Blame view
fvn_sparse/AMD/Demo/amd_demo.out
7.41 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
AMD version 2.2, date: May 31, 2007 AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24: AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 Input matrix: 24-by-24, with 160 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to AMD, since AMD computes the ordering of A+A'. The diagonal entries are also not needed, since AMD ignores them. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 5 6 12 13 17 18 19 21 Column: 1, number of entries: 6, with row indices in Ai [9 ... 14]: row indices: 1 8 9 13 14 17 Column: 2, number of entries: 6, with row indices in Ai [15 ... 20]: row indices: 2 6 11 20 21 22 Column: 3, number of entries: 6, with row indices in Ai [21 ... 26]: row indices: 3 7 10 15 18 19 Column: 4, number of entries: 6, with row indices in Ai [27 ... 32]: row indices: 4 7 9 14 15 16 Column: 5, number of entries: 6, with row indices in Ai [33 ... 38]: row indices: 0 5 6 12 13 17 Column: 6, number of entries: 9, with row indices in Ai [39 ... 47]: row indices: 0 2 5 6 11 12 19 21 23 Column: 7, number of entries: 9, with row indices in Ai [48 ... 56]: row indices: 3 4 7 9 14 15 16 17 18 Column: 8, number of entries: 4, with row indices in Ai [57 ... 60]: row indices: 1 8 9 14 Column: 9, number of entries: 9, with row indices in Ai [61 ... 69]: row indices: 1 4 7 8 9 13 14 17 18 Column: 10, number of entries: 6, with row indices in Ai [70 ... 75]: row indices: 3 10 18 19 20 21 Column: 11, number of entries: 6, with row indices in Ai [76 ... 81]: row indices: 2 6 11 12 21 23 Column: 12, number of entries: 6, with row indices in Ai [82 ... 87]: row indices: 0 5 6 11 12 23 Column: 13, number of entries: 6, with row indices in Ai [88 ... 93]: row indices: 0 1 5 9 13 17 Column: 14, number of entries: 6, with row indices in Ai [94 ... 99]: row indices: 1 4 7 8 9 14 Column: 15, number of entries: 6, with row indices in Ai [100 ... 105]: row indices: 3 4 7 15 16 18 Column: 16, number of entries: 4, with row indices in Ai [106 ... 109]: row indices: 4 7 15 16 Column: 17, number of entries: 9, with row indices in Ai [110 ... 118]: row indices: 0 1 5 7 9 13 17 18 19 Column: 18, number of entries: 9, with row indices in Ai [119 ... 127]: row indices: 0 3 7 9 10 15 17 18 19 Column: 19, number of entries: 9, with row indices in Ai [128 ... 136]: row indices: 0 3 6 10 17 18 19 20 21 Column: 20, number of entries: 6, with row indices in Ai [137 ... 142]: row indices: 2 10 19 20 21 22 Column: 21, number of entries: 9, with row indices in Ai [143 ... 151]: row indices: 0 2 6 10 11 19 20 21 22 Column: 22, number of entries: 4, with row indices in Ai [152 ... 155]: row indices: 2 20 21 22 Column: 23, number of entries: 4, with row indices in Ai [156 ... 159]: row indices: 6 11 12 23 Plot of input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from amd_order: 0 (should be 0) AMD version 2.2.0, May 31, 2007, results: status: OK n, dimension of A: 24 nz, number of nonzeros in A: 160 symmetry of A: 1.0000 number of nonzeros on diagonal: 24 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 1516 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Permutation vector: 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 Inverse permutation vector: 16 12 17 18 9 5 19 11 7 13 2 20 4 14 8 10 6 15 21 23 1 22 0 3 Plot of permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X X . . . . . . . . . . . . . . . X . . . . X . 1: X X X . . . . . . . . . . . . . . X . . . . X X 2: . X X . . . . . . . . . . . . . . . X . . X X X 3: . . . X X . . . . . . . . . . . . . . X X . . . 4: . . . X X X . . . . . . . . . . X . . X X . . . 5: . . . . X X . . . . . . . . X X X . . X . . . . 6: . . . . . . X . . X X X . . . . . . . . . . . . 7: . . . . . . . X X . . . X X . . . . . . . . . . 8: . . . . . . . X X X . X X X . . . . . . . . . . 9: . . . . . . X . X X X X . X . . . . . . . . . . 10: . . . . . . X . . X X X . . . . . . X . . X . . 11: . . . . . . X . X X X X . X . X . . X . . X . . 12: . . . . . . . X X . . . X X X X . . . . . . . . 13: . . . . . . . X X X . X X X X X . . . . . X . . 14: . . . . . X . . . . . . X X X X X . . . . . . . 15: . . . . . X . . . . . X X X X X X . . . . X . X 16: . . . . X X . . . . . . . . X X X . . X . X X X 17: X X . . . . . . . . . . . . . . . X . X X . X . 18: . . X . . . . . . . X X . . . . . . X . . X . X 19: . . . X X X . . . . . . . . . . X X . X X . X X 20: . . . X X . . . . . . . . . . . . X . X X . X . 21: . . X . . . . . . . X X . X . X X . X . . X . X 22: X X X . . . . . . . . . . . . . X X . X X . X X 23: . X X . . . . . . . . . . . . X X . X X . X X X |