Blame view
fvn_sparse/UMFPACK/Source/umf_2by2.c
23.1 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
/* ========================================================================== */ /* === UMF_2by2 ============================================================= */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* Not user-callable. Computes a row permutation P so that A (P,:) has a * mostly zero-free diagonal, with large entries on the diagonal. It does this * by swapping pairs of rows. Once a row is swapped it is not swapped again. * This is a "cheap" assignment, not a complete max. transversal or * bi-partite matching. It is only a partial matching. For most matrices * for which this algorithm is used, however, the matching is complete (in * UMFPACK this algorithm is used for matrices with roughly symmetric pattern, * and these matrices typically have a mostly-zero-free diagonal to begin with. * This algorithm is not meant to be used on arbitrary unsymmetric matrices * (for those matrices, UMFPACK uses its unsymmetric strategy and does not * use this algorithm). * * Even if incomplete, the matching is usually good enough for UMFPACK's * symmetric strategy, which can easily pivot off the diagonal during numerical * factorization if it finds a weak diagonal entry. * * The algorithms works as follows. First, row scaling factors are computed, * and weak diagonal entries are found. A weak entry is a value A(k,k) whose * absolute value is < tol * max (abs (A (:,k))). For each weak diagonal k in * increasing order of degree in A+A', the algorithm finds an index j such * that A (k,j) and A (j,k) are "large" (greater than or equal to tol times * the largest magnitude in their columns). Row j must also not have already * been swapped. Rows j and k are then swapped. If we come to a diagonal k * that has already been swapped, then it is not modified. This case occurs * for "oxo" pivots: * * k j * k o x * j x o * * which are swapped once to obtain * * k j * j x o * k o x * * These two rows are then not modified any further (A (j,j) was weak, but * after one swap the permuted the jth diagonal entry is strong. * * This algorithm only works on square matrices (real, complex, or pattern- * only). The numerical values are optional. If not present, each entry is * treated as numerically acceptable (tol is ignored), and the algorithm * operates by just using the pattern, not the values. Each column of the * input matrix A must be sorted, with no duplicate entries. The matrix A * can be optionally scaled prior to the numerical test. The matrix A (:,P) * has the same diagonal entries as A (:,P), except in different order. So * the output permutation P can also be used to swap the columns of A. */ #include "umf_internal.h" #ifndef NDEBUG #include "umf_is_permutation.h" #endif /* x is "weak" if it is less than ctol. If x or ctol are NaN, then define * x as not "weak". This is a rather arbitrary choice, made to simplify the * computation. On all but a PC with Microsoft C/C++, this test becomes * ((x) - ctol < 0). */ #define WEAK(x,ctol) (SCALAR_IS_LTZERO ((x)-(ctol))) /* For flag value in Next [col] */ #define IS_WEAK -2 /* ========================================================================== */ /* === two_by_two =========================================================== */ /* ========================================================================== */ PRIVATE Int two_by_two /* returns # unmatched weak diagonals */ ( /* input, not modified */ Int n2, /* C is n2-by-n2 */ Int Cp [ ], /* size n2+1, column pointers for C */ Int Ci [ ], /* size snz = Cp [n2], row indices for C */ Int Degree [ ], /* Degree [i] = degree of row i of C+C' */ /* input, not defined on output */ Int Next [ ], /* Next [k] == IS_WEAK if k is a weak