Blame view
fvn_sparse/UMFPACK/MATLAB/umfpack_report.m
15.6 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
function umfpack_report (Control, Info) %UMFPACK_REPORT prints optional control settings and statistics % % Example: % umfpack_report (Control, Info) ; % % Prints the current Control settings for umfpack2, and the statistical % information returned by umfpack2 in the Info array. If Control is % an empty matrix, then the default control settings are printed. % % Control is 20-by-1, and Info is 90-by-1. Not all entries are used. % % Alternative usages: % % umfpack_report ([ ], Info) ; print the default control parameters % and the Info array. % umfpack_report (Control) ; print the control parameters only. % umfpack_report ; print the default control parameters % and an empty Info array. % % See also umfpack, umfpack2, umfpack_make, umfpack_details, % umfpack_demo, and umfpack_simple. % Copyright 1995-2007 by Timothy A. Davis. %------------------------------------------------------------------------------- % get inputs, use defaults if input arguments not present %------------------------------------------------------------------------------- % The contents of Control and Info are defined in umfpack.h if (nargin < 1) Control = [] ; end if (nargin < 2) Info = [] ; end if (isempty (Control)) Control = umfpack2 ; end if (isempty (Info)) Info = [ 0 (-ones (1, 89)) ] ; end %------------------------------------------------------------------------------- % control settings %------------------------------------------------------------------------------- fprintf (' UMFPACK: Control settings: ') ; fprintf (' Control (1): print level: %d ', Control (1)) ; fprintf (' Control (2): dense row parameter: %g ', Control (2)) ; fprintf (' "dense" rows have > max (16, (%g)*16*sqrt(n_col)) entries ', Control (2)) ; fprintf (' Control (3): dense column parameter: %g ', Control (3)) ; fprintf (' "dense" columns have > max (16, (%g)*16*sqrt(n_row)) entries ', Control (3)) ; fprintf (' Control (4): pivot tolerance: %g ', Control (4)) ; fprintf (' Control (5): max block size for dense matrix kernels: %d ', Control (5)) ; prstrat (' Control (6): strategy: %g ', Control (6)) ; fprintf (' Control (7): initial allocation ratio: %g ', Control (7)) ; fprintf (' Control (8): max iterative refinement steps: %d ', Control (8)) ; fprintf (' Control (13): 2-by-2 pivot tolerance: %g ', Control (13)) ; fprintf (' Control (14): Q fixed during numeric factorization: %g ', Control (14)) ; if (Control (14) > 0) fprintf ('(yes) ') ; elseif (Control (14) < 0) fprintf ('(no) ') ; else fprintf ('(auto) ') ; end fprintf (' Control (15): AMD dense row/column parameter: %g ', Control (15)) ; fprintf (' "dense" rows/columns in A+A'' have > max (16, (%g)*sqrt(n)) entries. ', Control (15)) ; fprintf (' Only used if the AMD ordering is used. ') ; fprintf (' Control (16): diagonal pivot tolerance: %g ', Control (16)) ; fprintf (' Only used if diagonal pivoting is attempted. ') ; fprintf (' Control (17): scaling option: %g ', Control (17)) ; if (Control (17) == 0) fprintf ('(none) ') ; elseif (Control (17) == 2) fprintf ('(scale the matrix by ') ; fprintf (' dividing each row by max. abs. value in each row) ') ; else fprintf ('(scale the matrix by ') ; fprintf (' dividing each row by sum of abs. values in each row) ') ; end fprintf (' Control (18): frontal matrix allocation ratio: %g ', Control (18)) ; fprintf (' Control (19): drop tolerance: %g ', Control (19)) ; fprintf (' Control (20): AMD and COLAMD aggressive absorption: %g ', Control (20)) ; yes_no (Control (20)) ; % compile-time options: fprintf (' The following options can only be changed at compile-time: ') ; if (Control (9) == 1) fprintf (' Control (9): compiled to use the BLAS ') ; else fprintf (' Control (9): compiled without the BLAS ') ; fprintf (' (you will not get the best possible performance) ') ; end if (Control (10) == 1) fprintf (' Control (10): compiled for MATLAB ') ; elseif (Control (10) == 2) fprintf (' Control (10): compiled for MATLAB ') ; else fprintf (' Control (10): not compiled for MATLAB ') ; fprintf (' Printing will be in terms of 0-based matrix indexing, ') ; fprintf (' not 1-based as is expected in MATLAB. Diary output may ') ; fprintf (' not be properly recorded. ') ; end if (Control (11) == 2) fprintf (' Control (11): uses POSIX times ( ) to get CPU time and wallclock time. ') ; elseif (Control (11) == 1) fprintf (' Control (11): uses getrusage to get CPU time. ') ; else fprintf (' Control (11): uses ANSI C clock to get CPU time. ') ; fprintf (' The CPU time may wrap around, type "help cputime". ') ; end if (Control (12) == 1) fprintf (' Control (12): compiled with debugging enabled ') ; fprintf (' ########################################### ') ; fprintf (' ### This will be exceedingly slow! ######## ') ; fprintf (' ########################################### ') ; else fprintf (' Control (12): compiled for normal operation (no debugging) ') ; end %------------------------------------------------------------------------------- % Info: %------------------------------------------------------------------------------- if (nargin == 1) return end status = Info (1) ; fprintf (' UMFPACK status: Info (1): %d, ', status) ; if (status == 0) fprintf ('OK ') ; elseif (status == 1) fprintf ('WARNING matrix is singular ') ; elseif (status == -1) fprintf ('ERROR out of memory ') ; elseif (status == -3) fprintf ('ERROR numeric LU factorization is invalid ') ; elseif (status == -4) fprintf ('ERROR symbolic LU factorization is invalid ') ; elseif (status == -5) fprintf ('ERROR required argument is missing ') ; elseif (status == -6) fprintf ('ERROR n <= 0 ') ; elseif (status <= -7 & status >= -12 | status == -14) %#ok fprintf ('ERROR matrix A is corrupted ') ; elseif (status == -13) fprintf ('ERROR invalid system ') ; elseif (status == -15) fprintf ('ERROR invalid permutation ') ; elseif (status == -911) fprintf ('ERROR internal error! ') ; fprintf ('Please report this error to Tim Davis (davis@cise.ufl.edu) ') ; else fprintf ('ERROR unrecognized error. Info array corrupted ') ; end fprintf (' (a -1 means the entry has not been computed): ') ; fprintf (' Basic statistics: ') ; fprintf (' Info (2): %d, # of rows of A ', Info (2)) ; fprintf (' Info (17): %d, # of columns of A ', Info (17)) ; fprintf (' Info (3): %d, nnz (A) ', Info (3)) ; fprintf (' Info (4): %d, Unit size, in bytes, for memory usage reported below ', Info (4)) ; fprintf (' Info (5): %d, size of int (in bytes) ', Info (5)) ; fprintf (' Info (6): %d, size of UF_long (in bytes) ', Info (6)) ; fprintf (' Info (7): %d, size of pointer (in bytes) ', Info (7)) ; fprintf (' Info (8): %d, size of numerical entry (in bytes) ', Info (8)) ; fprintf (' Pivots with zero Markowitz cost removed to obtain submatrix S: ') ; fprintf (' Info (57): %d, # of pivots with one entry in pivot column ', Info (57)) ; fprintf (' Info (58): %d, # of pivots with one entry in pivot row ', Info (58)) ; fprintf (' Info (59): %d, # of rows/columns in submatrix S (if square) ', Info (59)) ; fprintf (' Info (60): ') ; if (Info (60) > 0) fprintf ('submatrix S square and diagonal preserved ') ; elseif (Info (60) == 0) fprintf ('submatrix S not square or diagonal not preserved ') ; else fprintf (' ') ; end fprintf (' Info (9): %d, # of "dense" rows in S ', Info (9)) ; fprintf (' Info (10): %d, # of empty rows in S ', Info (10)) ; fprintf (' Info (11): %d, # of "dense" columns