfpack (A,Q,'\',b,Control) ;
  \end{verbatim}
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  spparms ('autommd',0) ;
  S = spones (A) ;
  Q = symamd (S+S') ;
  x = A (Q,Q) \ b (Q) ;
  x (Q) = x ;
  spparms ('autommd',1) ;
  \end{verbatim}
  \end{minipage}
   \\
   & & \\
  \hline
   & & \\
  \begin{minipage}[t]{1.5in}
  Solve $\m{A}\tr\m{x}\tr = \m{b}\tr$.
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  x = umfpack (b,'/',A) ;
  \end{verbatim}
  Note: $\m{A}$ is factorized.
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  x = b / A ;
  \end{verbatim}
  Note: $\m{A}\tr$ is factorized.
  \end{minipage}
   \\
   & & \\
  \hline
   & & \\
  \begin{minipage}[t]{1.5in}
  Scale and factorize $\m{A}$, then solve $\m{Ax}=\m{b}$.
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  [L,U,P,Q,R] = umfpack (A) ;
  c = P * (R \ b) ;
  x = Q * (U \ (L \ c)) ;
  \end{verbatim}
  \end{minipage}
  &
  \begin{minipage}[t]{2.2in}
  \begin{verbatim}
  [m n] = size (A) ;
  r = full (sum (abs (A), 2)) ;
  r (find (r == 0)) = 1 ;
  R = spdiags (r, 0, m, m) ;
  I = speye (n) ;
  Q = I (:, colamd (A)) ;
  [L,U,P] = lu ((R\A)*Q) ;
  c = P * (R \ b) ;
  x = Q * (U \ (L \ c)) ;
  \end{verbatim}
  \end{minipage}
   \\
   & & \\
  \hline
  \end{tabular}
  }
  \end{table}
  
  Note: in MATLAB 6.5 or later, use {\tt spparms ('autoamd',0)} in addition to
  {\tt spparms ('autommd',0)}, in Table~\ref{matlab}, to turn off MATLAB's
  default reordering.
  
  UMFPACK requires
  {\tt b} to be a dense vector (real or complex) of the appropriate dimension.
  This is more restrictive than what you can do with MATLAB's
  backslash or forward slash.  See {\tt umfpack\_solve} for an M-file that
  removes this restriction.
  This restriction does not apply to the built-in backslash operator
  in MATLAB 6.5 or later, which uses UMFPACK to factorize the matrix.
  You can do this yourself in MATLAB:
  
  {\footnotesize
  \begin{verbatim}
      [L,U,P,Q,R] = umfpack (A) ;
      x = Q * (U \ (L \ (P * (R \ b)))) ;
  \end{verbatim}
  }
  
  or, with no row scaling:
  
  {\footnotesize
  \begin{verbatim}
      [L,U,P,Q] = umfpack (A) ;
      x = Q * (U \ (L \ (P * b))) ;
  \end{verbatim}
  }
  
  The above examples do not make use of the iterative refinement
  that is built into
  {\tt x = }{\tt umfpack (A,'}$\backslash${\tt ',b)}
  however.
  
  MATLAB's {\tt [L,U,P] = lu(A)} returns a lower triangular {\tt L}, an upper
  triangular {\tt U}, and a permutation matrix {\tt P} such that {\tt P*A} is
  equal to {\tt L*U}.  UMFPACK behaves differently.  By default, it scales
  the rows of {\tt A} and reorders the columns of {\tt A} prior to
  factorization, so that {\tt L*U} is equal to {\tt P*(R}$\backslash${\tt A)*Q},
  where {\tt R} is a diagonal sparse matrix of scale factors for the rows
  of {\tt A}.  The scale factors {\tt R} are applied to {\tt A} via the MATLAB
  expression {\tt R}$\backslash${\tt A} to avoid multiplying by
  the reciprocal, which can be numerically inaccurate.
  
  There are more options; you can provide your own column pre-ordering (in which
  case UMFPACK does not call COLAMD or AMD), you can modify other control settings
  (similar to the {\tt spparms} in MATLAB), and you can get various statistics on
  the analysis, factorization, and solution of the linear system.  Type
  {\tt umfpack\_details} and {\tt umfpack\_report} in MATLAB for more
  information.  Two demo M-files are provided.   Just type {\tt umfpack\_simple}
  and {\tt umfpack\_demo} to run them.
  The output of these two programs should be about the same
  as the files {\tt umfpack\_simple.m.out} and {\tt umfpack\_demo.m.out}
  that are provided.
  
  Factorizing {\tt A'} (or {\tt A.'}) and using the transposed factors can
  sometimes be faster than factorizing {\tt A}.  It can also be preferable to
  factorize {\tt A'} if {\tt A} is rectangular.  UMFPACK pre-orders the columns
  to maintain sparsity; the row ordering is not determined until the matrix
  is factorized.  Thus, if {\tt A} is {\tt m} by {\tt n} with rank {\tt m}
  and {\tt m} $<$ {\tt n}, then {\tt umfpack} might not find a factor
  {\tt U} with a zero-free diagonal.  Unless the matrix ill-conditioned or
  poorly scaled, factorizing {\tt A'} in this case will guarantee that both
  factors will have zero-free diagonals.  Here's how you can factorize {\tt A'}
  and get the factors of {\tt A} instead:
  
  \begin{verbatim}
      [l,u,p,q] = umfpack (A') ;
      L = u' ;
      U = l' ;
      P = q ;
      Q = p ;
      clear l u p q
  \end{verbatim}
  
  This is an alternative to {\tt [L,U,P,Q]=umfpack(A)}.
  
  A simple M-file ({\tt umfpack\_btf}) is provided that first permutes the matrix
  to upper block triangular form, using MATLAB's {\tt dmperm} routine, and then
  solves each block.  The LU factors are not returned.  Its usage is simple:
  {\tt x = umfpack\_btf(A,b)}.  Type {\tt help umfpack\_btf} for more options.
  An estimate of the 1-norm of {\tt L*U-P*A*Q} can be computed in MATLAB
  as {\tt lu\_normest(P*A*Q,L,U)}, using the {\tt lu\_normest.m} M-file
  by Hager and Davis \cite{DavisHager99} that is included with the
  UMFPACK distribution.  With row scaling enabled, use
  {\tt lu\_normest(P*(R}$\backslash${\tt A)*Q,L,U)} instead.
  
  One issue you may encounter is how UMFPACK allocates its memory when being used
  in a mexFunction.  One part of its working space is of variable size.   The
  symbolic analysis phase determines an upper bound on the size of this memory,
  but not all of this memory will typically be used in the numerical
  factorization.  UMFPACK tries to allocate a decent amount of working space.
  This is 70\% of the upper bound, by default, for the unsymmetric strategy.
  For the symmetric strategy, the fraction of the upper bound is computed
  automatically (assuming a best-case scenario with no numerical pivoting
  required during numeric factorization).
  If this initial allocation fails, it reduces its request
  and uses less memory.   If the space is not large enough during factorization,
  it is increased via {\tt mxRealloc}.
  
  However, {\tt mxMalloc} and {\tt mxRealloc} abort the {\tt umfpack} mexFunction
  if they fail, so this strategy does not work in MATLAB.
  
  To compute the determinant with UMFPACK:
  
  \begin{verbatim}
      d = umfpack (A, 'det') ;
      [d e] = umfpack (A, 'det') ;
  \end{verbatim}
  
  The first case is identical to MATLAB's {\tt det}.
  The second case returns the determinant in the form
  $d \times 10^e$, which avoids overflow if $e$ is large.
  
  %-------------------------------------------------------------------------------
  \section{Using UMFPACK in a C program}
  \label{C}
  %-------------------------------------------------------------------------------
  
  The C-callable UMFPACK library consists of 32 user-callable routines and one
  include file.  All but three of the routines come in four versions, with
  different sizes of integers and for real or complex floating-point numbers:
  \begin{enumerate}
  \item {\tt umfpack\_di\_*}: real double precision, {\tt int} integers.
  \item {\tt umfpack\_dl\_*}: real double precision, {\tt UF\_long} integers.
  \item {\tt umfpack\_zi\_*}: complex double precision, {\tt int} integers.
  \item {\tt umfpack\_zl\_*}: complex double precision, {\tt UF\_long} integers.
  \end{enumerate}
  where {\tt *} denotes the specific name of one of the routines.
  Routine names beginning with {\tt umf\_} are internal to the package,
  and should not be called by the user.  The include file {\tt umfpack.h}
  must be included in any C program that uses UMFPACK.
  The other three routines are the same for all four versions.
  
  In addition, the C-callable AMD library distributed with UMFPACK
  includes 4 user-callable routines (in two versions with {\tt int} and
  {\tt UF\_long} integers) and one include file.  Refer to the AMD documentation
  for more details.
  
  Use only one version for any one problem; do not attempt to use one version
  to analyze the matrix and another version to factorize the matrix, for example.
  
  The notation {\tt umfpack\_di\_*} refers to all user-callable routines
  for the real double precision and {\tt int} integer case.  The notation
  {\tt umfpack\_*\_numeric}, for example, refers all four versions
  (real/complex, int/UF\_long) of a single operation
  (in this case numeric factorization).
  
  %-------------------------------------------------------------------------------
  \subsection{The size of an integer}
  %-------------------------------------------------------------------------------
  
  The {\tt umfpack\_di\_*} and {\tt umfpack\_zi\_*} routines use {\tt int} integer
  arguments; those starting with {\tt umfpack\_dl\_} or {\tt umfpack\_zl\_}
  use {\tt UF\_long} integer arguments.  If you compile UMFPACK in the standard
  ILP32 mode (32-bit {\tt int}'s, {\tt long}'s, and pointers) then the versions
  are essentially identical.  You will be able to solve problems using up to 2GB
  of memory.  If you compile UMFPACK in the standard LP64 mode, the size of an
  {\tt int} remains 32-bits, but the size of a {\tt long} and a pointer both get
  promoted to 64-bits.  In the LP64 mode, the {\tt umfpack\_dl\_*}
  and {\tt umfpack\_zl\_*} routines can solve huge
  problems (not limited to 2GB), limited of course by the amount of available
  memory.  The only drawback to the 64-bit mode is that not all BLAS libraries
  support 64-bit integers.  This limits the performance you will obtain.
  Those that do support 64-bit integers are specific to particular
  architectures, and are not portable.  UMFPACK and AMD should be compiled
  in the same mode.
  If you compile UMFPACK and AMD in the LP64 mode,
  be sure to add {\tt -DLP64} to the compilation command.  See the examples in
  the {\tt UFconfig/UFconfig.mk} file.
  
  %-------------------------------------------------------------------------------
  \subsection{Real and complex floating-point}
  %-------------------------------------------------------------------------------
  
  The {\tt umfpack\_di\_*} and {\tt umfpack\_dl\_*} routines take (real) double
  precision arguments, and return double precision arguments.  In the
  {\tt umfpack\_zi\_*} and {\tt umfpack\_zl\_*} routines, these same arguments
  hold the real part of the matrices; and second double precision arrays hold
  the imaginary part of the input and output matrices.  Internally, complex
  numbers are stored in arrays with their real and imaginary parts interleaved,
  as required by the BLAS (``packed'' complex form).
  
  New to Version 4.4 is the option of providing input/output arguments
  in packed complex form.
  