diagonal */ Int Ri [ ], /* Ri [i] is the length of row i in C */ /* output, not defined on input */ Int P [ ], /* workspace, not defined on input or output */ Int Rp [ ], Int Head [ ] ) { Int deg, newcol, row, col, p, p2, unmatched, k, j, j2, j_best, best, jdiff, jdiff_best, jdeg, jdeg_best, cp, cp1, cp2, rp, rp1, rp2, maxdeg, mindeg ; /* ---------------------------------------------------------------------- */ /* place weak diagonals in the degree lists */ /* ---------------------------------------------------------------------- */ for (deg = 0 ; deg < n2 ; deg++) { Head [deg] = EMPTY ; } maxdeg = 0 ; mindeg = Int_MAX ; for (newcol = n2-1 ; newcol >= 0 ; newcol--) { if (Next [newcol] == IS_WEAK) { /* add this column to the list of weak nodes */ DEBUGm1 ((" newcol "ID" has a weak diagonal deg "ID" ", newcol, deg)) ; deg = Degree [newcol] ; ASSERT (deg >= 0 && deg < n2) ; Next [newcol] = Head [deg] ; Head [deg] = newcol ; maxdeg = MAX (maxdeg, deg) ; mindeg = MIN (mindeg, deg) ; } } /* ---------------------------------------------------------------------- */ /* construct R = C' (C = strong entries in pruned submatrix) */ /* ---------------------------------------------------------------------- */ /* Ri [0..n2-1] is the length of each row of R */ /* use P as temporary pointer into the row form of R [ */ Rp [0] = 0 ; for (row = 0 ; row < n2 ; row++) { Rp [row+1] = Rp [row] + Ri [row] ; P [row] = Rp [row] ; } /* Ri no longer needed for row counts */ /* all entries in C are strong */ for (col = 0 ; col < n2 ; col++) { p2 = Cp [col+1] ; for (p = Cp [col] ; p < p2 ; p++) { /* place the column index in row = Ci [p] */ Ri [P [Ci [p]]++] = col ; } } /* contents of P no longer needed ] */ #ifndef NDEBUG DEBUG0 (("==================R: row form of strong entries in A: ")) ; UMF_dump_col_matrix ((double *) NULL, #ifdef COMPLEX (double *) NULL, #endif Ri, Rp, n2, n2, Rp [n2]) ; #endif ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ; /* ---------------------------------------------------------------------- */ /* for each weak diagonal, find a pair of strong off-diagonal entries */ /* ---------------------------------------------------------------------- */ for (row = 0 ; row < n2 ; row++) { P [row] = EMPTY ; } unmatched = 0 ; best = EMPTY ; jdiff = EMPTY ; jdeg = EMPTY ; for (deg = mindeg ; deg <= maxdeg ; deg++) { /* find the next weak diagonal of lowest degree */ DEBUGm2 (("---------------------------------- Deg: "ID" ", deg)) ; for (k = Head [deg] ; k != EMPTY ; k = Next [k]) { DEBUGm2 (("k: "ID" ", k)) ; if (P [k] == EMPTY) { /* C (k,k) is a weak diagonal entry. Find an index j != k such * that C (j,k) and C (k,j) are both strong, and also such * that Degree [j] is minimized. In case of a tie, pick * the smallest index j. C and R contain the pattern of * strong entries only. * * Note that row k of R and column k of C are both sorted. */ DEBUGm4 (("===== Weak diagonal k = "ID" ", k)) ; DEBUG1 (("Column k of C: ")) ; for (p = Cp [k] ; p < Cp [k+1] ; p++) { DEBUG1 ((" "ID": deg "ID" ", Ci [p], Degree [Ci [p]])); } DEBUG1 (("Row k of R (strong entries only): ")) ; for (p = Rp [k] ; p < Rp [k+1] ; p++) { DEBUG1 ((" "ID": deg "ID" ", Ri [p], Degree [Ri [p]])); } /* no (C (k,j), C (j,k)) pair exists yet */ j_best = EMPTY ; jdiff_best = Int_MAX ; jdeg_best = Int_MAX ; /* pointers into column k (including values) */ cp1 = Cp [k] ; cp2 = Cp [k+1] ; cp = cp1 ; /* pointers into row k (strong entries only, no values) */ rp1 = Rp [k] ; rp2 = Rp [k+1] ; rp = rp1 ; /* while entries searched in column k and row k */ while (TRUE) { if (cp >= cp2) { /* no more entries in this column */ break ; } /* get C (j,k), which is strong */ j = Ci [cp] ; if (rp >= rp2) { /* no more entries in this column */ break ; } /* get R (k,j2), which is