Blame view
fvn_sparse/UMFPACK/Source/umfpack_qsymbolic.c
77.2 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 |
/* ========================================================================== */ /* === UMFPACK_qsymbolic ==================================================== */ /* ========================================================================== */ /* -------------------------------------------------------------------------- */ /* UMFPACK Copyright (c) Timothy A. Davis, CISE, */ /* Univ. of Florida. All Rights Reserved. See ../Doc/License for License. */ /* web: http://www.cise.ufl.edu/research/sparse/umfpack */ /* -------------------------------------------------------------------------- */ /* User-callable. Performs a symbolic factorization. See umfpack_qsymbolic.h and umfpack_symbolic.h for details. Dynamic memory usage: about (3.4nz + 8n + n) integers and n double's as workspace (via UMF_malloc, for a square matrix). All of it is free'd via UMF_free if an error occurs. If successful, the Symbolic object contains 12 to 14 objects allocated by UMF_malloc, with a total size of no more than about 13*n integers. */ #include "umf_internal.h" #include "umf_symbolic_usage.h" #include "umf_colamd.h" #include "umf_set_stats.h" #include "umf_analyze.h" #include "umf_transpose.h" #include "umf_is_permutation.h" #include "umf_malloc.h" #include "umf_free.h" #include "umf_2by2.h" #include "umf_singletons.h" typedef struct /* SWType */ { Int *Front_npivcol ; /* size n_col + 1 */ Int *Front_nrows ; /* size n_col */ Int *Front_ncols ; /* size n_col */ Int *Front_parent ; /* size n_col */ Int *Front_cols ; /* size n_col */ Int *InFront ; /* size n_row */ Int *Ci ; /* size Clen */ Int *Cperm1 ; /* size n_col */ Int *Rperm1 ; /* size n_row */ Int *InvRperm1 ; /* size n_row */ Int *Si ; /* size nz */ Int *Sp ; /* size n_col + 1 */ double *Rs ; /* size n_row */ Int *Rperm_2by2 ; /* size n_row */ } SWType ; PRIVATE void free_work ( SWType *SW ) ; PRIVATE void error ( SymbolicType **Symbolic, SWType *SW ) ; /* worst-case usage for SW object */ #define SYM_WORK_USAGE(n_col,n_row,Clen) \ (DUNITS (Int, Clen) + \ DUNITS (Int, nz) + \ 4 * DUNITS (Int, n_row) + \ 4 * DUNITS (Int, n_col) + \ 2 * DUNITS (Int, n_col + 1) + \ DUNITS (double, n_row)) /* required size of Ci for code that calls UMF_transpose and UMF_analyze below*/ #define UMF_ANALYZE_CLEN(nz,n_row,n_col,nn) \ ((n_col) + MAX ((nz),(n_col)) + 3*(nn)+1 + (n_col)) /* size of an element (in Units), including tuples */ #define ELEMENT_SIZE(r,c) \ (DGET_ELEMENT_SIZE (r, c) + 1 + (r + c) * UNITS (Tuple, 1)) #ifndef NDEBUG PRIVATE Int init_count ; #endif /* ========================================================================== */ /* === do_amd =============================================================== */ /* ========================================================================== */ PRIVATE void do_amd ( Int n, const Int Ap [ ], /* size n+1 */ const Int Ai [ ], /* size nz = Ap [n] */ Int Q [ ], /* output permutation, j = Q [k] */ Int Qinv [ ], /* output inverse permutation, Qinv [j] = k */ Int Sdeg [ ], /* degree of A+A', from AMD_aat */ Int Clen, /* size of Ci */ Int Ci [ ], /* size Ci workspace */ double amd_Control [ ], /* AMD control parameters */ double amd_Info [ ], /* AMD info */ SymbolicType *Symbolic, /* Symbolic object */ double Info [ ] /* UMFPACK info */ ) { if (n == 0) { Symbolic->amd_dmax = 0 ; Symbolic->amd_lunz = 0 ; Info [UMFPACK_SYMMETRIC_LUNZ] = 0 ; Info [UMFPACK_SYMMETRIC_FLOPS] = 0 ; Info [UMFPACK_SYMMETRIC_DMAX] = 0 ; Info [UMFPACK_SYMMETRIC_NDENSE] = 0 ; } else { AMD_1 (n, Ap, Ai, Q, Qinv, Sdeg, Clen, Ci, amd_Control, amd_Info) ; /* return estimates computed from AMD on PA+PA' */ Symbolic->amd_dmax = amd_Info [AMD_DMAX] ; Symbolic->amd_lunz = 2 * amd_Info [AMD_LNZ] + n ; Info [UMFPACK_SYMMETRIC_LUNZ] = Symbolic->amd_lunz ; Info [UMFPACK_SYMMETRIC_FLOPS] = DIV_FLOPS * amd_Info [AMD_NDIV] + MULTSUB_FLOPS * amd_Info [AMD_NMULTSUBS_LU] ; Info [UMFPACK_SYMMETRIC_DMAX] = Symbolic->amd_dmax ; Info [UMFPACK_SYMMETRIC_NDENSE] = amd_Info [AMD_NDENSE] ; Info [UMFPACK_SYMBOLIC_DEFRAG] += amd_Info [AMD_NCMPA] ; } } /* ========================================================================== */ /* === prune_singletons ===================================================== */ /* ========================================================================== */ /* Create the submatrix after removing the n1 singletons. The matrix has * row and column indices in the range 0 to n_row-n1 and 0 to n_col-n1, * respectively. */ PRIVATE Int prune_singletons ( Int n1, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif Int Cperm1 [ ], Int InvRperm1 [ ], Int Si [ ], Int Sp [ ] #ifndef NDEBUG , Int Rperm1 [ ] , Int n_row #endif ) { Int row, k, pp, p, oldcol, newcol, newrow, nzdiag, do_nzdiag ; #ifdef COMPLEX Int split = SPLIT (Az) ; #endif nzdiag = 0 ; do_nzdiag = (Ax != (double *) NULL) ; #ifndef NDEBUG DEBUGm4 (("Prune : S = A (Cperm1 (n1+1:end), Rperm1 (n1+1:end)) ")) ; for (k = 0 ; k < n_row ; k++) { ASSERT (Rperm1 [k] >= 0 && Rperm1 [k] < n_row) ; ASSERT (InvRperm1 [Rperm1 [k]] == k) ; } #endif /* create the submatrix after removing singletons */ pp = 0 ; for (k = n1 ; k < n_col ; k++) { oldcol = Cperm1 [k] ; newcol = k - n1 ; DEBUG5 (("Prune singletons k "ID" oldcol "ID" newcol "ID": "ID" ", k, oldcol, newcol, pp)) ; Sp [newcol] = pp ; /* load column pointers */ for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { row = Ai [p] ; DEBUG5 ((" "ID": row "ID, pp, row)) ; ASSERT (row >= 0 && row < n_row) ; newrow = InvRperm1 [row] - n1 ; ASSERT (newrow < n_row - n1) ; if (newrow >= 0) { DEBUG5 ((" newrow "ID, newrow)) ; Si [pp++] = newrow ; if (do_nzdiag) { /* count the number of truly nonzero entries on the * diagonal of S, excluding entries that are present, * but numerically zero */ if (newrow == newcol) { /* this is the diagonal entry */ #ifdef COMPLEX if (split) { if (SCALAR_IS_NONZERO (Ax [p]) || SCALAR_IS_NONZERO (Az [p])) { nzdiag++ ; } } else { if (SCALAR_IS_NONZERO (Ax [2*p ]) || SCALAR_IS_NONZERO (Ax [2*p+1])) { nzdiag++ ; } } #else if (SCALAR_IS_NONZERO (Ax [p])) { nzdiag++ ; } #endif } } } DEBUG5 ((" ")) ; } } Sp [n_col - n1] = pp ; return (nzdiag) ; } /* ========================================================================== */ /* === combine_ordering ===================================================== */ /* ========================================================================== */ PRIVATE void combine_ordering ( Int n1, Int nempty_col, Int n_col, Int Cperm_init [ ], /* output permutation */ Int Cperm1 [ ], /* singleton and empty column ordering */ Int Qinv [ ] /* Qinv from AMD or COLAMD */ ) { Int k, oldcol, newcol, knew ; /* combine the singleton ordering with Qinv */ #ifndef NDEBUG for (k = 0 ; k < n_col ; k++) { Cperm_init [k] = EMPTY ; } #endif for (k = 0 ; k < n1 ; k++) { DEBUG1 ((ID" Initial singleton: "ID" ", k, Cperm1 [k])) ; Cperm_init [k] = Cperm1 [k] ; } for (k = n1 ; k < n_col - nempty_col ; k++) { /* this is a non-singleton column */ oldcol = Cperm1 [k] ; /* user's name for this column */ newcol = k - n1 ; /* Qinv's name for this column */ knew = Qinv [newcol] ; /* Qinv's ordering for this column */ knew += n1 ; /* shift order, after singletons */ DEBUG1 ((" k "ID" oldcol "ID" newcol "ID" knew "ID" ", k, oldcol, newcol, knew)) ; ASSERT (knew >= 0 && knew < n_col - nempty_col) ; ASSERT (Cperm_init [knew] == EMPTY) ; Cperm_init [knew] = oldcol ; } for (k = n_col - nempty_col ; k < n_col ; k++) { Cperm_init [k] = Cperm1 [k] ; } #ifndef NDEBUG { Int *W = (Int *) malloc ((n_col + 1) * sizeof (Int)) ; ASSERT (UMF_is_permutation (Cperm_init, W, n_col, n_col)) ; free (W) ; } #endif } /* ========================================================================== */ /* === UMFPACK_qsymbolic ==================================================== */ /* ========================================================================== */ GLOBAL Int UMFPACK_qsymbolic ( Int n_row, Int n_col, const Int Ap [ ], const Int Ai [ ], const double Ax [ ], #ifdef COMPLEX const double Az [ ], #endif const Int Quser [ ], void **SymbolicHandle, const double Control [UMFPACK_CONTROL], double User_Info [UMFPACK_INFO] ) { /* ---------------------------------------------------------------------- */ /* local variables */ /* ---------------------------------------------------------------------- */ double knobs [COLAMD_KNOBS], flops, f, r, c, force_fixQ, Info2 [UMFPACK_INFO], drow, dcol, dtail_usage, dlf, duf, dmax_usage, dhead_usage, dlnz, dunz, dmaxfrsize, dClen, dClen_analyze, sym, amd_Info [AMD_INFO], dClen_amd, dr, dc, cr, cc, cp, amd_Control [AMD_CONTROL], stats [2], tol ; double *Info ; Int i, nz, j, newj, status, f1, f2, maxnrows, maxncols, nfr, col, nchains, maxrows, maxcols, p, nb, nn, *Chain_start, *Chain_maxrows, *Chain_maxcols, *Front_npivcol, *Ci, Clen, colamd_stats [COLAMD_STATS], fpiv, n_inner, child, parent, *Link, row, *Front_parent, analyze_compactions, k, chain, is_sym, *Si, *Sp, n2, do_UMF_analyze, fpivcol, fallrows, fallcols, *InFront, *F1, snz, *Front_1strow, f1rows, kk, *Cperm_init, *Rperm_init, newrow, *InvRperm1, *Front_leftmostdesc, Clen_analyze, strategy, Clen_amd, fixQ, prefer_diagonal, nzdiag, nzaat, *Wq, *Sdeg, *Fr_npivcol, nempty, *Fr_nrows, *Fr_ncols, *Fr_parent, *Fr_cols, nempty_row, nempty_col, user_auto_strategy, fail, max_rdeg, head_usage, tail_usage, lnz, unz, esize, *Esize, rdeg, *Cdeg, *Rdeg, *Cperm1, *Rperm1, n1, oldcol, newcol, n1c, n1r, *Rperm_2by2, oldrow, dense_row_threshold, tlen, aggressive, scale, *Rp, *Ri ; SymbolicType *Symbolic ; SWType SWspace, *SW ; #ifndef NDEBUG UMF_dump_start ( ) ; init_count = UMF_malloc_count ; PRINTF (( "**** Debugging enabled (UMFPACK will be exceedingly slow!) ***************** " )) ; #endif /* ---------------------------------------------------------------------- */ /* get the amount of time used by the process so far */ /* ---------------------------------------------------------------------- */ umfpack_tic (stats) ; /* ---------------------------------------------------------------------- */ /* get control settings and check input parameters */ /* ---------------------------------------------------------------------- */ drow = GET_CONTROL (UMFPACK_DENSE_ROW, UMFPACK_DEFAULT_DENSE_ROW) ; dcol = GET_CONTROL (UMFPACK_DENSE_COL, UMFPACK_DEFAULT_DENSE_COL) ; nb = GET_CONTROL (UMFPACK_BLOCK_SIZE, UMFPACK_DEFAULT_BLOCK_SIZE) ; strategy = GET_CONTROL (UMFPACK_STRATEGY, UMFPACK_DEFAULT_STRATEGY) ; tol = GET_CONTROL (UMFPACK_2BY2_TOLERANCE, UMFPACK_DEFAULT_2BY2_TOLERANCE) ; scale = GET_CONTROL (UMFPACK_SCALE, UMFPACK_DEFAULT_SCALE) ; force_fixQ = GET_CONTROL (UMFPACK_FIXQ, UMFPACK_DEFAULT_FIXQ) ; AMD_defaults (amd_Control) ; amd_Control [AMD_DENSE] = GET_CONTROL (UMFPACK_AMD_DENSE, UMFPACK_DEFAULT_AMD_DENSE) ; aggressive = (GET_CONTROL (UMFPACK_AGGRESSIVE, UMFPACK_DEFAULT_AGGRESSIVE) != 0) ; amd_Control [AMD_AGGRESSIVE] = aggressive ; nb = MAX (2, nb) ; nb = MIN (nb, MAXNB) ; ASSERT (nb >= 0) ; if (nb % 2 == 1) nb++ ; /* make sure nb is even */ DEBUG0 (("UMFPACK_qsymbolic: nb = "ID" aggressive = "ID" ", nb, aggressive)) ; tol = MAX (0.0, MIN (tol, 1.0)) ; if (scale != UMFPACK_SCALE_NONE && scale != UMFPACK_SCALE_MAX) { scale = UMFPACK_DEFAULT_SCALE ; } if (User_Info != (double *) NULL) { /* return Info in user's array */ Info = User_Info ; } else { /* no Info array passed - use local one instead */ Info = Info2 ; } /* clear all of Info */ for (i = 0 ; i < UMFPACK_INFO ; i++) { Info [i] = EMPTY ; } nn = MAX (n_row, n_col) ; n_inner = MIN (n_row, n_col) ; Info [UMFPACK_STATUS] = UMFPACK_OK ; Info [UMFPACK_NROW] = n_row ; Info [UMFPACK_NCOL] = n_col ; Info [UMFPACK_SIZE_OF_UNIT] = (double) (sizeof (Unit)) ; Info [UMFPACK_SIZE_OF_INT] = (double) (sizeof (int)) ; Info [UMFPACK_SIZE_OF_LONG] = (double) (sizeof (UF_long)) ; Info [UMFPACK_SIZE_OF_POINTER] = (double) (sizeof (void *)) ; Info [UMFPACK_SIZE_OF_ENTRY] = (double) (sizeof (Entry)) ; Info [UMFPACK_SYMBOLIC_DEFRAG] = 0 ; if (!Ai || !Ap || !SymbolicHandle) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_argument_missing ; return (UMFPACK_ERROR_argument_missing) ; } *SymbolicHandle = (void *) NULL ; if (n_row <= 0 || n_col <= 0) /* n_row, n_col must be > 0 */ { Info [UMFPACK_STATUS] = UMFPACK_ERROR_n_nonpositive ; return (UMFPACK_ERROR_n_nonpositive) ; } nz = Ap [n_col] ; DEBUG0 (("n_row "ID" n_col "ID" nz "ID" ", n_row, n_col, nz)) ; Info [UMFPACK_NZ] = nz ; if (nz < 0) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_matrix ; return (UMFPACK_ERROR_invalid_matrix) ; } /* ---------------------------------------------------------------------- */ /* get the requested strategy */ /* ---------------------------------------------------------------------- */ if (n_row != n_col) { /* if the matrix is