  %-------------------------------------------------------------------------------
  \subsection{Primary routines, and a simple example}
  %-------------------------------------------------------------------------------
  
  Five primary UMFPACK routines are required to factorize $\m{A}$ or
  solve $\m{Ax}=\m{b}$.  They are fully described in Section~\ref{Primary}:
  
  \begin{itemize}
  \item {\tt umfpack\_*\_symbolic}:
  
      Pre-orders the columns of $\m{A}$ to reduce fill-in.
      Returns an opaque {\tt Symbolic} object as a {\tt void *}
      pointer.  The object contains the symbolic analysis and is needed for the
      numeric factorization.  This routine requires only $O(|\m{A}|)$ space,
      where $|\m{A}|$ is the number of nonzero entries in the matrix.  It computes
      upper bounds on the nonzeros in $\m{L}$ and $\m{U}$, the floating-point
      operations required, and the memory usage of {\tt umfpack\_*\_numeric}.  The
      {\tt Symbolic} object is small; it contains just the column pre-ordering,
      the supernodal column elimination tree, and information about each frontal
      matrix. It is no larger than about $13n$ integers if $\m{A}$ is
      $n$-by-$n$.
  
  \item {\tt umfpack\_*\_numeric}:
  
      Numerically scales and then factorizes a sparse matrix into
      $\m{PAQ}$, $\m{PRAQ}$, or $\m{PR}^{-1}\m{AQ}$ into the product $\m{LU}$,
      where
      $\m{P}$ and $\m{Q}$ are permutation matrices, $\m{R}$ is a diagonal
      matrix of scale factors, $\m{L}$ is lower triangular with unit diagonal,
      and $\m{U}$ is upper triangular.  Requires the
      symbolic ordering and analysis computed by {\tt umfpack\_*\_symbolic}
      or {\tt umfpack\_*\_qsymbolic}.
      Returns an opaque {\tt Numeric} object as a
      {\tt void *} pointer.  The object contains the numerical factorization and
      is used by {\tt umfpack\_*\_solve}.  You can factorize a new matrix with a
      different values (but identical pattern) as the matrix analyzed by
      {\tt umfpack\_*\_symbolic} or {\tt umfpack\_*\_qsymbolic} by re-using the
      {\tt Symbolic} object (this feature is available when using UMFPACK in a
      C or Fortran program, but not in MATLAB).
      The matrix
      $\m{U}$ will have zeros on the diagonal if $\m{A}$ is singular; this
      produces a warning, but the factorization is still valid.
  
  \item {\tt umfpack\_*\_solve}:
  
      Solves a sparse linear system ($\m{Ax}=\m{b}$, $\m{A}\tr\m{x}=\m{b}$, or
      systems involving just $\m{L}$ or $\m{U}$), using the numeric factorization
      computed by {\tt umfpack\_*\_numeric}.  Iterative refinement with sparse
      backward error \cite{ardd:89} is used by default.  The matrix $\m{A}$ must
      be square.  If it is singular, then a divide-by-zero will occur, and your
      solution with contain IEEE Inf's or NaN's in the appropriate places.
  
  \item {\tt umfpack\_*\_free\_symbolic}:
  
      Frees the {\tt Symbolic} object created by {\tt umfpack\_*\_symbolic}
      or {\tt umfpack\_*\_qsymbolic}.
  
  \item {\tt umfpack\_*\_free\_numeric}:
  
      Frees the {\tt Numeric} object created by {\tt umfpack\_*\_numeric}.
  
  \end{itemize}
  
  Be careful not to free a {\tt Symbolic} object with
  {\tt umfpack\_*\_free\_numeric}.  Nor should you attempt to free a {\tt Numeric}
  object with {\tt umfpack\_*\_free\_symbolic}.
  Failure to free these objects will lead to memory leaks.
  
  The matrix $\m{A}$ is represented in compressed column form, which is
  identical to the sparse matrix representation used by MATLAB.  It consists
  of three or four arrays, where the matrix is {\tt m}-by-{\tt n},
  with {\tt nz} entries.  For the {\tt int} version of UMFPACK:
  
  {\footnotesize
  \begin{verbatim}
       int Ap [n+1] ;
       int Ai [nz] ;
       double Ax [nz] ;
  \end{verbatim}
  }
  
  For the {\tt UF\_long} version of UMFPACK:
  
  {\footnotesize
  \begin{verbatim}
       UF_long Ap [n+1] ;
       UF_long Ai [nz] ;
       double Ax [nz] ;
  \end{verbatim}
  }
  
  The complex versions add another array for the imaginary part:
  
  {\footnotesize
  \begin{verbatim}
       double Az [nz] ;
  \end{verbatim}
  }
  
  Alternatively, if {\tt Az} is {\tt NULL},
  the real part of the $k$th entry is located in
  {\tt Ax[2*k]} and the imaginary part is located in
  {\tt Ax[2*k+1]}, and the {\tt Ax} array is of size {\tt 2*nz}.
  
  All nonzeros are entries, but an entry may be numerically zero.  The row indices
  of entries in column {\tt j} are stored in
      {\tt Ai[Ap[j]} \ldots {\tt Ap[j+1]-1]}.
  The corresponding numerical values are stored in
      {\tt Ax[Ap[j]} \ldots {\tt Ap[j+1]-1]}.
  The imaginary part, for the complex versions, is stored in
      {\tt Az[Ap[j]} \ldots {\tt Ap[j+1]-1]}
      (see above for the packed complex case).
  
  No duplicate row indices may be present, and the row indices in any given
  column must be sorted in ascending order.  The first entry {\tt Ap[0]} must be
  zero.  The total number of entries in the matrix is thus {\tt nz = Ap[n]}.
  Except for the fact that extra zero entries can be included, there is thus a
  unique compressed column representation of any given matrix $\m{A}$.
  For a more flexible method for providing an input matrix to UMFPACK,
  see Section~\ref{triplet}.
  
  Here is a simple main program, {\tt umfpack\_simple.c}, that illustrates the
  basic usage of UMFPACK.  See Section~\ref{Synopsis} for a short description
  of each calling sequence, including a list of options for the first
  argument of {\tt umfpack\_di\_solve}.
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_simple.c via sed
  \end{verbatim}
  }
  
  The {\tt Ap}, {\tt Ai}, and {\tt Ax} arrays represent the matrix
  \[
  \m{A} = \left[
  \begin{array}{rrrrr}
   2 &  3 &  0 &  0 &  0 \\
   3 &  0 &  4 &  0 &  6 \\
   0 & -1 & -3 &  2 &  0 \\
   0 &  0 &  1 &  0 &  0 \\
   0 &  4 &  2 &  0 &  1 \\
  \end{array}
  \right].
  \]
  and the solution to $\m{Ax}=\m{b}$ is $\m{x} = [1 \, 2 \, 3 \, 4 \, 5]\tr$.
  The program uses default control settings and does not return any statistics
  about the ordering, factorization, or solution ({\tt Control} and {\tt Info}
  are both {\tt (double *) NULL}).  It also ignores the status value returned by
  most user-callable UMFPACK routines.
  
  %-------------------------------------------------------------------------------
  \subsection{A note about zero-sized arrays}
  %-------------------------------------------------------------------------------
  
  UMFPACK uses many user-provided arrays of
  size {\tt m} or {\tt n} (the order of the matrix), and of size
  {\tt nz} (the number of nonzeros in a matrix).  UMFPACK does not handle
  zero-dimensioned arrays;
  it returns an error code if {\tt m} or {\tt n}
  are zero.  However, {\tt nz} can be zero, since all singular matrices are
  handled correctly.  If you attempt to {\tt malloc} an array of size {\tt nz}
  = 0, however, {\tt malloc} will return a null pointer which UMFPACK will report
  as a missing argument.  If you {\tt malloc} an array of
  size {\tt nz} to pass to UMFPACK, make sure that you handle the {\tt nz} = 0
  case correctly (use a size equal to the maximum of {\tt nz} and 1, or use a
  size of {\tt nz+1}).
  
  %-------------------------------------------------------------------------------
  \subsection{Alternative routines}
  %-------------------------------------------------------------------------------
  
  Three alternative routines are provided that modify UMFPACK's default
  behavior.  They are fully described in Section~\ref{Alternative}:
  
  \begin{itemize}
  \item {\tt umfpack\_*\_defaults}:
  
      Sets the default control parameters in the {\tt Control} array.  These can
      then be modified as desired before passing the array to the other UMFPACK
      routines.  Control parameters are summarized in Section~\ref{control_param}.
      Three particular parameters deserve special notice.
      UMFPACK uses relaxed partial pivoting, where a candidate pivot entry is
      numerically acceptable if its magnitude is greater than or equal to a
      tolerance parameter times the magnitude of the largest entry in the same
      column.  The parameter {\tt Control [UMFPACK\_PIVOT\_TOLERANCE]} has a
      default value of 0.1, and is used for the unsymmetric strategy.
      For complex matrices, a cheap approximation of the absolute value is
      used for the threshold pivoting test
      ($|a| \approx |a_{\mbox{real}}|+|a_{\mbox{imag}}|$).
  
      For the symmetric strategy, a second tolerance is used for diagonal
      entries: 
  ewline {\tt Control [UMFPACK\_SYM\_PIVOT\_TOLERANCE]}, with
      a default value of 0.001.  The first parameter (with a default of 0.1)
      is used for any off-diagonal candidate pivot entries.
  
      These two parameters may be too small for some matrices, particularly for
      ill-conditioned or poorly scaled ones.  With the default pivot tolerances
      and default iterative refinement,
          {\tt x = umfpack (A,'}$\backslash${\tt ',b)}
      is just as accurate as (or more accurate) than
          {\tt x = A}$\backslash${\tt b}
      in MATLAB 6.1 for nearly all matrices.
  
      If {\tt Control [UMFPACK\_PIVOT\_TOLERANCE]} is zero, than any
      nonzero entry is acceptable as a pivot (this is changed from Version 4.0,
      which treated a value of 0.0 the same as 1.0).  If the symmetric strategy is
      used, and {\tt Control [UMFPACK\_SYM\_PIVOT\_TOLERANCE]} is zero, then any
      nonzero entry on the diagonal is accepted as a pivot.  Off-diagonal pivoting
      will still occur if the diagonal entry is exactly zero.  The
      {\tt Control [UMFPACK\_SYM\_PIVOT\_TOLERANCE]} parameter is new to Version
      4.1.  It is similar in function to the pivot tolerance for left-looking
      methods (the MATLAB {\tt THRESH} option in {\tt [L,U,P] = lu (A, THRESH)},
      and the pivot tolerance parameter in SuperLU).
  
      The parameter {\tt Control [UMFPACK\_STRATEGY]} can be used to bypass
      UMFPACK's automatic strategy selection.  The automatic strategy nearly
      always selects the best method.  When it does not, the different methods
      nearly always give about the same quality of results.  There may be
      cases where the automatic strategy fails to pick a good strategy. Also,
      you can save some computing time if you know the right strategy for your
      set of matrix problems.
  
  \item {\tt umfpack\_*\_qsymbolic}:
  
      An alternative to {\tt umfpack\_*\_symbolic}.  Allows the user to specify
      his or her own column pre-ordering, rather than using the default COLAMD
      or AMD pre-orderings.  For example, a graph partitioning-based order
      of $\m{A}\tr\m{A}$ would be suitable for UMFPACK's unsymmetric strategy.
      A partitioning of $\m{A}+\m{A}\tr$ would be suitable for UMFPACK's
      symmetric or 2-by-2 strategies.
  
  \item {\tt umfpack\_*\_wsolve}:
  
      An alternative to {\tt umfpack\_*\_solve} which does not dynamically
      allocate any memory.  Requires the user to pass two additional work
      arrays.
  
