Blame view

fvn_sparse/UMFPACK/Demo/umf4zhb.f 9.34 KB
422234dc3   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
  c=======================================================================
  c== umf4zhb ============================================================
  c=======================================================================
  
  c-----------------------------------------------------------------------
  c UMFPACK Version 4.4, Copyright (c) 2005 by Timothy A. Davis.  CISE
  c Dept, Univ. of Florida.  All Rights Reserved.  See ../Doc/License for
  c License.  web: http://www.cise.ufl.edu/research/sparse/umfpack
  c-----------------------------------------------------------------------
  
  c umf4zhb:
  c       read a sparse matrix in the Harwell/Boeing format, factorizes
  c       it, and solves Ax=b.  Also saves and loads the factors to/from a
  c       file.  Saving to a file is not required, it's just here to
  c       demonstrate how to use this feature of UMFPACK.  This program
  c       only works on square CUA-type matrices.
  c
  c       This is HIGHLY non-portable.  It may not work with your C and
  c       FORTRAN compilers.  See umf4z_f77wrapper.c for more details.
  c
  c usage (for example):
  c
  c       in a Unix shell:
  c       umf4zhb < HB/arc130.cua
  
          integer
       $          nzmax, nmax
          parameter (nzmax = 5000000, nmax = 160000)
          integer
       $          Ap (nmax), Ai (nzmax), n, nz, totcrd, ptrcrd, i, j, p,
       $          indcrd, valcrd, rhscrd, ncol, nrow, nrhs, nzrhs, nel,
       $          numeric, symbolic, status, sys, filenum
  
          character title*72, key*30, type*3, ptrfmt*16,
       $          indfmt*16, valfmt*20, rhsfmt*20
          double precision Ax (nzmax), x (nmax), b (nmax),
       $          control (20), info (90)
  	complex*16 AA (nzmax), XX (nmax), BB (nmax), r (nmax), aij, xj
  	double precision Az (nmax), xz (nmax), bz (nmax), xi, xr
          character rhstyp*3
  
  c       ----------------------------------------------------------------
  c       read the Harwell/Boeing matrix
  c       ----------------------------------------------------------------
  
          read (5, 10, err = 998)
       $          title, key,
       $          totcrd, ptrcrd, indcrd, valcrd, rhscrd,
       $          type, nrow, ncol, nz, nel,
       $          ptrfmt, indfmt, valfmt, rhsfmt
          if (rhscrd .gt. 0) then
  c          new Harwell/Boeing format:
             read (5, 20, err = 998) rhstyp, nrhs, nzrhs
             endif
  10      format (a72, a8 / 5i14 / a3, 11x, 4i14 / 2a16, 2a20)
  20      format (a3, 11x, 2i14)
  
          print *, 'Matrix key: ', key
  
          n = nrow
          if (type .ne. 'CUA' .or. nrow .ne. ncol) then
             print *, 'Error: can only handle square CUA matrices'
             stop
          endif
          if (n .ge. nmax .or. nz .gt. nzmax) then
             print *, ' Matrix too big!'
             stop
          endif
  
  c       read the matrix (1-based)
          read (5, ptrfmt, err = 998) (Ap (p), p = 1, ncol+1)
          read (5, indfmt, err = 998) (Ai (p), p = 1, nz)
          read (5, valfmt, err = 998) (AA (p), p = 1, nz)
  
  	do 15 p = 1, nz
  	    Ax (p) = dble (AA (p))
  	    Az (p) = imag (AA (p))
  15	continue
  
  c       ----------------------------------------------------------------
  c       create the right-hand-side, assume
  c	x (i) = (1 + i/n), (n + i/100)
  c       ----------------------------------------------------------------
  
          do 30 i = 1,n
              BB (i) = 0
  30      continue
  c       b = A*x
          do 50 j = 1,n
              xr = j
  	    xi = n
  	    xi = xi + xr/100
  	    xr = 1 + xr / n
              xj = dcmplx (xr, xi)
              do 40 p = Ap (j), Ap (j+1)-1
                  i = Ai (p)
                  aij = AA (p)
                  BB (i) = BB (i) + aij * xj
  40          continue
  50      continue
          do 32 i = 1,n
              b  (i) = dble (BB (i))
              bz (i) = imag (BB (i))
  32      continue
  
  c       ----------------------------------------------------------------
  c       convert from 1-based to 0-based
  c       ----------------------------------------------------------------
  
          do 60 j = 1, n+1
              Ap (j) = Ap (j) - 1
  60      continue
          do 70 p = 1, nz
              Ai (p) = Ai (p) - 1
  70      continue
  
  c       ----------------------------------------------------------------
  c       factor the matrix and save to a file
  c       ----------------------------------------------------------------
  
  c       set default parameters
          call umf4zdef (control)
  
  c       print control parameters.  set control (1) to 1 to print
  c       error messages only
          control (1) = 2
          call umf4zpcon (control)
  
  c       pre-order and symbolic analysis
          call umf4zsym (n, n, Ap, Ai, Ax, Az, symbolic, control, info)
  