in S ', Info (11)) ; fprintf (' Info (12): %d, # of empty columns in S ', Info (12)) ; fprintf (' Info (34): %g, symmetry of pattern of S ', Info (34)) ; fprintf (' Info (35): %d, # of off-diagonal nonzeros in S+S'' ', Info (35)) ; fprintf (' Info (36): %d, nnz (diag (S)) ', Info (36)) ; fprintf (' 2-by-2 pivoting to place large entries on diagonal: ') ; fprintf (' Info (52): %d, # of small diagonal entries of S ', Info (52)) ; fprintf (' Info (53): %d, # of unmatched small diagonal entries ', Info (53)) ; fprintf (' Info (54): %g, symmetry of P2*S ', Info (54)) ; fprintf (' Info (55): %d, # of off-diagonal entries in (P2*S)+(P2*S)'' ', Info (55)) ; fprintf (' Info (56): %d, nnz (diag (P2*S)) ', Info (56)) ; fprintf (' AMD results, for strict diagonal pivoting: ') ; fprintf (' Info (37): %d, est. nz in L and U ', Info (37)) ; fprintf (' Info (38): %g, est. flop count ', Info (38)) ; fprintf (' Info (39): %g, # of "dense" rows in S+S'' ', Info (39)) ; fprintf (' Info (40): %g, est. max. nz in any column of L ', Info (40)) ; fprintf (' Final strategy selection, based on the analysis above: ') ; prstrat (' Info (19): %d, strategy used ', Info (19)) ; fprintf (' Info (20): %d, ordering used ', Info (20)) ; if (Info (20) == 0) fprintf ('(COLAMD on A) ') ; elseif (Info (20) == 1) fprintf ('(AMD on A+A'') ') ; elseif (Info (20) == 2) fprintf ('(provided by user) ') ; else fprintf ('(undefined ordering option) ') ; end fprintf (' Info (32): %d, Q fixed during numeric factorization: ', Info (32)) ; yes_no (Info (32)) ; fprintf (' Info (33): %d, prefer diagonal pivoting: ', Info (33)) ; yes_no (Info (33)) ; fprintf (' symbolic analysis time and memory usage: ') ; fprintf (' Info (13): %d, defragmentations during symbolic analysis ', Info (13)) ; fprintf (' Info (14): %d, memory used during symbolic analysis (Units) ', Info (14)) ; fprintf (' Info (15): %d, final size of symbolic factors (Units) ', Info (15)) ; fprintf (' Info (16): %.2f, symbolic analysis CPU time (seconds) ', Info (16)) ; fprintf (' Info (18): %.2f, symbolic analysis wall clock time (seconds) ', Info (18)) ; fprintf (' Estimates computed in the symbolic analysis: ') ; fprintf (' Info (21): %d, est. size of LU factors (Units) ', Info (21)) ; fprintf (' Info (22): %d, est. total peak memory usage (Units) ', Info (22)) ; fprintf (' Info (23): %d, est. factorization flop count ', Info (23)) ; fprintf (' Info (24): %d, est. nnz (L) ', Info (24)) ; fprintf (' Info (25): %d, est. nnz (U) ', Info (25)) ; fprintf (' Info (26): %d, est. initial size, variable-part of LU (Units) ', Info (26)) ; fprintf (' Info (27): %d, est. peak size, of variable-part of LU (Units) ', Info (27)) ; fprintf (' Info (28): %d, est. final size, of variable-part of LU (Units) ', Info (28)) ; fprintf (' Info (29): %d, est. max frontal matrix size (# of entries) ', Info (29)) ; fprintf (' Info (30): %d, est. max # of rows in frontal matrix ', Info (30)) ; fprintf (' Info (31): %d, est. max # of columns in frontal matrix ', Info (31)) ; fprintf (' Computed in the numeric factorization (estimates shown above): ') ; fprintf (' Info (41): %d, size of LU factors (Units) ', Info (41)) ; fprintf (' Info (42): %d, total peak memory usage (Units) ', Info (42)) ; fprintf (' Info (43): %d, factorization flop count ', Info (43)) ; fprintf (' Info (44): %d, nnz (L) ', Info (44)) ; fprintf (' Info (45): %d, nnz (U) ', Info (45)) ; fprintf (' Info (46): %d, initial size of variable-part of LU (Units) ', Info (46)) ; fprintf (' Info (47): %d, peak size of variable-part of LU (Units) ', Info (47)) ; fprintf (' Info (48): %d, final size of variable-part of LU (Units) ', Info (48)) ; fprintf (' Info (49): %d, max frontal matrix size (# of numerical entries) ', Info (49)) ; fprintf (' Info (50): %d, max # of rows in frontal matrix ', Info (50)) ; fprintf (' Info (51): %d, max # of columns in frontal matrix ', Info (51)) ; fprintf (' Computed in the numeric factorization (no estimates computed a priori): ') ; fprintf (' Info (61): %d, defragmentations during numeric factorization ', Info (61)) ; fprintf (' Info (62): %d, reallocations during numeric factorization ', Info (62)) ; fprintf (' Info (63): %d, costly reallocations during numeric factorization ', Info (63)) ; fprintf (' Info (64): %d, integer indices in compressed pattern of L and U ', Info (64)) ; fprintf (' Info (65): %d, numerical values stored in L and U ', Info (65)) ; fprintf (' Info (66): %.2f, numeric factorization CPU time (seconds) ', Info (66)) ; fprintf (' Info (76): %.2f, numeric factorization wall clock time (seconds) ', Info (76)) ; if (Info (66) > 0.05 & Info (43) > 0) %#ok fprintf (' mflops in numeric factorization phase: %.2f ', 1e-6 * Info (43) / Info (66)) ; end fprintf (' Info (67): %d, nnz (diag (U)) ', Info (67)) ; fprintf (' Info (68): %g, reciprocal condition number estimate ', Info (68)) ; fprintf (' Info (69): %g, matrix was ', Info (69)) ; if (Info (69) == 0) fprintf ('not scaled ') ; elseif (Info (69) == 2) fprintf ('scaled (row max) ') ; else fprintf ('scaled (row sum) ') ; end fprintf (' Info (70): %g, min. scale factor of rows of A ', Info (70)) ; fprintf (' Info (71): %g, max. scale factor of rows of A ', Info (71)) ; fprintf (' Info (72): %g, min. abs. on diagonal of U ', Info (72)) ; fprintf (' Info (73): %g, max. abs. on diagonal of U ', Info (73)) ; fprintf (' Info (74): %g, initial allocation parameter used ', Info (74)) ; fprintf (' Info (75): %g, # of forced updates due to frontal growth ', Info (75)) ; fprintf (' Info (77): %d, # of off-diaogonal pivots ', Info (77)) ; fprintf (' Info (78): %d, nnz (L), if no small entries dropped ', Info (78)) ; fprintf (' Info (79): %d, nnz (U), if no small entries dropped ', Info (79)) ; fprintf (' Info (80): %d, # of small entries dropped ', Info (80)) ; fprintf (' Computed in the solve step: ') ; fprintf (' Info (81): %d, iterative refinement steps taken ', Info (81)) ; fprintf (' Info (82): %d, iterative refinement steps attempted ', Info (82)) ; fprintf (' Info (83): %g, omega(1), sparse-backward error estimate ', Info (83)) ; fprintf (' Info (84): %g, omega(2), sparse-backward error estimate ', Info (84)) ; fprintf (' Info (85): %d, solve flop count ', Info (85)) ; fprintf (' Info (86): %.2f, solve CPU time (seconds) ', Info (86)) ; fprintf (' Info (87): %.2f, solve wall clock time (seconds) ', Info (87)) ; fprintf (' Info (88:90): unused ') ; %------------------------------------------------------------------------------- function prstrat (fmt, strategy) % prstrat print the ordering strategy fprintf (fmt, strategy) ; if (strategy == 1) fprintf ('(unsymmetric) ') ; fprintf (' Q = COLAMD (A), Q refined during numerical ') ; fprintf (' factorization, and no attempt at diagonal pivoting. ') ; elseif (strategy == 2) fprintf ('(symmetric, with 2-by-2 pivoting) ') ; fprintf (' P2 = row permutation to place large values on the diagonal ') ; fprintf (' Q = AMD (P2*A+(P2*A)''), Q not refined during numeric factorization, ') ; fprintf (' and diagonal pivoting attempted. ') ; elseif (strategy == 3) fprintf ('(symmetric) ') ; fprintf (' Q = AMD (A+A''), Q not refined during numeric factorization, ') ; fprintf (' and diagonal pivoting (P=Q'') attempted. ') ; else % strategy = 0 ; fprintf ('(auto) ') ; end %------------------------------------------------------------------------------- function yes_no (s) % yes_no print yes or no if (s == 0) fprintf ('(no) ') ; else fprintf ('(yes) ') ; end |