  \end{itemize}
  
  %-------------------------------------------------------------------------------
  \subsection{Matrix manipulation routines}
  \label{triplet}
  %-------------------------------------------------------------------------------
  
  The compressed column data structure is compact, and simplifies the UMFPACK
  routines that operate on the sparse matrix $\m{A}$.  However, it can be
  inconvenient for the user to generate.  Section~\ref{Manipulate} presents the
  details of routines for manipulating sparse matrices in {\em triplet} form,
  compressed column form, and compressed row form (the transpose of the
  compressed column form).  The triplet form of a matrix consists of three or
  four arrays.  For the {\tt int} version of UMFPACK:
  
  {\footnotesize
  \begin{verbatim}
       int Ti [nz] ;
       int Tj [nz] ;
       double Tx [nz] ;
  \end{verbatim}
  }
  
  For the {\tt UF\_long} version:
  
  {\footnotesize
  \begin{verbatim}
       UF_long Ti [nz] ;
       UF_long Tj [nz] ;
       double Tx [nz] ;
  \end{verbatim}
  }
  
  The complex versions use another array to hold the imaginary part:
  
  {\footnotesize
  \begin{verbatim}
       double Tz [nz] ;
  \end{verbatim}
  }
  
  The {\tt k}-th triplet is $(i,j,a_{ij})$, where $i =$ {\tt Ti[k]},
  $j =$ {\tt Tj[k]}, and $a_{ij} =$ {\tt Tx[k]}.  For the complex versions,
  {\tt Tx[k]} is the real part of $a_{ij}$ and
  {\tt Tz[k]} is the imaginary part.
  The triplets can be in any
  order in the {\tt Ti}, {\tt Tj}, and {\tt Tx} arrays (and {\tt Tz} for
  the complex versions), and duplicate entries may
  exist.  
  If {\tt Tz} is NULL, then the array {\tt Tx} becomes of size {\tt 2*nz},
  and the real and imaginary parts of the
  {\tt k}-th triplet are located in {\tt Tx[2*k]} and {\tt Tx[2*k+1]},
  respectively.
  Any duplicate entries are summed when the triplet form is converted to
  compressed column form.  This is a convenient way to create a matrix arising in
  finite-element methods, for example.
  
  Four routines are provided for manipulating sparse matrices:
  
  \begin{itemize}
  \item {\tt umfpack\_*\_triplet\_to\_col}:
  
      Converts a triplet form of a matrix to compressed column form (ready for
      input to 
  ewline
      {\tt umfpack\_*\_symbolic}, {\tt umfpack\_*\_qsymbolic}, and
      {\tt umfpack\_*\_numeric}).  Identical to {\tt A = spconvert(i,j,x)} in
      MATLAB, except that zero entries are not removed, so that the pattern of
      entries in the compressed column form of $\m{A}$ are fully under user
      control.  This is important if you want to factorize a new matrix with the
      {\tt Symbolic} object from a prior matrix with the same pattern as the new
      one.
  
  \item {\tt umfpack\_*\_col\_to\_triplet}:
  
      The opposite of {\tt umfpack\_*\_triplet\_to\_col}.  Identical to
      {\tt [i,j,x] = find(A)} in MATLAB, except that numerically zero entries
      may be included.
  
  \item {\tt umfpack\_*\_transpose}:
  
      Transposes and optionally permutes a column form matrix \cite{Gustavson78}.
      Identical to
      {\tt R = A(P,Q)'} (linear algebraic transpose, using the complex conjugate)
      or {\tt R = A(P,Q).'} (the array transpose)
      in MATLAB, except for the presence of numerically zero entries.
  
      Factorizing $\m{A}\tr$ and then solving $\m{Ax}=\m{b}$ with the transposed
      factors can sometimes be much faster or much slower than factorizing
      $\m{A}$.  It is highly dependent on your particular matrix.
  
  \item {\tt umfpack\_*\_scale}:
  
      Applies the row scale factors to a user-provided vector.  This is not
      required to solve the sparse linear system $\m{Ax}=\m{b}$ or
      $\m{A}\tr\m{x}=\m{b}$, since {\tt umfpack\_*\_solve} applies the scale
      factors for those systems.
  
  \end{itemize}
  
  It is quite easy to add matrices in triplet form, subtract them, transpose
  them, permute them, construct a submatrix, and multiply a triplet-form matrix
  times a vector.  UMFPACK does not provide code for these basic operations,
  however.  Refer to the discussion of
  {\tt umfpack\_*\_triplet\_to\_col} in Section~\ref{Manipulate} for more details
  on how to compute these operations in your own code.
  The only primary matrix operation not provided by UMFPACK is the
  multiplication of two sparse matrices \cite{Gustavson78}.
  The CHOLMOD provides many of these matrix operations, which
  can then be used in conjunction with UMFPACK.
  See my web page for details.
  
  %-------------------------------------------------------------------------------
  \subsection{Getting the contents of opaque objects}
  %-------------------------------------------------------------------------------
  
  There are cases where you may wish to do more with the LU factorization
  of a matrix than solve a linear system.  The opaque {\tt Symbolic} and
  {\tt Numeric} objects are just that - opaque.  You cannot do anything with them
  except to pass them back to subsequent calls to UMFPACK.  Three routines
  are provided for copying their contents into user-provided arrays using simpler
  data structures.  Four routines are provided for saving and loading the
  {\tt Numeric} and {\tt Symbolic} objects to/from binary files.
  An additional routine is provided that computes the determinant.
  They are fully described in Section~\ref{Get}:
  
  \begin{itemize}
  \item {\tt umfpack\_*\_get\_lunz}:
  
      Returns the number of nonzeros in $\m{L}$ and $\m{U}$.
  
  \item {\tt umfpack\_*\_get\_numeric}:
  
      Copies $\m{L}$, $\m{U}$, $\m{P}$, $\m{Q}$, and $\m{R}$
      from the {\tt Numeric} object
      into arrays provided by the user.  The matrix $\m{L}$ is returned in
      compressed row form (with the column indices in each row sorted in ascending
      order).  The matrix $\m{U}$ is returned in compressed column form (with
      sorted columns).  There are no explicit zero entries in $\m{L}$ and $\m{U}$,
      but such entries may exist in the {\tt Numeric} object.  The permutations
      $\m{P}$ and $\m{Q}$ are represented as permutation vectors, where
      {\tt P[k] = i} means that row {\tt i} of the original matrix is the
      the {\tt k}-th row of $\m{PAQ}$, and where
      {\tt Q[k] = j} means that column {\tt j} of the original matrix is the
      {\tt k}-th column of $\m{PAQ}$.  This is identical to how MATLAB uses
      permutation vectors (type {\tt help colamd} in MATLAB 6.1 or later).
  
  \item {\tt umfpack\_*\_get\_symbolic}:
  
      Copies the contents of the {\tt Symbolic} object (the initial row and column
      preordering, supernodal column elimination tree, and information
      about each frontal matrix) into arrays provided by the user.
  
  \item {\tt umfpack\_*\_get\_determinant}:
  
      Computes the determinant from the diagonal of $\m{U}$ and the permutations
      $\m{P}$ and $\m{Q}$.  This is mostly of theoretical interest.
      It is not a good test to determine if your matrix is singular or not.
  
  \item {\tt umfpack\_*\_save\_numeric}:
  
      Saves a copy of the {\tt Numeric} object to a file, in binary format.
  
  \item {\tt umfpack\_*\_load\_numeric}:
  
      Creates a {\tt Numeric} object by loading it from a file created
      by {\tt umfpack\_*\_save\_numeric}.
  
  \item {\tt umfpack\_*\_save\_symbolic}:
  
      Saves a copy of the {\tt Symbolic} object to a file, in binary format.
  
  \item {\tt umfpack\_*\_load\_symbolic}:
  
      Creates a {\tt Symbolic} object by loading it from a file created
      by {\tt umfpack\_*\_save\_symbolic}.
  
  \end{itemize}
  
  UMFPACK itself does not make use of these routines;
  they are provided solely for returning the contents of the opaque
  {\tt Symbolic} and {\tt Numeric} objects to the user, and saving/loading
  them to/from a binary file.  None of them do any computation, except for
  {\tt umfpack\_*\_get\_determinant}.
  
  %-------------------------------------------------------------------------------
  \subsection{Reporting routines}
  \label{Reporting}
  %-------------------------------------------------------------------------------
  
  None of the UMFPACK routines discussed so far prints anything, even when an
  error occurs.  UMFPACK provides you with nine routines for printing the input
  and output arguments (including the {\tt Control} settings and {\tt Info}
  statistics) of UMFPACK routines discussed above.  They are fully described in
  Section~\ref{Report}:
  
  \begin{itemize}
  \item {\tt umfpack\_*\_report\_status}:
  
      Prints the status (return value) of other {\tt umfpack\_*} routines.
  
  \item {\tt umfpack\_*\_report\_info}:
  
      Prints the statistics returned in the {\tt Info} array by
      {\tt umfpack\_*\_*symbolic},
      {\tt umfpack\_*\_numeric}, and {\tt umfpack\_*\_*solve}.
  
  \item {\tt umfpack\_*\_report\_control}:
  
      Prints the {\tt Control} settings.
  
  \item {\tt umfpack\_*\_report\_matrix}:
  
      Verifies and prints a compressed column-form or compressed row-form sparse
      matrix.
  
  \item {\tt umfpack\_*\_report\_triplet}:
  
      Verifies and prints a matrix in triplet form.
  
  \item {\tt umfpack\_*\_report\_symbolic}:
  
      Verifies and prints a {\tt Symbolic} object.
  
  \item {\tt umfpack\_*\_report\_numeric}:
  
      Verifies and prints a {\tt Numeric} object.
  
  \item {\tt umfpack\_*\_report\_perm}:
  
      Verifies and prints a permutation vector.
  
  \item {\tt umfpack\_*\_report\_vector}:
  
      Verifies and prints a real or complex vector.
  
  \end{itemize}
  
  The {\tt umfpack\_*\_report\_*} routines behave slightly differently when
  compiled
  into the C-callable UMFPACK library than when used in the MATLAB mexFunction.
  MATLAB stores its sparse matrices using the same compressed column data
  structure discussed above, where row and column indices of an $m$-by-$n$
  matrix are in the range 0 to $m-1$ or $n-1$, respectively\footnote{Complex
  matrices in MATLAB use the split array form, with one {\tt double} array
  for the real part and another array for the imaginary part.  UMFPACK
  supports that format, as well as the packed complex format (new to Version 4.4).}
  It prints them as if they are in the range 1 to $m$ or $n$.
  The UMFPACK mexFunction behaves the same way.
  
  You can control how much the {\tt umfpack\_*\_report\_*} routines print by
  modifying the {\tt Control [UMFPACK\_PRL]} parameter.  Its default value is 1.
  Here is a summary of how the routines use this print level parameter:
  
  \begin{itemize}
  \item {\tt umfpack\_*\_report\_status}:
  
      No output if the print level is 0 or less, even when an error occurs.
      If 1, then error messages are printed, and nothing is printed if
      the status is {\tt UMFPACK\_OK}.  A warning message is printed if
      the matrix is singular.  If 2 or more, then the status is always
      printed.  If 4 or more, then the UMFPACK Copyright is printed.
      If 6 or more, then the UMFPACK License is printed.  See also the first page
      of this User Guide for the Copyright and License.
  
  \item {\tt umfpack\_*\_report\_control}:
  
      No output if the print level is 1 or less.  If 2 or more, all of
      {\tt Control} is printed.
  
  \item {\tt umfpack\_*\_report\_info}:
  
      No output if the print level is 1 or less.  If 2 or more, all of
      {\tt Info} is printed.
  
  \item all other {\tt umfpack\_*\_report\_*} routines:
  
      If the print level is 2 or less, then these routines return silently without
      checking their inputs.  If 3 or more, the inputs are fully verified and a
      short status summary is printed.  If 4, then the first few entries of the
      input arguments are printed.  If 5, then all of the input arguments are
      printed.
  