  c       print statistics computed so far
  c       call umf4zpinf (control, info) could also be done.
          print 80, info (1), info (16),
       $      (info (21) * info (4)) / 2**20,
       $      (info (22) * info (4)) / 2**20,
       $      info (23), info (24), info (25)
  80      format ('symbolic analysis:',/,
       $      '   status:  ', f5.0, /,
       $      '   time:    ', e10.2, ' (sec)'/,
       $      '   estimates (upper bound) for numeric LU:', /,
       $      '   size of LU:    ', f10.2, ' (MB)', /,
       $      '   memory needed: ', f10.2, ' (MB)', /,
       $      '   flop count:    ', e10.2, /
       $      '   nnz (L):       ', f10.0, /
       $      '   nnz (U):       ', f10.0)
  
  c       check umf4zsym error condition
          if (info (1) .lt. 0) then
              print *, 'Error occurred in umf4zsym: ', info (1)
              stop
          endif
  
  c       numeric factorization
          call umf4znum (Ap, Ai, Ax, Az, symbolic, numeric, control, info)
  
  c       print statistics for the numeric factorization
  c       call umf4zpinf (control, info) could also be done.
          print 90, info (1), info (66),
       $      (info (41) * info (4)) / 2**20,
       $      (info (42) * info (4)) / 2**20,
       $      info (43), info (44), info (45)
  90      format ('numeric factorization:',/,
       $      '   status:  ', f5.0, /,
       $      '   time:    ', e10.2, /,
       $      '   actual numeric LU statistics:', /,
       $      '   size of LU:    ', f10.2, ' (MB)', /,
       $      '   memory needed: ', f10.2, ' (MB)', /,
       $      '   flop count:    ', e10.2, /
       $      '   nnz (L):       ', f10.0, /
       $      '   nnz (U):       ', f10.0)
  
  c       check umf4znum error condition
          if (info (1) .lt. 0) then
              print *, 'Error occurred in umf4znum: ', info (1)
              stop
          endif
  
  c       save the symbolic analysis to the file s42.umf
  c       note that this is not needed until another matrix is
  c       factorized, below.
  	filenum = 42
          call umf4zssym (symbolic, filenum, status)
          if (status .lt. 0) then
              print *, 'Error occurred in umf4zssym: ', status
              stop
          endif
  
  c       save the LU factors to the file n0.umf
          call umf4zsnum (numeric, filenum, status)
          if (status .lt. 0) then
              print *, 'Error occurred in umf4zsnum: ', status
              stop
          endif
  
  c       free the symbolic analysis
          call umf4zfsym (symbolic)
  
  c       free the numeric factorization
          call umf4zfnum (numeric)
  
  c       No LU factors (symbolic or numeric) are in memory at this point.
  
  c       ----------------------------------------------------------------
  c       load the LU factors back in, and solve the system
  c       ----------------------------------------------------------------
  
  c       At this point the program could terminate and load the LU
  C       factors (numeric) from the n0.umf file, and solve the
  c       system (see below).  Note that the symbolic object is not
  c       required.
  
  c       load the numeric factorization back in (filename: n0.umf)
          call umf4zlnum (numeric, filenum, status)
          if (status .lt. 0) then
              print *, 'Error occurred in umf4zlnum: ', status
              stop
          endif
  
  c       solve Ax=b, without iterative refinement
          sys = 0
          call umf4zsol (sys, x, xz, b, bz, numeric, control, info)
          if (info (1) .lt. 0) then
              print *, 'Error occurred in umf4zsol: ', info (1)
              stop
          endif
          do 33 i = 1,n
              XX (i) = dcmplx (x (i), xz (i))
  33      continue
  
  c       free the numeric factorization
          call umf4zfnum (numeric)
  
  c       No LU factors (symbolic or numeric) are in memory at this point.
  
  c       print final statistics
          call umf4zpinf (control, info)
  
  c       print the residual.  x (i) should be 1 + i/n
          call resid (n, nz, Ap, Ai, AA, XX, BB, r)
  
          stop
  998     print *, 'Read error: Harwell/Boeing matrix'
          stop
          end
  
  c=======================================================================
  c== resid ==============================================================
  c=======================================================================
  
  c Compute the residual, r = Ax-b, its max-norm, and print the max-norm
  C Note that A is zero-based.
  
          subroutine resid (n, nz, Ap, Ai, A, x, b, r)
          integer
       $      n, nz, Ap (n+1), Ai (n), j, i, p
          complex*16 A (nz), x (n), b (n), r (n), aij
  	double precision rmax
  
          do 10 i = 1, n
              r (i) = -b (i)
  10      continue
  
          do 30 j = 1,n
              do 20 p = Ap (j) + 1, Ap (j+1)
                  i = Ai (p) + 1
                  aij = A (p)
                  r (i) = r (i) + aij * x (j)
  20          continue
  30      continue
  
          rmax = 0
          do 40 i = 1, n
              rmax = max (rmax, abs (r (i)))
  40      continue
  
          print *, 'norm (A*x-b): ', rmax
          return
          end