Blame view
fvn_sparse/AMD/Demo/amd_l_demo.c
5.55 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
/* ========================================================================= */ /* === AMD demo main program (UF_long integer version) ===================== */ /* ========================================================================= */ /* ------------------------------------------------------------------------- */ /* AMD Copyright (c) by Timothy A. Davis, */ /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ /* web: http://www.cise.ufl.edu/research/sparse/amd */ /* ------------------------------------------------------------------------- */ /* A simple C main program that illustrates the use of the ANSI C interface * to AMD. */ #include "amd.h" #include <stdio.h> #include <stdlib.h> #include "UFconfig.h" int main (void) { /* The symmetric can_24 Harwell/Boeing matrix, including upper and lower * triangular parts, and the diagonal entries. Note that this matrix is * 0-based, with row and column indices in the range 0 to n-1. */ UF_long n = 24, nz, Ap [ ] = { 0, 9, 15, 21, 27, 33, 39, 48, 57, 61, 70, 76, 82, 88, 94, 100, 106, 110, 119, 128, 137, 143, 152, 156, 160 }, Ai [ ] = { /* column 0: */ 0, 5, 6, 12, 13, 17, 18, 19, 21, /* column 1: */ 1, 8, 9, 13, 14, 17, /* column 2: */ 2, 6, 11, 20, 21, 22, /* column 3: */ 3, 7, 10, 15, 18, 19, /* column 4: */ 4, 7, 9, 14, 15, 16, /* column 5: */ 0, 5, 6, 12, 13, 17, /* column 6: */ 0, 2, 5, 6, 11, 12, 19, 21, 23, /* column 7: */ 3, 4, 7, 9, 14, 15, 16, 17, 18, /* column 8: */ 1, 8, 9, 14, /* column 9: */ 1, 4, 7, 8, 9, 13, 14, 17, 18, /* column 10: */ 3, 10, 18, 19, 20, 21, /* column 11: */ 2, 6, 11, 12, 21, 23, /* column 12: */ 0, 5, 6, 11, 12, 23, /* column 13: */ 0, 1, 5, 9, 13, 17, /* column 14: */ 1, 4, 7, 8, 9, 14, /* column 15: */ 3, 4, 7, 15, 16, 18, /* column 16: */ 4, 7, 15, 16, /* column 17: */ 0, 1, 5, 7, 9, 13, 17, 18, 19, /* column 18: */ 0, 3, 7, 9, 10, 15, 17, 18, 19, /* column 19: */ 0, 3, 6, 10, 17, 18, 19, 20, 21, /* column 20: */ 2, 10, 19, 20, 21, 22, /* column 21: */ 0, 2, 6, 10, 11, 19, 20, 21, 22, /* column 22: */ 2, 20, 21, 22, /* column 23: */ 6, 11, 12, 23 } ; UF_long P [24], Pinv [24], i, j, k, jnew, p, inew, result ; double Control [AMD_CONTROL], Info [AMD_INFO] ; char A [24][24] ; /* here is an example of how to use AMD_VERSION. This code will work in * any version of AMD. */ #if defined(AMD_VERSION) && (AMD_VERSION >= AMD_VERSION_CODE(1,2)) printf ("AMD version %d.%d, date: %s ", AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_DATE) ; #else printf ("AMD version: 1.1 or earlier ") ; #endif printf ("AMD demo, with the 24-by-24 Harwell/Boeing matrix, can_24: ") ; /* get the default parameters, and print them */ amd_l_defaults (Control) ; amd_l_control (Control) ; /* print the input matrix */ nz = Ap [n] ; printf (" Input matrix: %ld-by-%ld, with %ld entries. " " Note that for a symmetric matrix such as this one, only the " " strictly lower or upper triangular parts would need to be " " passed to AMD, since AMD computes the ordering of A+A'. The " " diagonal entries are also not needed, since AMD ignores them. " , n, n, nz) ; for (j = 0 ; j < n ; j++) { printf (" Column: %ld, number of entries: %ld, with row indices in" " Ai [%ld ... %ld]: row indices:", j, Ap [j+1] - Ap [j], Ap [j], Ap [j+1]-1) ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; printf (" %ld", i) ; } printf (" ") ; } /* print a character plot of the input matrix. This is only reasonable * because the matrix is small. */ printf (" Plot of input matrix pattern: ") ; for (j = 0 ; j < n ; j++) { for (i = 0 ; i < n ; i++) A [i][j] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { i = Ai [p] ; A [i][j] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ; printf (" ") ; for (i = 0 ; i < n ; i++) { printf ("%2ld: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf (" ") ; } /* order the matrix */ result = amd_l_order (n, Ap, Ai, P, Control, Info) ; printf ("return value from amd_l_order: %ld (should be %d) ", result, AMD_OK) ; /* print the statistics */ amd_l_info (Info) ; if (result != AMD_OK) { printf ("AMD failed ") ; exit (1) ; } /* print the permutation vector, P, and compute the inverse permutation */ printf ("Permutation vector: ") ; for (k = 0 ; k < n ; k++) { /* row/column j is the kth row/column in the permuted matrix */ j = P [k] ; Pinv [j] = k ; printf (" %2ld", j) ; } printf (" ") ; printf ("Inverse permutation vector: ") ; for (j = 0 ; j < n ; j++) { k = Pinv [j] ; printf (" %2ld", k) ; } printf (" ") ; /* print a character plot of the permuted matrix. */ printf (" Plot of permuted matrix pattern: ") ; for (jnew = 0 ; jnew < n ; jnew++) { j = P [jnew] ; for (inew = 0 ; inew < n ; inew++) A [inew][jnew] = '.' ; for (p = Ap [j] ; p < Ap [j+1] ; p++) { inew = Pinv [Ai [p]] ; A [inew][jnew] = 'X' ; } } printf (" ") ; for (j = 0 ; j < n ; j++) printf (" %1ld", j % 10) ; printf (" ") ; for (i = 0 ; i < n ; i++) { printf ("%2ld: ", i) ; for (j = 0 ; j < n ; j++) { printf (" %c", A [i][j]) ; } printf (" ") ; } return (0) ; } |