  \end{itemize}
  
  This print level parameter has an additional effect on the MATLAB mexFunction.
  If zero, then no warnings of singular or nearly singular matrices are
  printed (similar to the MATLAB commands
  {\tt warning off MATLAB:singularMatrix} and
  {\tt warning off MATLAB:nearlySingularMatrix}).
  
  %-------------------------------------------------------------------------------
  \subsection{Utility routines}
  %-------------------------------------------------------------------------------
  
  UMFPACK v4.0 included a routine that returns the time used by the process,
  {\tt umfpack\_timer}.  The routine uses either {\tt getrusage} (which is
  preferred), or the ANSI C {\tt clock} routine if that is not available.
  It is fully described in Section~\ref{Utility}.  It is still available in
  UMFPACK v4.1 and following, but not used internally.
  Two new timing routines are provided in UMFPACK Version 4.1 and following,
  {\tt umfpack\_tic} and {\tt umfpack\_toc}.  They use POSIX-compliant
  {\tt sysconf} and {\tt times} routines to find both the CPU time
  and wallclock time.
  These three routines are the only user-callable
  routine that is identical in all four {\tt int}/{\tt UF\_long}, real/complex
  versions (there is no {\tt umfpack\_di\_timer} routine, for example).
  
  %-------------------------------------------------------------------------------
  \subsection{Control parameters}
  \label{control_param}
  %-------------------------------------------------------------------------------
  
  UMFPACK uses an optional {\tt double} array (currently of size 20)
  to modify its control parameters.  If you pass {\tt (double *) NULL} instead
  of a {\tt Control} array, then defaults are used.  These defaults provide
  nearly optimal performance (both speed, memory usage, and numerical accuracy)
  for a wide range of matrices from real applications.
  
  This array will almost certainly grow in size in future releases,
  so be sure to dimension your {\tt Control} array to be of size
  {\tt UMFPACK\_CONTROL}.  That constant is currently defined to be 20,
  but may increase in future versions, since all 20 entries are in use.
  
  The contents of this array may be modified by the user
  (see {\tt umfpack\_*\_defaults}).  Each
  user-callable routine includes a complete description of how each control
  setting modifies its behavior.  Table~\ref{control} summarizes the entire
  contents of the {\tt Control} array.
  Note that ANSI C uses 0-based indexing, while MATLAB uses 1-based
  indexing.  Thus, {\tt Control(1)} in MATLAB is the same as
  {\tt Control[0]} or {\tt Control[UMFPACK\_PRL]} in ANSI C.
  
  \begin{table}
  \caption{UMFPACK Control parameters}
  \label{control}
  {\footnotesize
  \begin{tabular}{llll}
  \hline
  
  MATLAB & ANSI C & default & description \\
  \hline
  {\tt Control(1)}  & {\tt Control[UMFPACK\_PRL]} & 1 & printing level \\
  {\tt Control(2)}  & {\tt Control[UMFPACK\_DENSE\_ROW]} & 0.2 & dense row parameter \\
  {\tt Control(3)}  & {\tt Control[UMFPACK\_DENSE\_COL]} & 0.2 & dense column parameter \\
  {\tt Control(4)}  & {\tt Control[UMFPACK\_PIVOT\_TOLERANCE]} & 0.1 & partial pivoting tolerance \\
  {\tt Control(5)}  & {\tt Control[UMFPACK\_BLOCK\_SIZE]} & 32 & BLAS block size \\
  {\tt Control(6)}  & {\tt Control[UMFPACK\_STRATEGY]} & 0 (auto) & select strategy \\
  {\tt Control(7)}  & {\tt Control[UMFPACK\_ALLOC\_INIT]} & 0.7 & initial memory allocation  \\
  {\tt Control(8)}  & {\tt Control[UMFPACK\_IRSTEP]} & 2 & max iter. refinement steps \\
  {\tt Control(13)} & {\tt Control[UMFPACK\_2BY2\_TOLERANCE]} & 0.01 & defines ``large'' entries \\
  {\tt Control(14)} & {\tt Control[UMFPACK\_FIXQ]} & 0 (auto) & fix or modify Q \\
  {\tt Control(15)} & {\tt Control[UMFPACK\_AMD\_DENSE]} & 10 & AMD dense row/column parameter \\
  {\tt Control(16)} & {\tt Control[UMFPACK\_SYM\_PIVOT\_TOLERANCE]} & 0.001 & for diagonal entries \\
  {\tt Control(17)} & {\tt Control[UMFPACK\_SCALE]} & 1 (sum) & row scaling (none, sum, or max) \\
  {\tt Control(18)} & {\tt Control[UMFPACK\_FRONT\_ALLOC\_INIT]} & 0.5 & frontal matrix allocation ratio \\
  {\tt Control(19)} & {\tt Control[UMFPACK\_DROPTOL]} & 0 & drop tolerance \\
  {\tt Control(20)} & {\tt Control[UMFPACK\_AGGRESSIVE]} & 1 (yes) & aggressive absorption \\
   & & & in AMD and COLAMD \\
  %
  \hline
  \multicolumn{4}{l}{Can only be changed at compile time:} \\
  {\tt Control(9)}  & {\tt Control[UMFPACK\_COMPILED\_WITH\_BLAS]} & - & true if BLAS is used \\
  {\tt Control(10)} & {\tt Control[UMFPACK\_COMPILED\_FOR\_MATLAB]} & - & true for mexFunction \\
  {\tt Control(11)} & {\tt Control[UMFPACK\_COMPILED\_WITH\_GETRUSAGE]} & - & 1 if {\tt getrusage} used \\
  {\tt Control(12)} & {\tt Control[UMFPACK\_COMPILED\_IN\_DEBUG\_MODE]} & - & true if debug mode enabled \\
  \hline
  \end{tabular}
  }
  \end{table}
  
  Let $\alpha_r = ${\tt Control [UMFPACK\_DENSE\_ROW]},
      $\alpha_c = ${\tt Control [UMFPACK\_DENSE\_COL]}, and
      $\alpha = ${\tt Control [UMFPACK\_AMD\_DENSE]}.
  Suppose the submatrix $\m{S}$, obtained after eliminating pivots with
  zero Markowitz cost, is $m$-by-$n$.
  Then a row is considered ``dense'' if it has more than
  $\max (16, 16 \alpha_r \sqrt{n})$ entries.
  A column is considered ``dense'' if it has more than
  $\max (16, 16 \alpha_c \sqrt{m})$ entries.
  These rows and columns are treated different in COLAMD and during numerical
  factorization.   In COLAMD, dense columns are placed last in their natural
  order, and dense rows are ignored.  During numerical factorization, dense
  rows are stored differently.
  In AMD, a row/column of the square matrix $\m{S}+\m{S}\tr$ is
  considered ``dense'' if it has more than $\max (16, \alpha \sqrt{n})$ entries.
  These rows/columns are placed last in AMD's output ordering.
  For more details on the control parameters, refer to the documentation of
  {\tt umfpack\_*\_qsymbolic}, {\tt umfpack\_*\_numeric}, {\tt umfpack\_*\_solve},
  and the {\tt umfpack\_*\_report\_*} routines,
  in Sections~\ref{Primary}~through~\ref{Report}, below.
  
  %-------------------------------------------------------------------------------
  \subsection{Error codes}
  \label{error_codes}
  %-------------------------------------------------------------------------------
  
  Many of the routines return a {\tt status} value.
  This is also returned as the first entry in the {\tt Info} array, for
  those routines with that argument.  The following list summarizes
  all of the error codes in UMFPACK.  Each error code is given a
  specific name in the {\tt umfpack.h} include file, so you can use
  those constants instead of hard-coded values in your program.
  Future versions may report additional error codes.
  
  A value of zero means everything was successful, and the matrix is
  non-singular.  A value greater than zero means the routine was successful,
  but a warning occurred.
  A negative value means the routine was not successful.
  In this case, no {\tt Symbolic} or {\tt Numeric} object was created.
  
  \begin{itemize}
  \item {\tt UMFPACK\_OK},  (0):  UMFPACK was successful.
  
  \item {\tt UMFPACK\_WARNING\_singular\_matrix},  (1):  Matrix is singular.
      There are exact zeros on the diagonal of $\m{U}$.
  
  \item {\tt UMFPACK\_WARNING\_determinant\_underflow}, (2):
      The determinant is nonzero, but smaller in magnitude than
      the smallest positive floating-point number.
  
  \item {\tt UMFPACK\_WARNING\_determinant\_overflow}, (3):
      The determinant is larger in magnitude than
      the largest positive floating-point number (IEEE Inf).
  
  \item {\tt UMFPACK\_ERROR\_out\_of\_memory},  (-1):  Not enough memory.
      The ANSI C {\tt malloc} or {\tt realloc} routine failed.
  
  \item {\tt UMFPACK\_ERROR\_invalid\_Numeric\_object},  (-3):  
      Routines that take a {\tt Numeric} object as input (or load it
      from a file) check this object and return this error code if it is
      invalid.  This can be caused by a memory leak or overrun in your
      program, which can overwrite part of the Numeric object.  It can also
      be caused by passing a Symbolic object by mistake, or some other pointer.
      If you try to factorize a matrix using one version of UMFPACK and
      then use the factors in another version, this error code will trigger as
      well.  You cannot factor your matrix using
      version 4.0 and then solve with version 4.1, for example.\footnote{
      Exception: v4.3, v4.3.1, and v4.4 use identical data structures
      for the {\tt Numeric} and {\tt Symbolic} objects}.
      You cannot use different precisions of the same version
      (real and complex, for example).
      It is possible for the {\tt Numeric} object to be corrupted by your
      program in subtle ways that are not detectable by this quick check.
      In this case, you may see an
      {\tt UMFPACK\_ERROR\_different\_pattern} error code, or even an
      {\tt UMFPACK\_ERROR\_internal\_error}.
  
  \item {\tt UMFPACK\_ERROR\_invalid\_Symbolic\_object},  (-4):  
      Routines that take a {\tt Symbolic} object as input (or load it
      from a file) check this object and return this error code if it is
      invalid.  The causes of this error are analogous to the
      {\tt UMFPACK\_ERROR\_invalid\_Numeric\_object} error described above.
  
  \item {\tt UMFPACK\_ERROR\_argument\_missing},  (-5):  
      Some arguments of some are optional (you can pass a {\tt NULL} pointer
      instead of an array).  This error code occurs if you pass a {\tt NULL}
      pointer when that argument is required to be present.
  
  \item {\tt UMFPACK\_ERROR\_n\_nonpositive}  (-6):  
      The number of rows or columns of the matrix must be greater than zero.
  
  \item {\tt UMFPACK\_ERROR\_invalid\_matrix}  (-8):  
      The matrix is invalid.  For the column-oriented input, this error
      code will occur if the contents of {\tt Ap} and/or {\tt Ai} are invalid.
  
      {\tt Ap} is an integer array of size {\tt n\_col+1}.
      On input, it holds the
      ``pointers'' for the column form of the sparse matrix $\m{A}$.
      Column {\tt j} of
      the matrix A is held in {\tt Ai [(Ap [j])} \ldots {\tt (Ap [j+1]-1)]}.
      The first entry, {\tt Ap [0]}, must be zero,
      and {\tt Ap [j]} $\le$ {\tt Ap [j+1]} must hold for all
      {\tt j} in the range 0 to {\tt n\_col-1}.
      The value {\tt nz = Ap [n\_col]} is thus the
      total number of entries in the pattern of the matrix A.
      {\tt nz} must be greater than or equal to zero.
  
      The nonzero pattern (row indices) for column {\tt j} is stored in
      {\tt Ai [(Ap [j])} \ldots {\tt (Ap [j+1]-1)]}.  The row indices in a given
      column {\tt j}
      must be in ascending order, and no duplicate row indices may be present.
      Row indices must be in the range 0 to {\tt n\_row-1}
      (the matrix is 0-based).
  