strong */ j2 = Ri [rp] ; if (j < j2) { /* C (j,k) is strong, but R (k,j) is not strong */ cp++ ; continue ; } if (j2 < j) { /* C (k,j2) is strong, but R (j2,k) is not strong */ rp++ ; continue ; } /* j == j2: C (j,k) is strong and R (k,j) is strong */ best = FALSE ; if (P [j] == EMPTY) { /* j has not yet been matched */ jdeg = Degree [j] ; jdiff = SCALAR_ABS (k-j) ; DEBUG1 (("Try candidate j "ID" deg "ID" diff "ID " ", j, jdeg, jdiff)) ; if (j_best == EMPTY) { /* this is the first candidate seen */ DEBUG1 ((" first ")) ; best = TRUE ; } else { if (jdeg < jdeg_best) { /* the degree of j is best seen so far. */ DEBUG1 ((" least degree ")) ; best = TRUE ; } else if (jdeg == jdeg_best) { /* degree of j and j_best are the same */ /* tie break by nearest node number */ if (jdiff < jdiff_best) { DEBUG1 ((" tie degree, closer ")) ; best = TRUE ; } else if (jdiff == jdiff_best) { /* |j-k| = |j_best-k|. For any given k * and j_best there is only one other j * than can be just as close as j_best. * Tie break by picking the smaller of * j and j_best */ DEBUG1 ((" tie degree, as close ")); best = j < j_best ; } } else { /* j has higher degree than best so far */ best = FALSE ; } } } if (best) { /* j is best match for k */ /* found a strong pair, A (j,k) and A (k,j) */ DEBUG1 ((" --- Found pair k: "ID" j: " ID " jdeg: "ID" jdiff: "ID" ", k, j, jdeg, jdiff)) ; ASSERT (jdiff != EMPTY) ; ASSERT (jdeg != EMPTY) ; j_best = j ; jdeg_best = jdeg ; jdiff_best = jdiff ; } /* get the next entries in column k and row k */ cp++ ; rp++ ; } /* save the pair (j,k), if we found one */ if (j_best != EMPTY) { j = j_best ; DEBUGm4 ((" --- best pair j: "ID" for k: "ID" ", j, k)) ; P [k] = j ; P [j] = k ; } else { /* no match was found for k */ unmatched++ ; } } } } /* ---------------------------------------------------------------------- */ /* finalize the row permutation, P */ /* ---------------------------------------------------------------------- */ for (k = 0 ; k < n2 ; k++) { if (P [k] == EMPTY) { P [k] = k ; } } ASSERT (UMF_is_permutation (P, Rp, n2, n2)) ; return (unmatched) ; } /* ========================================================================== */ /* === UMF_2by2 ============================================================= */ /* ========================================================================== */ GLOBAL void UMF_2by2 ( /* input, not modified: */ Int n, /* A is n-by-n */ const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ const double Ax [ ], /* size nz if present */ #ifdef COMPLEX const double Az [ ], /* size nz if present */ #endif double tol, /* tolerance for determining whether or not an * entry is numerically acceptable. If tol <= 0 * then all numerical values ignored. */ Int scale, /* scaling to perform (none, sum, or max) */ Int Cperm1 [ ], /* singleton permutations */ #ifndef NDEBUG Int Rperm1 [ ], /* not needed, since Rperm1 = Cperm1 for submatrix S */ #endif Int InvRperm1 [ ], /* inverse of Rperm1 */ Int n1, /* number of singletons */ Int nempty, /* number of empty rows/cols */ /* input, contents undefined on output: */ Int Degree [ ], /* Degree [j] is the number of off-diagonal * entries in row/column j of S+S', where * where S = A (Cperm1 [n1..], Rperm1 [n1..]). * Note that S is not used, nor formed. */ /* output: */ Int P [ ], /* P [k] = i means original row i is kth row in S(P,:) * where S = A (Cperm1 [n1..], Rperm1 [n1..]) */ Int *p_nweak, Int *p_unmatched, /* workspace (not defined on input or output): */ Int Ri [ ], /* of size >= max (nz, n) */ Int Rp [ ], /* of size n+1 */ double Rs [ ], /* of size n if present. Rs = sum (abs (A),2) or * max (abs (A),2), the sum or max of each row. Unused * if scale is equal to UMFPACK_SCALE_NONE. */ Int Head [ ], /* of size n. Head pointers for bucket sort */ Int Next [ ], /* of size n. Next pointers for bucket sort */ Int Ci [ ], /* size nz */ Int Cp [ ] /* size n+1 */ ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ Entry aij ; double cmax, value, rs, ctol, dvalue ; Int k, p, row, col, do_values, do_sum, do_max, do_scale, nweak, weak, p1, p2, dfound, unmatched, n2, oldrow, newrow, oldcol, newcol, pp ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif #ifndef NRECIPROCAL Int do_recip = FALSE ; #endif #ifndef NDEBUG /* UMF_debug += 99 ; */ DEBUGm3 ((" ==================================UMF_2by2: tol %g ", tol)) ; ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; for (k = n1 ; k < n - nempty ; k++) { ASSERT (Cperm1 [k] == Rperm1 [k]) ; } #endif /* ---------------------------------------------------------------------- */ /* determine scaling options */ /* ---------------------------------------------------------------------- */ /* use the values, but only if they are present */ /* ignore the values if tol <= 0 */ do_values = (tol > 0) && (Ax != (double *) NULL) ; if (do_values && (Rs != (double *) NULL)) { do_sum = (scale == UMFPACK_SCALE_SUM) ; do_max = (scale == UMFPACK_SCALE_MAX) ; } else { /* no scaling */ do_sum = FALSE ; do_max = FALSE ; } do_scale = do_max || do_sum ; DEBUGm3 (("do_values "ID" do_sum "ID" do_max "ID" do_scale "ID" ", do_values, do_sum, do_max, do_scale)) ; /* ---------------------------------------------------------------------- */ /* compute the row scaling, if requested */ /* ---------------------------------------------------------------------- */ /* see also umf_kernel_init */ if (do_scale) { #ifndef NRECIPROCAL double rsmin ; #endif for (row = 0 ; row < n ; row++) { Rs [row] = 0.0 ; } for (col = 0 ; col < n ; col++) { p2 = Ap [col+1] ; for (p = Ap [col] ; p < p2 ; p++) { row = Ai [p] ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; rs = Rs [row] ; if (!SCALAR_IS_NAN (rs)) { if (SCALAR_IS_NAN (value)) { /* if any entry in a row is NaN, then the scale factor * for the row is NaN. It will be set to 1 later. */ Rs [row] = value ; } else if (do_max) { Rs [row] = MAX (rs, value) ; } else { Rs [row] += value ; } } } } #ifndef NRECIPROCAL rsmin = Rs [0] ; if (SCALAR_IS_ZERO (rsmin) || SCALAR_IS_NAN (rsmin)) { rsmin = 1.0 ; } #endif for (row = 0 ; row < n ; row++) { /* do not scale an empty row, or a row with a NaN */ rs = Rs [row] ; if (SCALAR_IS_ZERO (rs) || SCALAR_IS_NAN (rs)) { Rs [row] = 1.0 ; } #ifndef NRECIPROCAL rsmin = MIN (rsmin, Rs [row]) ; #endif } #ifndef NRECIPROCAL /* multiply by the reciprocal if Rs is not too small */ do_recip = (rsmin >= RECIPROCAL_TOLERANCE) ; if (do_recip) { /* invert the scale factors */ for (row = 0 ; row < n ; row++) { Rs [row] = 1.0 / Rs [row] ; } } #endif } /* ---------------------------------------------------------------------- */ /* compute the max in each column and find diagonal */ /* ---------------------------------------------------------------------- */ nweak = 0 ; #ifndef NDEBUG for (k = 0 ; k < n ; k++) { ASSERT (Rperm1 [k] >= 0 && Rperm1 [k] < n) ; ASSERT (InvRperm1 [Rperm1 [k]] == k) ; } #endif n2 = n - n1 - nempty ; /* use Ri to count the number of strong entries in each row */ for (row = 0 ; row < n2 ; row++) { Ri [row] = 0 ; } pp = 0 ; ctol = 0 ; dvalue = 1 ; /* construct C = pruned submatrix, strong values only, column form */ for (k = n1 ; k < n - nempty ; k++) { oldcol = Cperm1 [k] ; newcol = k - n1 ; Next [newcol] = EMPTY ; DEBUGm1 (("Column "ID" newcol "ID" oldcol "ID" ", k, newcol, oldcol)) ; Cp [newcol] = pp ; dfound = FALSE ; p1 = Ap [oldcol] ; p2 = Ap [oldcol+1] ; if (do_values) { cmax = 0 ; dvalue = 0 ; if (!do_scale) { /* no scaling */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } #ifndef NRECIPROCAL else if (do_recip) { /* multiply by the reciprocal */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value *= Rs [oldrow] ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } #endif else { /* divide instead */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value /= Rs [oldrow] ; /* if either cmax or value is NaN, define cmax as NaN */ if (!SCALAR_IS_NAN (cmax)) { if (SCALAR_IS_NAN (value)) { cmax = value ; } else { cmax = MAX (cmax, value) ; } } if (oldrow == oldcol) { /* we found the diagonal entry in this column */ dvalue = value ; dfound = TRUE ; ASSERT (newrow == newcol) ; } } } ctol = tol * cmax ; DEBUGm1 ((" cmax col "ID" %g ctol %g ", oldcol, cmax, ctol)) ; } else { for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; ASSERT (oldrow >= 0 && oldrow < n) ; newrow = InvRperm1 [oldrow] - n1 ; ASSERT (newrow >= -n1 && newrow < n2) ; if (newrow < 0) continue ; Ci [pp++] = newrow ; if (oldrow == oldcol) { /* we found the diagonal entry in this column */ ASSERT (newrow == newcol) ; dfound = TRUE ; } /* count the entries in each column */ Ri [newrow]++ ; } } /* ------------------------------------------------------------------ */ /* flag the weak diagonals */ /* ------------------------------------------------------------------ */ if (!dfound) { /* no diagonal entry present */ weak = TRUE ; } else { /* diagonal entry is present, check its value */ weak = (do_values) ? WEAK (dvalue, ctol) : FALSE ; } if (weak) { /* flag this column as weak */ DEBUG0 (("Weak! ")) ; Next [newcol] = IS_WEAK ; nweak++ ; } /* ------------------------------------------------------------------ */ /* count entries in each row that are not numerically weak */ /* ------------------------------------------------------------------ */ if (do_values) { if (!do_scale) { /* no scaling */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g ", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } #ifndef NRECIPROCAL else if (do_recip) { /* multiply by the reciprocal */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value *= Rs [oldrow] ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g ", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } #endif else { /* divide instead */ for (p = p1 ; p < p2 ; p++) { oldrow = Ai [p] ; newrow = InvRperm1 [oldrow] - n1 ; if (newrow < 0) continue ; ASSIGN (aij, Ax, Az, p, split) ; APPROX_ABS (value, aij) ; value /= Rs [oldrow] ; weak = WEAK (value, ctol) ; if (!weak) { DEBUG0 ((" strong: row "ID": %g ", oldrow, value)) ; Ci [pp++] = newrow ; Ri [newrow]++ ; } } } } } Cp [n2] = pp ; ASSERT (AMD_valid (n2, n2, Cp, Ci) == AMD_OK) ; if (nweak == 0) { /* nothing to do, quick return */ DEBUGm2 ((" =============================UMF_2by2: quick return ")) ; for (k = 0 ; k < n ; k++) { P [k] = k ; } *p_nweak = 0 ; *p_unmatched = 0 ; return ; } #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { P [k] = EMPTY ; } for (k = 0 ; k < n2 ; k++) { ASSERT (Degree [k] >= 0 && Degree [k] < n2) ; } #endif /* ---------------------------------------------------------------------- */ /* find the 2-by-2 permutation */ /* ---------------------------------------------------------------------- */ /* The matrix S is now mapped to the index range 0 to n2-1. We have * S = A (Rperm [n1 .. n-nempty-1], Cperm [n1 .. n-nempty-1]), and then * C = pattern of strong entries in S. A weak diagonal k in S is marked * with Next [k] = IS_WEAK. */ unmatched = two_by_two (n2, Cp, Ci, Degree, Next, Ri, P, Rp, Head) ; /* ---------------------------------------------------------------------- */ *p_nweak = nweak ; *p_unmatched = unmatched ; #ifndef NDEBUG DEBUGm4 (("UMF_2by2: weak "ID" unmatched "ID" ", nweak, unmatched)) ; for (row = 0 ; row < n ; row++) { DEBUGm2 (("P ["ID"] = "ID" ", row, P [row])) ; } DEBUGm2 ((" =============================UMF_2by2: done ")) ; #endif } |