rectangular, the only available strategy is * unsymmetric */ strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; DEBUGm3 (("Rectangular: forcing unsymmetric strategy ")) ; } if (strategy < UMFPACK_STRATEGY_AUTO || strategy > UMFPACK_STRATEGY_SYMMETRIC) { /* unrecognized strategy */ strategy = UMFPACK_STRATEGY_AUTO ; } if (Quser != (Int *) NULL) { /* when the user provides Q, only symmetric and unsymmetric strategies * are available */ if (strategy == UMFPACK_STRATEGY_2BY2) { strategy = UMFPACK_STRATEGY_SYMMETRIC ; } if (strategy != UMFPACK_STRATEGY_SYMMETRIC) { strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } } user_auto_strategy = (strategy == UMFPACK_STRATEGY_AUTO) ; /* ---------------------------------------------------------------------- */ /* determine amount of memory required for UMFPACK_symbolic */ /* ---------------------------------------------------------------------- */ /* The size of Clen required for UMF_colamd is always larger than */ /* UMF_analyze, but the max is included here in case that changes in */ /* future versions. */ /* This is about 2.2*nz + 9*n_col + 6*n_row, or nz/5 + 13*n_col + 6*n_row, * whichever is bigger. For square matrices, it works out to * 2.2nz + 15n, or nz/5 + 19n, whichever is bigger (typically 2.2nz+15n). */ dClen = UMF_COLAMD_RECOMMENDED ((double) nz, (double) n_row, (double) n_col) ; /* This is defined above, as max (nz,n_col) + 3*nn+1 + 2*n_col, where * nn = max (n_row,n_col). It is always smaller than the space required * for colamd or amd. */ dClen_analyze = UMF_ANALYZE_CLEN ((double) nz, (double) n_row, (double) n_col, (double) nn) ; dClen = MAX (dClen, dClen_analyze) ; /* The space for AMD can be larger than what's required for colamd: */ dClen_amd = 2.4 * (double) nz + 8 * (double) n_inner ; /* additional space for the 2-by-2 strategy */ dClen_amd += (double) MAX (nn, nz) ; dClen = MAX (dClen, dClen_amd) ; /* worst case total memory usage for UMFPACK_symbolic (revised below) */ Info [UMFPACK_SYMBOLIC_PEAK_MEMORY] = SYM_WORK_USAGE (n_col, n_row, dClen) + UMF_symbolic_usage (n_row, n_col, n_col, n_col, n_col, TRUE) ; if (INT_OVERFLOW (dClen * sizeof (Int))) { /* :: int overflow, Clen too large :: */ /* Problem is too large for array indexing (Ci [i]) with an Int i. */ /* Cannot even analyze the problem to determine upper bounds on */ /* memory usage. Need to use the UF_long version, umfpack_*l_*. */ DEBUGm4 (("out of memory: symbolic int overflow ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; return (UMFPACK_ERROR_out_of_memory) ; } /* repeat the size calculations, in integers */ Clen = UMF_COLAMD_RECOMMENDED (nz, n_row, n_col) ; Clen_analyze = UMF_ANALYZE_CLEN (nz, n_row, n_col, nn) ; Clen = MAX (Clen, Clen_analyze) ; Clen_amd = 2.4 * nz + 8 * n_inner ; Clen_amd += MAX (nn, nz) ; /* for Ri, in UMF_2by2 */ Clen = MAX (Clen, Clen_amd) ; /* ---------------------------------------------------------------------- */ /* allocate the first part of the Symbolic object (header and Cperm_init) */ /* ---------------------------------------------------------------------- */ /* (1) Five calls to UMF_malloc are made, for a total space of * 2 * (n_row + n_col) + 4 integers + sizeof (SymbolicType). * sizeof (SymbolicType) is a small constant. This space is part of the * Symbolic object and is not freed unless an error occurs. If A is square * then this is about 4*n integers. */ Symbolic = (SymbolicType *) UMF_malloc (1, sizeof (SymbolicType)) ; if (!Symbolic) { /* If we fail here, Symbolic is NULL and thus it won't be */ /* dereferenced by UMFPACK_free_symbolic, as called by error ( ). */ DEBUGm4 (("out of memory: symbolic object ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, (SWType *) NULL) ; return (UMFPACK_ERROR_out_of_memory) ; } /* We now know that Symbolic has been allocated */ Symbolic->valid = 0 ; Symbolic->Chain_start = (Int *) NULL ; Symbolic->Chain_maxrows = (Int *) NULL ; Symbolic->Chain_maxcols = (Int *) NULL ; Symbolic->Front_npivcol = (Int *) NULL ; Symbolic->Front_parent = (Int *) NULL ; Symbolic->Front_1strow = (Int *) NULL ; Symbolic->Front_leftmostdesc = (Int *) NULL ; Symbolic->Esize = (Int *) NULL ; Symbolic->esize = 0 ; Symbolic->Cperm_init = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Symbolic->Rperm_init = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Symbolic->Cdeg = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Symbolic->Rdeg = (Int *) UMF_malloc (n_row+1, sizeof (Int)) ; Symbolic->Diagonal_map = (Int *) NULL ; Cperm_init = Symbolic->Cperm_init ; Rperm_init = Symbolic->Rperm_init ; Cdeg = Symbolic->Cdeg ; Rdeg = Symbolic->Rdeg ; if (!Cperm_init || !Rperm_init || !Cdeg || !Rdeg) { DEBUGm4 (("out of memory: symbolic perm ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, (SWType *) NULL) ; return (UMFPACK_ERROR_out_of_memory) ; } Symbolic->n_row = n_row ; Symbolic->n_col = n_col ; Symbolic->nz = nz ; Symbolic->nb = nb ; /* ---------------------------------------------------------------------- */ /* check user's input permutation */ /* ---------------------------------------------------------------------- */ if (Quser != (Int *) NULL) { /* use Cperm_init as workspace to check input permutation */ if (!UMF_is_permutation (Quser, Cperm_init, n_col, n_col)) { Info [UMFPACK_STATUS] = UMFPACK_ERROR_invalid_permutation ; error (&Symbolic, (SWType *) NULL) ; return (UMFPACK_ERROR_invalid_permutation) ; } } /* ---------------------------------------------------------------------- */ /* allocate workspace */ /* ---------------------------------------------------------------------- */ /* (2) Eleven calls to UMF_malloc are made, for workspace of size * Clen + nz + 7*n_col + 2*n_row + 2 integers. Clen is the larger of * MAX (2*nz, 4*n_col) + 8*n_col + 6*n_row + n_col + nz/5 and * 2.4*nz + 8 * MIN (n_row, n_col) + MAX (n_row, n_col, nz) * If A is square and non-singular, then Clen is * MAX (MAX (2*nz, 4*n) + 7*n + nz/5, 3.4*nz) + 8*n * If A has at least 4*n nonzeros then Clen is * MAX (2.2*nz + 7*n, 3.4*nz) + 8*n * If A has at least (7/1.2)*n nonzeros, (about 5.8*n), then Clen is * 3.4*nz + 8*n * This space will be free'd when this routine finishes. * * Total space thus far is about 3.4nz + 12n integers. * For the double precision, 32-bit integer version, the user's matrix * requires an equivalent space of 3*nz + n integers. So this space is just * slightly larger than the user's input matrix (including the numerical * values themselves). */ SW = &SWspace ; /* used for UMFPACK_symbolic only */ /* Note that SW->Front_* does not include the dummy placeholder front. */ /* This space is accounted for by the SYM_WORK_USAGE macro. */ /* this is free'd early */ SW->Si = (Int *) UMF_malloc (nz, sizeof (Int)) ; SW->Sp = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; SW->InvRperm1 = (Int *) UMF_malloc (n_row, sizeof (Int)) ; SW->Cperm1 = (Int *) UMF_malloc (n_col, sizeof (Int)) ; /* this is free'd late */ SW->Ci = (Int *) UMF_malloc (Clen, sizeof (Int)) ; SW->Front_npivcol = (Int *) UMF_malloc (n_col + 1, sizeof (Int)) ; SW->Front_nrows = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Front_ncols = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Front_parent = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Front_cols = (Int *) UMF_malloc (n_col, sizeof (Int)) ; SW->Rperm1 = (Int *) UMF_malloc (n_row, sizeof (Int)) ; SW->InFront = (Int *) UMF_malloc (n_row, sizeof (Int)) ; /* this is allocated later, and free'd after Cperm1 but before Ci */ SW->Rperm_2by2 = (Int *) NULL ; /* will be nn Int's */ /* this is allocated last, and free'd first */ SW->Rs = (double *) NULL ; /* will be n_row double's */ Ci = SW->Ci ; Fr_npivcol = SW->Front_npivcol ; Fr_nrows = SW->Front_nrows ; Fr_ncols = SW->Front_ncols ; Fr_parent = SW->Front_parent ; Fr_cols = SW->Front_cols ; Cperm1 = SW->Cperm1 ; Rperm1 = SW->Rperm1 ; Si = SW->Si ; Sp = SW->Sp ; InvRperm1 = SW->InvRperm1 ; Rperm_2by2 = (Int *) NULL ; InFront = SW->InFront ; if (!Ci || !Fr_npivcol || !Fr_nrows || !Fr_ncols || !Fr_parent || !Fr_cols || !Cperm1 || !Rperm1 || !Si || !Sp || !InvRperm1 || !InFront) { DEBUGm4 (("out of memory: symbolic work ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } DEBUG0 (("Symbolic UMF_malloc_count - init_count = "ID" ", UMF_malloc_count - init_count)) ; ASSERT (UMF_malloc_count == init_count + 17) ; /* ---------------------------------------------------------------------- */ /* find the row and column singletons */ /* ---------------------------------------------------------------------- */ /* [ use