      Some routines take a triplet-form input, with arguments
      {\tt nz}, {\tt Ti}, and {\tt Tj}.  This error code is returned
      if {\tt nz} is less than zero,
      if any row    index in {\tt Ti} is outside the range 0 to {\tt n\_col-1}, or
      if any column index in {\tt Tj} is outside the range 0 to {\tt n\_row-1}.
  
  \item {\tt UMFPACK\_ERROR\_different\_pattern},  (-11):  
      The most common cause of this error is that the pattern of the
      matrix has changed between the symbolic and numeric factorization.
      It can also occur if the {\tt Numeric} or {\tt Symbolic} object has
      been subtly corrupted by your program.
  
  \item {\tt UMFPACK\_ERROR\_invalid\_system},  (-13):  
      The {\tt sys} argument provided to one of the solve routines is invalid.
  
  \item {\tt UMFPACK\_ERROR\_invalid\_permutation},  (-15):  
      The permutation vector provided as input is invalid.
  
  \item {\tt UMFPACK\_ERROR\_file\_IO},  (-17):  
      This error code is returned by the routines that save and load
      the {\tt Numeric} or {\tt Symbolic} objects to/from a file, if a
      file I/O error has occurred.  The file may not exist or may not be readable,
      you may be trying to create a file that you don't have permission to create,
      or you may be out of disk space.  The file you are trying to read might
      be the wrong one, and an earlier end-of-file condition would then result
      in this error.
  
  \item {\tt UMFPACK\_ERROR\_internal\_error},  (-911):  
      An internal error has occurred, of unknown cause.  This is either a bug
      in UMFPACK, or the result of a memory overrun from your program.
      Try modifying the file {\tt AMD/Include/amd\_internal.h} and adding
      the statement {\tt \#undef NDEBUG}, to enable the debugging mode.
      Recompile UMFPACK and rerun your program.
      A failed assertion might occur which
      can give you a better indication as to what is going wrong.  Be aware that
      UMFPACK will be extraordinarily slow when running in debug mode.
      If all else fails, contact the developer (davis@cise.ufl.edu) with
      as many details as possible.
  
  \end{itemize}
  
  %-------------------------------------------------------------------------------
  \subsection{Larger examples}
  %-------------------------------------------------------------------------------
  
  Full examples of all user-callable UMFPACK routines
  are available in four stand-alone C main programs, {\tt umfpack\_*\_demo.c}.
  Another example is
  the UMFPACK mexFunction, {\tt umfpackmex.c}.  The mexFunction accesses only the
  user-callable C interface to UMFPACK.  The only features that it does not use
  are the support for the triplet form (MATLAB's sparse arrays are already in the
  compressed column form) and the ability to reuse the {\tt Symbolic} object to
  numerically factorize a matrix whose pattern is the same as a prior matrix
  analyzed by {\tt umfpack\_*\_symbolic} or {\tt umfpack\_*\_qsymbolic}.  The
  latter is an important feature, but the mexFunction does not return its opaque
  {\tt Symbolic} and {\tt Numeric} objects to MATLAB.  Instead, it gets the
  contents of these objects after extracting them via the {\tt umfpack\_*\_get\_*}
  routines, and returns them as MATLAB sparse matrices.
  
  The {\tt umf4.c} program for reading matrices in Harwell/Boeing format
  \cite{DuffGrimesLewis87b} is provided.  It requires three Fortran 77 programs
  ({\tt readhb.f}, {\tt readhb\_nozeros.f}, and {\tt readhb\_size.f})
  for reading in the sample Harwell/Boeing files in the {\tt UMFPACK/Demo/HB}
  directory.  More matrices are available at
  http://www.cise.ufl.edu/research/sparse/matrices.
  Type {\tt make hb} in the {\tt UMFPACK/Demo/HB} directory
  to compile and run this demo.  This program was used for the experimental
  results in \cite{Davis03}.
  
  %-------------------------------------------------------------------------------
  \section{Synopsis of C-callable routines}
  \label{Synopsis}
  %-------------------------------------------------------------------------------
  
  Each subsection, below, summarizes the input variables, output variables, return
  values, and calling sequences of the routines in one category.  Variables with
  the same name as those already listed in a prior category have the same size
  and type.
  
  The real, {\tt UF\_long} integer {\tt umfpack\_dl\_*} routines are
  identical to the real, {\tt int} routines, except that {\tt \_di\_} is replaced
  with {\tt \_dl\_} in the name, and all {\tt int} arguments become
  {\tt UF\_long}.
  Similarly, the complex, {\tt UF\_long} integer {\tt umfpack\_zl\_*} routines are
  identical to the complex, {\tt int} routines, except that {\tt \_zi\_} is
  replaced
  with {\tt \_zl\_} in the name, and all {\tt int} arguments become
  {\tt UF\_long}.
  Only the real and complex {\tt int} versions are listed in the synopsis below.
  
  The matrix $\m{A}$ is {\tt m}-by-{\tt n} with {\tt nz} entries.
  
  The {\tt sys} argument of {\tt umfpack\_*\_solve}
  is an integer in the range 0 to 14 which defines which linear system is
  to be solved.
  \footnote{Integer values for {\tt sys} are used instead of strings (as in LINPACK
  and LAPACK) to avoid C-to-Fortran portability issues.}
  Valid values are listed in Table~\ref{sys}.
  The notation $\m{A}\he$ refers to the matrix transpose, which is the
  complex conjugate transpose for complex matrices ({\tt A'} in MATLAB).
  The array transpose is $\m{A}\tr$, which is {\tt A.'} in MATLAB.
  
  \begin{table}
  \begin{center}
  \caption{UMFPACK {\tt sys} parameter}
  \label{sys}
  {\footnotesize
  \begin{tabular}{ll|l}
  \hline
  Value & & system \\
  \hline
  & & \\
  {\tt UMFPACK\_A}      &  (0) & $\m{Ax}=\m{b}$ \\
  {\tt UMFPACK\_At}     &  (1) & $\m{A}\he\m{x}=\m{b}$ \\
  {\tt UMFPACK\_Aat}    &  (2) & $\m{A}\tr\m{x}=\m{b}$ \\
  & & \\
  \hline
  & & \\
  {\tt UMFPACK\_Pt\_L}  &  (3) & $\m{P}\tr\m{Lx}=\m{b}$ \\
  {\tt UMFPACK\_L}      &  (4) & $\m{Lx}=\m{b}$ \\
  {\tt UMFPACK\_Lt\_P}  &  (5) & $\m{L}\he\m{Px}=\m{b}$ \\
  {\tt UMFPACK\_Lat\_P} &  (6) & $\m{L}\tr\m{Px}=\m{b}$ \\
  {\tt UMFPACK\_Lt}     &  (7) & $\m{L}\he\m{x}=\m{b}$ \\
  {\tt UMFPACK\_Lat}    &  (8) & $\m{L}\tr\m{x}=\m{b}$ \\
  & & \\
  \hline
  & & \\
  {\tt UMFPACK\_U\_Qt}  &  (9) & $\m{UQ}\tr\m{x}=\m{b}$ \\
  {\tt UMFPACK\_U}      & (10) & $\m{Ux}=\m{b}$ \\
  {\tt UMFPACK\_Q\_Ut}  & (11) & $\m{QU}\he\m{x}=\m{b}$ \\
  {\tt UMFPACK\_Q\_Uat} & (12) & $\m{QU}\tr\m{x}=\m{b}$ \\
  {\tt UMFPACK\_Ut}     & (13) & $\m{U}\he\m{x}=\m{b}$ \\
  {\tt UMFPACK\_Uat}    & (14) & $\m{U}\tr\m{x}=\m{b}$ \\
  & & \\
  \hline
  \end{tabular}
  }
  \end{center}
  \end{table}
  
  %-------------------------------------------------------------------------------
  \subsection{Primary routines: real/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  #include "umfpack.h"
  int status, sys, n, m, nz, Ap [n+1], Ai [nz] ;
  double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;
  void *Symbolic, *Numeric ;
  
  status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ;
  status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;
  status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;
  umfpack_di_free_symbolic (&Symbolic) ;
  umfpack_di_free_numeric (&Numeric) ;
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \subsection{Alternative routines: real/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  int Qinit [n], Wi [n] ;
  double W [5*n] ;
  
  umfpack_di_defaults (Control) ;
  status = umfpack_di_qsymbolic (m, n, Ap, Ai, Ax, Qinit, &Symbolic, Control, Info) ;
  status = umfpack_di_wsolve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info, Wi, W) ;
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \subsection{Matrix manipulation routines: real/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  int Ti [nz], Tj [nz], P [m], Q [n], Rp [m+1], Ri [nz], Map [nz] ;
  double Tx [nz], Rx [nz], Y [m], Z [m] ;
  
  status = umfpack_di_col_to_triplet (n, Ap, Tj) ;
  status = umfpack_di_triplet_to_col (m, n, nz, Ti, Tj, Tx, Ap, Ai, Ax, Map) ;
  status = umfpack_di_transpose (m, n, Ap, Ai, Ax, P, Q, Rp, Ri, Rx) ;
  status = umfpack_di_scale (Y, Z, Numeric) ;
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \subsection{Getting the contents of opaque objects: real/{\tt int}}
  %-------------------------------------------------------------------------------
  
  The {\tt filename} string should be large enough to hold the name of a file.
  
  {\footnotesize
  \begin{verbatim}
  int lnz, unz, Lp [m+1], Lj [lnz], Up [n+1], Ui [unz], do_recip ;
  double Lx [lnz], Ux [unz], D [min (m,n)], Rs [m], Mx [1], Ex [1] ;
  int nfr, nchains, P1 [m], Q1 [n], Front_npivcol [n+1], Front_parent [n+1], Front_1strow [n+1],
      Front_leftmostdesc [n+1], Chain_start [n+1], Chain_maxrows [n+1], Chain_maxcols [n+1] ;
  char filename [100] ;
  
  status = umfpack_di_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ;
  status = umfpack_di_get_numeric (Lp, Lj, Lx, Up, Ui, Ux, P, Q, D,
      &do_recip, Rs, Numeric) ;
  status = umfpack_di_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1,
      Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,
      Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;
  status = umfpack_di_load_numeric (&Numeric, filename) ;
  status = umfpack_di_save_numeric (Numeric, filename) ;
  status = umfpack_di_load_symbolic (&Symbolic, filename) ;
  status = umfpack_di_save_symbolic (Symbolic, filename) ;
  status = umfapck_di_get_determinant (Mx, Ex, Numeric, Info) ;
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \subsection{Reporting routines: real/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  
  umfpack_di_report_status (Control, status) ;
  umfpack_di_report_control (Control) ;
  umfpack_di_report_info (Control, Info) ;
  status = umfpack_di_report_matrix (m, n, Ap, Ai, Ax, 1, Control) ;
  status = umfpack_di_report_matrix (m, n, Rp, Ri, Rx, 0, Control) ;
  status = umfpack_di_report_numeric (Numeric, Control) ;
  status = umfpack_di_report_perm (m, P, Control) ;
  status = umfpack_di_report_perm (n, Q, Control) ;
  status = umfpack_di_report_symbolic (Symbolic, Control) ;
  status = umfpack_di_report_triplet (m, n, nz, Ti, Tj, Tx, Control) ;
  status = umfpack_di_report_vector (n, X, Control) ;
  \end{verbatim}
  }
  
  
  
  
  
  
  %-------------------------------------------------------------------------------
  \subsection{Primary routines: complex/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  double Az [nz], Xx [n], Xz [n], Bx [n], Bz [n] ;
  
  status = umfpack_zi_symbolic (m, n, Ap, Ai, Ax, Az, &Symbolic, Control, Info) ;
  status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric, Control, Info) ;
  status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info) ;
  umfpack_zi_free_symbolic (&Symbolic) ;
  umfpack_zi_free_numeric (&Numeric) ;
  \end{verbatim}
  }
  
  The arrays {\tt Ax}, {\tt Bx}, and {\tt Xx} double in size if
  any imaginary argument ({\tt Az}, {\tt Xz}, or {\tt Bz}) is {\tt NULL}.
  
  %-------------------------------------------------------------------------------
  \subsection{Alternative routines: complex/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  double Wz [10*n] ;
  
  umfpack_zi_defaults (Control) ;
  status = umfpack_zi_qsymbolic (m, n, Ap, Ai, Ax, Az, Qinit, &Symbolic, Control, Info) ;
  status = umfpack_zi_wsolve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz, Numeric, Control, Info, Wi, Wz) ;
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \subsection{Matrix manipulation routines: complex/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  double Tz [nz], Rz [nz], Yx [m], Yz [m], Zx [m], Zz [m] ;
  
  status = umfpack_zi_col_to_triplet (n, Ap, Tj) ;
  status = umfpack_zi_triplet_to_col (m, n, nz, Ti, Tj, Tx, Tz, Ap, Ai, Ax, Az, Map) ;
  status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 1) ;
  status = umfpack_zi_transpose (m, n, Ap, Ai, Ax, Az, P, Q, Rp, Ri, Rx, Rz, 0) ;
  status = umfpack_zi_scale (Yx, Yz, Zx, Zz, Numeric) ;
  \end{verbatim}
  }
  
  The arrays {\tt Tx}, {\tt Rx}, {\tt Yx}, and {\tt Zx} double in size if
  any imaginary argument ({\tt Tz}, {\tt Rz}, {\tt Yz}, or {\tt Zz}) is {\tt NULL}.
  
  %-------------------------------------------------------------------------------
  \subsection{Getting the contents of opaque objects: complex/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  double Lz [lnz], Uz [unz], Dx [min (m,n)], Dz [min (m,n)], Mz [1] ;
  
  status = umfpack_zi_get_lunz (&lnz, &unz, &m, &n, &nz_udiag, Numeric) ;
  status = umfpack_zi_get_numeric (Lp, Lj, Lx, Lz, Up, Ui, Ux, Uz, P, Q, Dx, Dz,
      &do_recip, Rs, Numeric) ;
  status = umfpack_zi_get_symbolic (&m, &n, &n1, &nz, &nfr, &nchains, P1, Q1,
      Front_npivcol, Front_parent, Front_1strow, Front_leftmostdesc,
      Chain_start, Chain_maxrows, Chain_maxcols, Symbolic) ;
  status = umfpack_zi_load_numeric (&Numeric, filename) ;
  status = umfpack_zi_save_numeric (Numeric, filename) ;
  status = umfpack_zi_load_symbolic (&Symbolic, filename) ;
  status = umfpack_zi_save_symbolic (Symbolic, filename) ;
  status = umfapck_zi_get_determinant (Mx, Mz, Ex, Numeric, Info) ;
  \end{verbatim}
  }
  
  The arrays {\tt Lx}, {\tt Ux}, {\tt Dx}, and {\tt Mx} double in size if
  any imaginary argument ({\tt Lz}, {\tt Uz}, {\tt Dz}, or {\tt Mz}) is {\tt NULL}.
  
  %-------------------------------------------------------------------------------
  \subsection{Reporting routines: complex/{\tt int}}
  %-------------------------------------------------------------------------------
  
  {\footnotesize
  \begin{verbatim}
  
  umfpack_zi_report_status (Control, status) ;
  umfpack_zi_report_control (Control) ;
  umfpack_zi_report_info (Control, Info) ;
  status = umfpack_zi_report_matrix (m, n, Ap, Ai, Ax, Az, 1, Control) ;
  status = umfpack_zi_report_matrix (m, n, Rp, Ri, Rx, Rz, 0, Control) ;
  status = umfpack_zi_report_numeric (Numeric, Control) ;
  status = umfpack_zi_report_perm (m, P, Control) ;
  status = umfpack_zi_report_perm (n, Q, Control) ;
  status = umfpack_zi_report_symbolic (Symbolic, Control) ;
  status = umfpack_zi_report_triplet (m, n, nz, Ti, Tj, Tx, Tz, Control) ;
  status = umfpack_zi_report_vector (n, Xx, Xz, Control) ;
  \end{verbatim}
  }
  
  The arrays {\tt Ax}, {\tt Rx}, {\tt Tx}, and {\tt Xx} double in size if
  any imaginary argument ({\tt Az}, {\tt Rz}, {\tt Tz}, or {\tt Xz}) is {\tt NULL}.
  
  
  
  
  %-------------------------------------------------------------------------------
  \subsection{Utility routines}
  %-------------------------------------------------------------------------------
  
  These routines are the same in all four versions of UMFPACK.
  
  {\footnotesize
  \begin{verbatim}
  double t, s [2] ;
  
  t = umfpack_timer ( ) ;
  umfpack_tic (s) ;
  umfpack_toc (s) ;
  
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \subsection{AMD ordering routines}
  %-------------------------------------------------------------------------------
  
  UMFPACK makes use of the AMD ordering package for its symmetric ordering
  strategy.  You may also use these four user-callable routines in your own C
  programs.  You need to include the {\tt amd.h} file only if you make direct
  calls to the AMD routines themselves.  The {\tt int} versions are summarized
  below; {\tt UF\_long} versions are also available.  Refer to the AMD User Guide
  for more information, or to the file {\tt amd.h} which documents these routines.
  
  {\footnotesize
  \begin{verbatim}
  #include "amd.h"
  double amd_control [AMD_CONTROL], amd_info [AMD_INFO] ;
  
  amd_defaults (amd_control) ;
  status = amd_order (n, Ap, Ai, P, amd_control, amd_info) ;
  amd_control (amd_control) ;
  amd_info (amd_info) ;
  
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  \section{Using UMFPACK in a Fortran program}
  %-------------------------------------------------------------------------------
  
  UMFPACK includes a basic Fortran 77 interface to some of the C-callable
  UMFPACK routines.
  Since interfacing C and Fortran programs is not portable, this interface might
  not work with all C and Fortran compilers.  Refer to Section~\ref{Install} for
  more details.  The following Fortran routines are provided.
  The list includes the C-callable routines that the Fortran interface
  routine calls.  Refer to the corresponding C routines in Section~\ref{C} for
  more details on what the Fortran routine does.
  
  \begin{itemize}
  \item {\tt umf4def}: sets the default control parameters
      ({\tt umfpack\_di\_defaults}).
  
  \item {\tt umf4sym}: pre-ordering and symbolic factorization
      ({\tt umfpack\_di\_symbolic}).
  
  \item {\tt umf4num}: numeric factorization
      ({\tt umfpack\_di\_numeric}).
  
  \item {\tt umf4solr}: solve a linear system with iterative refinement
      ({\tt umfpack\_di\_solve}).
  
  \item {\tt umf4sol}: solve a linear system without iterative refinement
      ({\tt umfpack\_di\_solve}).  Sets {\tt Control [UMFPACK\_IRSTEP]}
      to zero, and does not require the matrix $\m{A}$.
  
  \item {\tt umf4scal}: scales a vector using UMFPACK's scale factors
      ({\tt umfpack\_di\_scale}).
  
  \item {\tt umf4fnum}: free the {\tt Numeric} object
      ({\tt umfpack\_di\_free\_numeric}).
  
  \item {\tt umf4fsym}: free the {\tt Symbolic} object
      ({\tt umfpack\_di\_free\_symbolic}).
  
  \item {\tt umf4pcon}: prints the control parameters
      ({\tt umfpack\_di\_report\_control}).
  
  \item {\tt umf4pinf}: print statistics
      ({\tt umfpack\_di\_report\_info}).
  
  \item {\tt umf4snum}: save the {\tt Numeric} object to a file
      ({\tt umfpack\_di\_save\_numeric}).
  
  \item {\tt umf4ssym}: save the {\tt Symbolic} object to a file
      ({\tt umfpack\_di\_save\_symbolic}).
  
  \item {\tt umf4lnum}: load the {\tt Numeric} object from a file
      ({\tt umfpack\_di\_load\_numeric}).
  
  \item {\tt umf4lsym}: load the {\tt Symbolic} object from a file
      ({\tt umfpack\_di\_load\_symbolic}).
  \end{itemize}
  
  The matrix $\m{A}$ is passed to UMFPACK in compressed column form, with 0-based
  indices.  In Fortran, for an {\tt m}-by-{\tt n} matrix $\m{A}$ with {\tt nz}
  entries, the row indices of the first column (column 1) are in
  {\tt Ai (Ap(1)+1} \ldots {\tt Ap(2))}, with values in
  {\tt Ax (Ap(1)+1} \ldots {\tt Ap(2))}.  The last column (column {\tt n}) is in
  {\tt Ai (Ap(n)+1} \ldots {\tt Ap(n+1))} and
  {\tt Ax (Ap(n)+1} \ldots {\tt Ap(n+1))}.
  The number of entries in the matrix is thus {\tt nz = Ap (n+1)}.
  The row indices in {\tt Ai} are in the range 0 to {\tt m}-1.  They must be
  sorted, with no duplicate entries allowed.  None of the UMFPACK routines
  modify the input matrix $\m{A}$.
  The following definitions apply for the Fortran routines:
  
  {\footnotesize
  \begin{verbatim}
      integer m, n, Ap (n+1), Ai (nz), symbolic, numeric, filenum, status
      double precision Ax (nz), control (20), info (90), x (n), b (n)
  \end{verbatim}
  }
  
  UMFPACK's status is returned in either a {\tt status} argument, or in
  {\tt info (1)}.
  It is zero if UMFPACK was successful, 1 if the matrix is singular (this is a
  warning, not an error), and negative if an error occurred.
  Section~\ref{error_codes} summarizes the possible values of {\tt status}
  and {\tt info (1)}.
  See Table~\ref{sys} for a list of the values of the {\tt sys} argument.
  See Table~\ref{control} for a list of the control parameters (the
  Fortran usage is the same as the MATLAB usage for this array).
  
  For the {\tt Numeric} and {\tt Symbolic} handles, it is probably safe to
  assume that a Fortran {\tt integer} is sufficient to store a C pointer.  If
  that does not work, try defining {\tt numeric} and {\tt symbolic} in your
  Fortran program as integer arrays of size 2.  You will need to define them
  as {\tt integer*8} if you compile UMFPACK in the 64-bit mode.
  
  To avoid passing strings between C and Fortran in the load/save routines,
  a file number is passed instead, and the C interface constructs a file name
  (if {\tt filenum} is 42, the {\tt Numeric} file name is {\tt n42.umf}, and
  the {\tt Symbolic} file name is {\tt s42.umf}).
  
  The following is a summary of the calling sequence of each Fortran
  interface routine.  An example of their use is in the {\tt Demo/umf4hb.f}
  file.  That routine also includes an example of how to convert a 1-based
  sparse matrix into 0-based form.  For more details on the arguments of each
  routine, refer to the arguments of the same name in the corresponding
  C-callable routine, in Sections~\ref{Primary}~through~\ref{Utility}.
  The only exception is the {\tt control} argument of {\tt umf4sol},
  which sets {\tt control (8)} to zero to disable iterative refinement.
  Note that the solve routines do not overwrite {\tt b} with the solution,
  but return their solution in a different array, {\tt x}.
  
  {\footnotesize
  \begin{verbatim}
      call umf4def (control)
      call umf4sym (m, n, Ap, Ai, Ax, symbolic, control, info)
      call umf4num (Ap, Ai, Ax, symbolic, numeric, control, info)
      call umf4solr (sys, Ap, Ai, Ax, x, b, numeric, control, info)
      call umf4sol (sys, x, b, numeric, control, info)
      call umf4scal (x, b, numeric, status)
      call umf4fnum (numeric)
      call umf4fsym (symbolic)
      call umf4pcon (control)
      call umf4pinf (control)
      call umf4snum (numeric, filenum, status)
      call umf4ssym (symbolic, filenum, status)
      call umf4lnum (numeric, filenum, status)
      call umf4lsym (symbolic, filenum, status)
  \end{verbatim}
  }
  
  Access to the complex routines in UMFPACK is provided by the interface
  routines in {\tt umf4\_f77zwrapper.c}.  The following is a synopsis
  of each routine.  All the arguments are the same as the real versions,
  except {\tt Az}, {\tt xz}, and {\tt bz} are the imaginary parts of
  the matrix, solution, and right-hand side, respectively.  The
  {\tt Ax}, {\tt x}, and {\tt b} are the real parts.
  
  {\footnotesize
  \begin{verbatim}
      call umf4zdef (control)
      call umf4zsym (m, n, Ap, Ai, Ax, Az, symbolic, control, info)
      call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info)
      call umf4zsolr (sys, Ap, Ai, Ax, Az, x, xz, b, bz, numeric, control, info)
      call umf4zsol (sys, x, xz, b, bz, numeric, control, info)
      call umf4zscal (x, xz, b, bz, numeric, status)
      call umf4zfnum (numeric)
      call umf4zfsym (symbolic)
      call umf4zpcon (control)
      call umf4zpinf (control)
      call umf4zsnum (numeric, filenum, status)
      call umf4zssym (symbolic, filenum, status)
      call umf4zlnum (numeric, filenum, status)
      call umf4zlsym (symbolic, filenum, status)
  \end{verbatim}
  }
  
  The Fortran interface does not support the packed complex case.
  
  %-------------------------------------------------------------------------------
  \section{Installation}
  \label{Install}
  %-------------------------------------------------------------------------------
  
  %-------------------------------------------------------------------------------
  \subsection{Installing the C library}
  %-------------------------------------------------------------------------------
  
  The following discussion assumes you have the {\tt make} program, either in
  Unix, or in Windows with Cygwin\footnote{www.cygwin.com}.
  You can skip this section and go to next one if all you want to use is
  the UMFPACK and AMD mexFunctions in MATLAB.
  
  You will need to install both UMFPACK v5.0 and AMD v2.0 to use UMFPACK.
  The {\tt UMFPACK} and {\tt AMD} subdirectories must be placed side-by-side
  within the same directory.  AMD is a stand-alone package that
  is required by UMFPACK.  UMFPACK can be compiled without the
  BLAS \cite{DaydeDuff99,ACM679a,ATLAS,GotoVandeGeijn02},
  but your performance will be much less than what it should be.
  
  System-dependent configurations are in the {\tt UFconfig/UFconfig.mk}
  file.  The default
  settings will work on most systems, except that UMFPACK will be compiled so
  that it does not use the BLAS.  Sample configurations are provided
  for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the DEC/Compaq Alpha.
  
  To compile and install both packages,
  go to the {\tt UMFPACK} directory and type {\tt make}.  This will compile the
  libraries ({\tt AMD/Lib/libamd.a} and {\tt UMFPACK/Lib/libumfpack.a}).
  A demo of the AMD ordering routine will be compiled and tested in
  the {\tt AMD/Demo} directory, and five demo programs will then be
  compiled and tested in the {\tt UMFPACK/Demo} directory.
  The outputs of these demo programs will then be compared with output
  files in the distribution.  Expect to see a few differences, such as
  residual norms, compile-time control settings, and perhaps memory usage
  differences.
  
  To use {\tt make} to compile the MATLAB mexFunctions for MATLAB
  and AMD, you can either type {\tt make mex} in the UMFPACK directory.
  You may first need to edit the {\tt UFconfig/UFconfig.mk} file to
  modify the definition of the {\tt MEX}, if you have a version of MATLAB
  older than Version 7.2.  Remove the {\tt -largeArrayDims} definition.
  If you use the MATLAB command {\tt umfpack\_make} in the MATLAB directory,
  then this case is handled for you automatically.
  
  If you have the GNU version of {\tt make}, the {\tt Lib/GNUmakefile} and
  {\tt MATLAB/GNUmakefile} files are used.  These are much more concise than
  what the ``old'' version of {\tt make} can handle.  If you do not have
  GNU {\tt make}, the {\tt Lib/Makefile} and {\tt MATLAB/Makefile} files
  are used instead.  Each UMFPACK source file is compiled into four
  versions ({\tt double} / complex, and {\tt int} / {\tt UF\_long}).  A proper
  old-style {\tt Makefile} is cumbersome in this case, so these two
  {\tt Makefile}'s have been constructed by brute force.  They ignore
  dependencies, and simply compile everything.  I highly recommend using GNU
  {\tt make} if you wish to modify UMFPACK.
  
  If you compile UMFPACK and AMD and then later change the
  {\tt UFconfig/UFconfig.mk} file
  then you should type {\tt make purge} and then {\tt make} to recompile.
  
  Here are the various parameters that you can control in your
  {\tt UFconfig/UFconfig.mk} file:
  
  \begin{itemize}
  \item {\tt CC = } your C compiler, such as {\tt cc}.
  \item {\tt RANLIB = } your system's {\tt ranlib} program, if needed.
  \item {\tt CFLAGS = } optimization flags, such as {\tt -O}.
  \item {\tt UMFPACK\_CONFIG = } configuration settings for the BLAS,
      memory allocation routines, and timing routines.
  \item {\tt LIB = } your libraries, such as {\tt -lm} or {\tt -lblas}.
  \item {\tt RM =} the command to delete a file.
  \item {\tt MV =} the command to rename a file.
  \item {\tt MEX =} the command to compile a MATLAB mexFunction.
      If you are using MATLAB 5, you need to add {\tt -DNBLAS} and
      {\tt -DNUTIL} to this command.
  \item {\tt F77 =} the command to compile a Fortran program (optional).
  \item {\tt F77FLAGS =} the Fortran compiler flags (optional).
  \item {\tt F77LIB =} the Fortran libraries (optional).
  \end{itemize}
  
  The {\tt UMFPACK\_CONFIG} string can include combinations of the following;
  most deal with how the BLAS are called:
  \begin{itemize}
  \item {\tt -DNBLAS} if you do not have any BLAS at all.
  \item {\tt -DNSUNPERF} if you are on Solaris but do not have the Sun
      Performance Library (for the BLAS).
  \item {\tt -DLONGBLAS} if your BLAS takes non-{\tt int} integer arguments.
  \item {\tt -DBLAS\_INT = } the integer used by the BLAS.
  
  \item {\tt -DBLAS\_NO\_UNDERSCORE}
      for controlling how C calls the Fortran BLAS.
      This is set automatically for Windows,
      Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and
      AIX (the IBM RS 6000).
  
  \item {\tt -DGETRUSAGE} if you have the {\tt getrusage} function.
  \item {\tt -DNPOSIX} if you do not have the POSIX-compliant
      {\tt sysconf} and {\tt times} routines used by
      {\tt umfpack\_tic} and {\tt umfpack\_toc}.
  \item {\tt -DNRECIPROCAL} controls a trade-off between speed and accuracy.
      If defined (or if the pivot value itself is less than $10^{-12}$),
      then the pivot column is divided by the pivot value during numeric
      factorization.  Otherwise, it is multiplied by the reciprocal of the
      pivot, which is faster but can be less accurate.  The default is
      to multiply by the reciprocal unless the pivot value is small.
      This option also modifies how the rows of the matrix $\m{A}$ are
      scaled.  If {\tt -DNRECIPROCAL} is defined (or if any scale factor is
      less than $10^{-12}$), entries in the rows of $\m{A}$ are divided
      by the scale factors.  Otherwise, they are multiplied by the reciprocal.
      When compiling the complex routines with the GNU {\tt gcc} compiler, the
      pivot column is always divided by the pivot entry, because of a
      numerical accuracy issue encountered with {\tt gcc} version 3.2 with a
      few complex matrices on a Pentium 4M (running Linux).  You can still
      use {\tt -DNRECIPROCAL} to control how the scale factors
      for the rows of $\m{A}$ are applied.
  \item {\tt -DNO\_DIVIDE\_BY\_ZERO} controls how UMFPACK treats zeros
      on the diagonal of $\m{U}$, for a singular matrix $\m{A}$.
      If defined, then no division by
      zero is performed (a zero entry on the diagonal of $\m{U}$ is
      treated as if it were equal to one).  By default,
      UMFPACK will divide by zero.
  \item {\tt -DNO\_TIMER} controls whether or not timing routines
      are to be called.  If defined, no timers are used.
      Timers are included by default.
  \end{itemize}
  
  If a Fortran BLAS package is used you may see compiler warnings.  The BLAS
  routines
  {\tt dgemm}, {\tt dgemv}, {\tt dger}, {\tt dtrsm}, {\tt dtrsv}, {\tt dscal}
  and their corresponding complex versions are used.
  Header files are not provided for the Fortran
  BLAS.  You may safely ignore all of these warnings.
  
  I highly recommend the recent BLAS by Goto and van de Geijn
  \cite{GotoVandeGeijn02}.  Using this BLAS increased the performance
  of UMFPACK by up to 50\% on a Dell Latitude C840 laptop (2GHz Pentium 4M,
  512K L2 cache, 1GB main memory).  The peak performance of
  {\tt umfpack\_di\_numeric} with Goto and van de Geijn's BLAS is 1.6 Gflops
  on this computer.  In MATLAB, the peak performance of UMFPACK on
  a dense matrix (stored in sparse format) is 900 Mflops, as compared to
  1 Gflop for {\tt x = A}$\backslash${\tt b}
  when {\tt A} is stored as a regular full matrix.
  
  When you compile your program that uses the C-callable UMFPACK library,
  you need to link your program with both libraries
  ({\tt UMFPACK/Lib/libumfpack.a} and {\tt AMD/Lib/libamd.a})
  and you need to tell your compiler to look in the
  directories {\tt UMFPACK/Include} and {\tt AMD/Include} for include
  files.  See {\tt UMFPACK/Demo/Makefile} for an example.
  You do not need to directly include any AMD include files in your
  program, unless you directly call AMD routines.  You only need the
  \begin{verbatim}
  #include "umfpack.h"
  \end{verbatim}
  statement, as described in Section~\ref{Synopsis}.
  
  If you would like to compile both 32-bit and 64-bit versions of the libraries,
  you will need to do it in two steps.  Modify your {\tt UFconfig/UFconfig.mk}
  file, and select the 32-bit option.  Type {\tt make} in the {\tt UMFPACK}
  directory, which creates the {\tt UMFPACK/Lib/libumfpack.a} and
  {\tt AMD/Lib/libamd.a} libraries.  Rename those two files.  Edit your
  {\tt UFconfig/UFconfig.mk} file and select the 64-bit option.
  Type {\tt make purge},
  and then {\tt make}, and you will create the 64-bit libraries.
  You can use the same {\tt umfpack.h} include file for both 32-bit and
  64-bit versions.  Simply link your program with the appropriate 32-bit
  or 64-bit compiled version of the UMFPACK and AMD libraries.
  
  Type {\tt make hb} in the {\tt UMFPACK/Demo/HB} directory
  to compile and run a C program that reads in and factorizes
  Harwell/Boeing matrices.  Note that this uses a stand-alone Fortran
  program to read in the Fortran-formatted Harwell/Boeing matrices and
  write them to a file which can be read by a C program.
  
  The {\tt umf\_multicompile.c} file has been added to assist in the
  compilation of UMFPACK in Microsoft Visual Studio, for Windows.
  
  %-------------------------------------------------------------------------------
  \subsection{Installing the MATLAB interface}
  %-------------------------------------------------------------------------------
  
  If all you want to do is use the UMFPACK mexFunction in MATLAB, you can skip
  the use of the {\tt make} command described above.  Simply type
  {\tt umfpack\_make} in MATLAB while in the {\tt UMFPACK/MATLAB} directory.
  You can also type {\tt amd\_make} in the {\tt AMD/MATLAB} directory
  to compile the stand-alone AMD mexFunction (this is not required to
  compile the UMFPACK mexFunction).  This works on any computer with MATLAB,
  including Windows.
  
  % You will be prompted to select several configuration options, including
  % whether or not to use the BLAS.
  % MATLAB 5.3 (or earlier) does not include the BLAS, so you either have to
  % compile UMFPACK without the BLAS (UMFPACK will be slow), or modify your
  % {\tt <matlab>/bin/mexopts.sh} by adding your BLAS library
  % to the {\tt CLIBS} string,
  % where {\tt <matlab>} is the directory in which MATLAB is installed.
  
  If you are using Windows and the {\tt lcc} compiler bundled with
  MATLAB 6.1, then you may need to copy the
  {\tt UMFPACK}$\backslash${\tt MATLAB}$\backslash${\tt lcc\_lib}$\backslash${\tt libmwlapack.lib}
  file into the
  {\tt <matlab>}$\backslash${\tt extern}$\backslash${\tt lib}$\backslash${\tt win32}$\backslash${\tt lcc}$\backslash$
  directory.
  Next, type {\tt mex -setup}
  at the MATLAB prompt, and ask MATLAB to select the {\tt lcc} compiler.
  MATLAB 6.1 has built-in BLAS, but in that version of MATLAB the BLAS
  cannot be accessed by a mexFunction compiled by {\tt lcc} without first copying
  this file to the location listed above.
  If you have MATLAB 6.5 or later, you can probably skip this step.
  
  %-------------------------------------------------------------------------------
  \subsection{Installing the Fortran interface}
  %-------------------------------------------------------------------------------
  
  Once the 32-bit C-callable UMFPACK library is compiled, you can also compile
  the Fortran interface, by typing {\tt make fortran}.  This will create
  the {\tt umf4hb} program, test it, and compare the output with the
  file {\tt umf4hb.out} in the distribution.
  If you compiled UMFPACK in 64-bit mode, you need to use {\tt make fortran64}
  instead, which compiles the {\tt umf4hb64} program and compares its output
  with the file {\tt umf4hb64.out}.
  Refer to the comments in the {\tt Demo/umf4\_f77wrapper.c} file
  for more details.
  
  This interface is {\bf highly} non-portable, since it depends
  on how C and Fortran are interfaced.
  Because of this issue, the interface is included in the {\tt Demo} directory,
  and not as a primary part of the UMFPACK library.  The interface routines are
  not included in the compiled {\tt UMFPACK/Lib/libumfpack.a} library, but left
  as stand-alone compiled files ({\tt umf4\_f77wrapper.o} and
  {\tt umf4\_f77wrapper64.o} in the {\tt Demo} directory).
  You may need to modify the interface routines in the file
  {\tt umf4\_f77wrapper.c} if you are using compilers for which this interface
  has not been tested.
  
  %-------------------------------------------------------------------------------
  \subsection{Known Issues}
  %-------------------------------------------------------------------------------
  
  The Microsoft C or C++ compilers on a Pentium badly break the IEEE 754 standard,
  and do not treat NaN's properly.  According to IEEE 754, the expression
  {\tt (x != x)} is supposed to be true if and only if {\tt x} is NaN.  For
  non-compliant compilers in Windows that expression is always false, and another
  test must be used: {\tt (x < x)} is true if and only if {\tt x}
  is NaN.  For compliant compilers, {\tt (x < x)} is always false, for any
  value of {\tt x} (including NaN).
  To cover both cases, UMFPACK when running under Microsoft Windows
  defines the following macro, which is true if and only if {\tt x} is NaN,
  regardless of whether your compiler is compliant or not:
  
  \begin{verbatim}
  #define SCALAR_IS_NAN(x) (((x) != (x)) || ((x) < (x)))
  \end{verbatim}
  
  If your compiler breaks this test, then UMFPACK will fail catastrophically
  if it encounters a NaN.  You will not just see NaN's in your output; UMFPACK
  will probably crash with a segmentation fault.  In that case, you might try to
  see if the common (but non-ANSI C) routine {\tt isnan} is available, and modify
  the macro {\tt SCALAR\_IS\_NAN} in {\tt umf\_version.h} accordingly.  The
  simpler (and IEEE 754-compliant) test {\tt (x != x)} is always true with Linux
  on a PC, and on every Unix compiler I have tested.
  
  Some compilers will complain about the Fortran BLAS being defined implicitly.
  C prototypes for the BLAS are not used, except the C-BLAS.  Some compilers
  will complain about unrecognized {\tt \#pragma}'s.  You may safely ignore
  all of these warnings.
  
  %-------------------------------------------------------------------------------
  \section{Future work}
  \label{Future}
  %-------------------------------------------------------------------------------
  
  Here are a few features that are not in the current version of UMFPACK,
  in no particular
  order.  They may appear in a future release of UMFPACK.  If you are interested,
  let me know and I could consider including them:
  
  \begin{enumerate}
  
  \item Remove the restriction that the column-oriented form be given with
      sorted columns.  This has already been done in AMD Version 2.0.
  
  \item Future versions may have different default {\tt Control} parameters.
      Future versions may return more statistics in the {\tt Info} array, and
      they may use more entries in the {\tt Control} array.
      These two arrays will probably become larger, since there are very few
      unused entries.  If they change in size, the constants
      {\tt UMFPACK\_CONTROL} and {\tt UMFPACK\_INFO} defined in {\tt umfpack.h}
      will be changed to reflect their new size.  Your C program should use
      these constants when declaring the size of these two arrays.  Do not
      define them as {\tt Control [20]} and {\tt Info [90]}.
  
  \item Forward/back solvers for the conventional row or column-form data
      structure for $\m{L}$ and $\m{U}$ (the output of
      {\tt umfpack\_*\_di\_get\_numeric}).  This would enable a separate
      solver that could be used to write a MATLAB mexFunction
      {\tt x = lu\_refine (A, b, L, U, P, Q, R)} that gives MATLAB access
      to the iterative refinement algorithm with sparse backward error
      analysis.  It would also be easier to handle sparse right-hand sides
      in this data structure, and end up with good asymptotic run-time
      in this case
      (particularly for $\m{Lx}=\m{b}$; see \cite{GilbertPeierls88}).
      See also CSparse and 
      CXSparse for software for handling sparse right-hand sides.
  
  \item Complex absolute value computations could be
      based on FDLIBM (see 
  ewline
      http://www.netlib.org/fdlibm),
      using the {\tt hypot(x,y)} routine.
  
  \item When using iterative refinement, the residual $\m{Ax}-\m{b}$ could be
      returned by {\tt umfpack\_solve}.
  
  \item The solve routines could handle multiple right-hand sides, and sparse
      right-hand sides.  See {\tt umfpack\_solve} for the MATLAB version
      of this feature.
      See also CSparse and 
      CXSparse for software for handling sparse right-hand sides.
  
  \item An option to redirect the error and diagnostic output.
  
  \item Permutation to block-triangular-form \cite{Duff78a} for the C-callable
      interface.  There are two routines in the ACM Collected
      Algorithms (529 and 575) \cite{Duff81b,Duff78b}
      that could be translated from Fortran
      to C and included in UMFPACK.  This would result in better performance
      for matrices from circuit simulation and
      chemical process engineering.  See {\tt umfpack\_btf.m} for the MATLAB
      version of this feature.  KLU includes this feature.
      See also {\tt cs\_dmperm} in CSparse and CXSparse.
  
  \item The ability to use user-provided work arrays, so that {\tt malloc},
      {\tt free}, and {\tt realloc} realloc are not called.  The
      {\tt umfpack\_*\_wsolve} routine is one example.
  
  \item A method that takes time proportional to the number of nonzeros in
      $\m{A}$ to compute the symbolic factorization \cite{GilbertNgPeyton94}.
      This would improve the performance of the symmetric and 2-by-2 strategies,
      and the unsymmetric strategy when dense rows are present.
      The current method takes
      time proportional to the number of nonzeros in the upper bound of $\m{U}$.
      The method used in UMFPACK exploits super-columns, however, so this
      bound is rarely reached.
      See {\tt cs\_counts} in CSparse and CXSparse,
      and {\tt cholmod\_analyze} in CHOLMOD.
  
  \item Other basic sparse matrix operations, such as sparse matrix
      multiplication, could be included.
  
  \item A more complete Fortran interface.
  
  \item A C++ interface.
  
  \item A parallel version using MPI.  This would require a large amount
      of effort.
  
  \end{enumerate}
  
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{The primary UMFPACK routines}
  \label{Primary}
  %-------------------------------------------------------------------------------
  
  The include files are the same for all four versions of
  UMFPACK.  The generic integer type is {\tt Int}, which is an {\tt int} or
  {\tt UF\_long}, depending on which version of UMFPACK you are using.
  
  \subsection{umfpack\_*\_symbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_symbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_numeric}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_numeric.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_solve}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_solve.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_free\_symbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_free_symbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_free\_numeric}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_free_numeric.h via sed
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{Alternative routines}
  \label{Alternative}
  %-------------------------------------------------------------------------------
  
  \subsection{umfpack\_*\_defaults}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_defaults.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_qsymbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_qsymbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_wsolve}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_wsolve.h via sed
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{Matrix manipulation routines}
  \label{Manipulate}
  %-------------------------------------------------------------------------------
  
  \subsection{umfpack\_*\_col\_to\_triplet}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_col_to_triplet.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_triplet\_to\_col}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_triplet_to_col.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_transpose}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_transpose.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_scale}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_scale.h via sed
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{Getting the contents of opaque objects}
  \label{Get}
  %-------------------------------------------------------------------------------
  
  \subsection{umfpack\_*\_get\_lunz}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_get_lunz.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_get\_numeric}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_get_numeric.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_get\_symbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_get_symbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_save\_numeric}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_save_numeric.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_load\_numeric}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_load_numeric.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_save\_symbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_save_symbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_load\_symbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_load_symbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_get\_determinant}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_get_determinant.h via sed
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{Reporting routines}
  \label{Report}
  %-------------------------------------------------------------------------------
  
  \subsection{umfpack\_*\_report\_status}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_status.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_control}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_control.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_info}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_info.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_matrix}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_matrix.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_numeric}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_numeric.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_perm}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_perm.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_symbolic}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_symbolic.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_triplet}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_triplet.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_*\_report\_vector}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_report_vector.h via sed
  \end{verbatim}
  }
  
  %-------------------------------------------------------------------------------
  
  ewpage
  \section{Utility routines}
  \label{Utility}
  %-------------------------------------------------------------------------------
  
  \subsection{umfpack\_timer}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_timer.h via sed
  \end{verbatim}
  }
  
  
  ewpage
  \subsection{umfpack\_tic and umfpack\_toc}
  
  {\footnotesize
  \begin{verbatim}
  INCLUDE umfpack_tictoc.h via sed
  \end{verbatim}
  }
  
  
  %-------------------------------------------------------------------------------
  
  ewpage
  % References
  %-------------------------------------------------------------------------------
  
  \bibliographystyle{plain}
  \bibliography{UserGuide}
  
  \end{document}