first nz + n_row + MAX (n_row, n_col) entries in Ci as workspace, * and use Rperm_init as workspace */ ASSERT (Clen >= nz + n_row + MAX (n_row, n_col)) ; status = UMF_singletons (n_row, n_col, Ap, Ai, Quser, strategy, Cdeg, Cperm1, Rdeg, Rperm1, InvRperm1, &n1, &n1c, &n1r, &nempty_col, &nempty_row, &is_sym, &max_rdeg, /* workspace: */ Rperm_init, Ci, Ci + nz, Ci + nz + n_row) ; /* ] done using Rperm_init and Ci as workspace */ /* InvRperm1 is now the inverse of Rperm1 */ if (status != UMFPACK_OK) { DEBUGm4 (("matrix invalid: UMF_singletons ")) ; Info [UMFPACK_STATUS] = status ; error (&Symbolic, SW) ; return (status) ; } Info [UMFPACK_NEMPTY_COL] = nempty_col ; Info [UMFPACK_NEMPTY_ROW] = nempty_row ; Info [UMFPACK_NDENSE_COL] = 0 ; /* # dense rows/cols recomputed below */ Info [UMFPACK_NDENSE_ROW] = 0 ; Info [UMFPACK_COL_SINGLETONS] = n1c ; Info [UMFPACK_ROW_SINGLETONS] = n1r ; Info [UMFPACK_S_SYMMETRIC] = is_sym ; nempty = MIN (nempty_col, nempty_row) ; Symbolic->nempty_row = nempty_row ; Symbolic->nempty_col = nempty_col ; /* UMF_singletons has verified that the user's input matrix is valid */ ASSERT (AMD_valid (n_row, n_col, Ap, Ai) == AMD_OK) ; Symbolic->n1 = n1 ; Symbolic->nempty = nempty ; ASSERT (n1 <= n_inner) ; n2 = nn - n1 - nempty ; dense_row_threshold = UMFPACK_DENSE_DEGREE_THRESHOLD (drow, n_col - n1 - nempty_col) ; Symbolic->dense_row_threshold = dense_row_threshold ; if (!is_sym) { /* either the pruned submatrix rectangular, or it is square and * Rperm [n1 .. n-nempty-1] is not the same as Cperm [n1 .. n-nempty-1]. * Switch to the unsymmetric strategy, ignoring user-requested * strategy. */ strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; DEBUGm4 (("Strategy: Unsymmetric singletons ")) ; } /* ---------------------------------------------------------------------- */ /* determine symmetry, nzdiag, and degrees of S+S' */ /* ---------------------------------------------------------------------- */ /* S is the matrix obtained after removing singletons * = A (Cperm1 [n1..n_col-nempty_col-1], Rperm1 [n1..n_row-nempty_row-1]) */ Wq = Rperm_init ; /* use Rperm_init as workspace for Wq [ */ Sdeg = Cperm_init ; /* use Cperm_init as workspace for Sdeg [ */ sym = EMPTY ; nzaat = EMPTY ; nzdiag = EMPTY ; for (i = 0 ; i < AMD_INFO ; i++) { amd_Info [i] = EMPTY ; } if (strategy != UMFPACK_STRATEGY_UNSYMMETRIC) { /* This also determines the degree of each node in S+S' (Sdeg), which * is needed by the 2-by-2 strategy, the symmetry of S, and the number * of nonzeros on the diagonal of S. */ ASSERT (n_row == n_col) ; ASSERT (nempty_row == nempty_col) ; /* get the count of nonzeros on the diagonal of S, excluding explicitly * zero entries. nzdiag = amd_Info [AMD_NZDIAG] counts the zero entries * in S. */ nzdiag = prune_singletons (n1, nn, Ap, Ai, Ax, #ifdef COMPLEX Az, #endif Cperm1, InvRperm1, Si, Sp #ifndef NDEBUG , Rperm1, nn #endif ) ; /* use Ci as workspace to sort S into R, if needed [ */ if (Quser != (Int *) NULL) { /* need to sort the columns of S first */ Rp = Ci ; Ri = Ci + (n_row) + 1 ; (void) UMF_transpose (n2, n2, Sp, Si, (double *) NULL, (Int *) NULL, (Int *) NULL, 0, Rp, Ri, (double *) NULL, Wq, FALSE #ifdef COMPLEX , (double *) NULL, (double *) NULL, FALSE #endif ) ; } else { /* S already has sorted columns */ Rp = Sp ; Ri = Si ; } ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ; nzaat = AMD_aat (n2, Rp, Ri, Sdeg, Wq, amd_Info) ; sym = amd_Info [AMD_SYMMETRY] ; Info [UMFPACK_N2] = n2 ; /* nzdiag = amd_Info [AMD_NZDIAG] counts the zero entries of S too */ /* done using Ci as workspace to sort S into R ] */ #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { ASSERT (Sdeg [k] >= 0 && Sdeg [k] < n2) ; } ASSERT (Sp [n2] - n2 <= nzaat && nzaat <= 2 * Sp [n2]) ; DEBUG0 (("Explicit zeros: "ID" %g ", nzdiag, amd_Info [AMD_NZDIAG])) ; #endif } /* get statistics from amd_aat, if computed */ Symbolic->sym = sym ; Symbolic->nzaat = nzaat ; Symbolic->nzdiag = nzdiag ; Symbolic->amd_dmax = EMPTY ; Info [UMFPACK_PATTERN_SYMMETRY] = sym ; Info [UMFPACK_NZ_A_PLUS_AT] = nzaat ; Info [UMFPACK_NZDIAG] = nzdiag ; /* ---------------------------------------------------------------------- */ /* determine the initial strategy based on symmetry and nnz (diag (S)) */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_AUTO) { if (sym < 0.10) { /* highly unsymmetric: use the unsymmetric strategy */ strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; DEBUGm4 (("Strategy: select unsymmetric ")) ; } else if (sym >= 0.7 && nzdiag == n2) { /* mostly symmetric, zero-free diagonal: use symmetric strategy */ strategy = UMFPACK_STRATEGY_SYMMETRIC ; DEBUGm4 (("Strategy: select symmetric ")) ; } else { /* Evaluate the symmetric 2-by-2 strategy, and select it, or * the unsymmetric strategy if the 2-by-2 strategy doesn't look * promising. */ strategy = UMFPACK_STRATEGY_2BY2 ; DEBUGm4 (("Strategy: try 2-by-2 ")) ; } } /* ---------------------------------------------------------------------- */ /* try the 2-by-2 strategy */ /* ---------------------------------------------------------------------- */ /* (3) If the 2-by-2 strategy is attempted, additional workspace of size * nn integers and nn double's is allocated, where nn = n_row = n_col. * The real workspace is immediately free'd. The integer workspace of * size nn remains until the end of umfpack_qsymbolic. */ /* If the resulting matrix S (Rperm_2by2, :) is too unsymmetric, then the * unsymmetric strategy will be used instead. */ if (strategy == UMFPACK_STRATEGY_2BY2) { double sym2 ; Int *Blen, *W, nz_papat, nzd2, nweak, unmatched, Clen3 ; /* ------------------------------------------------------------------ */ /* get workspace for UMF_2by2 */ /* ------------------------------------------------------------------ */ ASSERT (n_row == n_col && nn == n_row) ; #ifndef NDEBUG for (k = 0 ; k < n2 ; k++) { ASSERT (Sdeg [k] >= 0 && Sdeg [k] < n2) ; } #endif /* allocate Rperm_2by2 */ SW->Rperm_2by2 = (Int *) UMF_malloc (nn, sizeof (Int)) ; Rperm_2by2 = SW->Rperm_2by2 ; if (Rperm_2by2 == (Int *) NULL) { DEBUGm4 (("out of memory: Rperm_2by2 ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } /* allocate Ri from the tail end of Ci [ */ Clen3 = Clen - (MAX (nn, nz) + 1) ; Ri = Ci + Clen3 ; ASSERT (Clen3 >= nz) ; /* space required for UMF_2by2 */ /* use Fr_* as workspace for Rp, Blen, and W [ */ Rp = Fr_npivcol ; Blen = Fr_ncols ; W = Fr_cols ; if (scale != UMFPACK_SCALE_NONE) { SW->Rs = (double *) UMF_malloc (nn, sizeof (double)) ; if (SW->Rs == (double *) NULL) { DEBUGm4 (("out of memory: scale factors for 2-by-2 ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } } /* ------------------------------------------------------------------ */ /* find the 2-by-2 row permutation */ /* ------------------------------------------------------------------ */ /* find a row permutation Rperm_2by2 such that S (Rperm_2by2, :) * has a healthy diagonal */ UMF_2by2 (nn, Ap, Ai, Ax, #ifdef COMPLEX Az, #endif tol, scale, Cperm1, #ifndef NDEBUG Rperm1, #endif InvRperm1, n1, nempty, Sdeg, Rperm_2by2, &nweak, &unmatched, Ri, Rp, SW->Rs, Blen, W, Ci, Wq) ; DEBUGm3 (("2by2: nweak "ID" unmatched "ID" ", nweak, unmatched)) ; Info [UMFPACK_2BY2_NWEAK] = nweak ; Info [UMFPACK_2BY2_UNMATCHED] = unmatched ; SW->Rs = (double *) UMF_free ((void *) SW->Rs) ; /* R = S (Rperm_2by2,:)' */ (void) UMF_transpose (n2, n2, Sp, Si, (double *) NULL, Rperm_2by2, (Int *) NULL, 0, Rp, Ri, (double *) NULL, W, FALSE #ifdef COMPLEX , (double *) NULL, (double *) NULL, FALSE #endif ) ; ASSERT (AMD_valid (n2, n2, Rp, Ri) == AMD_OK) ; /* contents of Si and Sp no longer needed, but the space is * still needed */ /* ------------------------------------------------------------------ */ /* find symmetry of S (Rperm_2by2, :)', and prepare to order with AMD */ /* ------------------------------------------------------------------ */ for (i = 0 ; i < AMD_INFO ; i++) { amd_Info [i] = EMPTY ; } nz_papat = AMD_aat (n2, Rp, Ri, Sdeg, Wq, amd_Info) ; sym2 = amd_Info [AMD_SYMMETRY] ; nzd2 = amd_Info [AMD_NZDIAG] ; Info [UMFPACK_2BY2_PATTERN_SYMMETRY] = sym2 ; Info [UMFPACK_2BY2_NZ_PA_PLUS_PAT] = nz_papat ; Info [UMFPACK_2BY2_NZDIAG] = nzd2 ; DEBUG0 (("2by2: sym2 %g nzd2 "ID" n2 "ID" ", sym2, nzd2, n2)) ; /* ------------------------------------------------------------------ */ /* evaluate the 2-by-2 results */ /* ------------------------------------------------------------------ */ if (user_auto_strategy) { if ((sym2 > 1.1 * sym) && (nzd2 > 0.9 * n2)) { /* 2-by-2 made it much more symmetric */ DEBUGm4 (("eval Strategy 2by2: much more symmetric: 2by2 ")) ; strategy = UMFPACK_STRATEGY_2BY2 ; } else if (sym2 < 0.7 * sym) { /* 2-by-2 made it much more unsymmetric */ DEBUGm4 (("eval Strategy 2by2: much more UNsymmetric:unsym ")); strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } else if (sym2 < 0.25) { DEBUGm4 (("eval Strategy 2by2: is UNsymmetric: unsym ")); strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } else if (sym2 >= 0.51) { DEBUGm4 (("eval Strategy 2by2: sym2 >= 0.51: 2by2 ")) ; strategy = UMFPACK_STRATEGY_2BY2 ; } else if (sym2 >= 0.999 * sym) { /* 2-by-2 improved symmetry, or made it only slightly worse */ DEBUGm4 (("eval Strategy 2by2: sym2 >= 0.999 sym: 2by2 ")) ; strategy = UMFPACK_STRATEGY_2BY2 ; } else { /* can't decide what to do, so pick the unsymmetric strategy */ DEBUGm4 (("eval Strategy 2by2: punt: unsym ")); strategy = UMFPACK_STRATEGY_UNSYMMETRIC ; } } /* ------------------------------------------------------------------ */ /* if the 2-by-2 strategy is selected: */ /* ------------------------------------------------------------------ */ if (strategy == UMFPACK_STRATEGY_2BY2) { if (Quser == (Int *) NULL) { /* 2-by-2 strategy is successful */ /* compute amd (S) */ Int *Qinv = Fr_npivcol ; ASSERT (Clen3 >= (nz_papat + nz_papat/5 + nn) + 7*nn) ; do_amd (n2, Rp, Ri, Wq, Qinv, Sdeg, Clen3, Ci, amd_Control, amd_Info, Symbolic, Info) ; /* combine the singleton ordering and the AMD ordering */ combine_ordering (n1, nempty, nn, Cperm_init, Cperm1, Qinv) ; } /* fix Rperm_2by2 to reflect A, not S */ for (k = 0 ; k < n1 ; k++) { oldcol = Cperm1 [k] ; i = k ; oldrow = Rperm1 [k] ; W [oldcol] = oldrow ; } for (k = n1 ; k < nn - nempty ; k++) { oldcol = Cperm1 [k] ; i = Rperm_2by2 [k - n1] + n1 ; oldrow = Rperm1 [i] ; W [oldcol] = oldrow ; } for (k = nn - nempty ; k < nn ; k++) { oldcol = Cperm1 [k] ; i = k ; oldrow = Rperm1 [k] ; W [oldcol] = oldrow ; } for (k = 0 ; k < nn ; k++) { Rperm_2by2 [k] = W [k] ; } /* Now, the "diagonal" entry in oldcol (where oldcol is the user's * name for a column, is the entry in row oldrow (where oldrow is * the user's name for a row, and oldrow = Rperm_2by2 [oldcol] */ } /* Fr_* no longer needed for Rp, Blen, W ] */ } /* ---------------------------------------------------------------------- */ /* finalize the strategy, including fixQ and prefer_diagonal */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_SYMMETRIC) { /* use given Quser or AMD (A+A'), fix Q during factorization, * prefer diagonal */ DEBUG0 ((" Strategy: symmetric ")) ; ASSERT (n_row == n_col) ; Symbolic->ordering = UMFPACK_ORDERING_AMD ; fixQ = TRUE ; prefer_diagonal = TRUE ; } else if (strategy == UMFPACK_STRATEGY_2BY2) { /* use Q = given Quser or Q = AMD (PA+PA'), fix Q during factorization, * prefer diagonal, and factorize PAQ, where P is found by UMF_2by2. */ DEBUG0 ((" Strategy: symmetric 2-by-2 ")) ; ASSERT (n_row == n_col) ; Symbolic->ordering = UMFPACK_ORDERING_AMD ; fixQ = TRUE ; prefer_diagonal = TRUE ; } else { /* use given Quser or COLAMD (A), refine Q during factorization, * no diagonal preference */ ASSERT (strategy == UMFPACK_STRATEGY_UNSYMMETRIC) ; DEBUG0 ((" Strategy: unsymmetric ")) ; Symbolic->ordering = UMFPACK_ORDERING_COLAMD ; fixQ = FALSE ; prefer_diagonal = FALSE ; } if (Quser != (Int *) NULL) { Symbolic->ordering = UMFPACK_ORDERING_GIVEN ; } if (force_fixQ > 0) { fixQ = TRUE ; DEBUG0 (("Force fixQ true ")) ; } else if (force_fixQ < 0) { fixQ = FALSE ; DEBUG0 (("Force fixQ false ")) ; } DEBUG0 (("Strategy: ordering: "ID" ", Symbolic->ordering)) ; DEBUG0 (("Strategy: fixQ: "ID" ", fixQ)) ; DEBUG0 (("Strategy: prefer diag "ID" ", prefer_diagonal)) ; /* get statistics from amd_aat, if computed */ Symbolic->strategy = strategy ; Symbolic->fixQ = fixQ ; Symbolic->prefer_diagonal = prefer_diagonal ; Info [UMFPACK_STRATEGY_USED] = strategy ; Info [UMFPACK_ORDERING_USED] = Symbolic->ordering ; Info [UMFPACK_QFIXED] = fixQ ; Info [UMFPACK_DIAG_PREFERRED] = prefer_diagonal ; /* ---------------------------------------------------------------------- */ /* get the AMD ordering for the symmetric strategy */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_SYMMETRIC && Quser == (Int *) NULL) { /* symmetric strategy for a matrix with mostly symmetric pattern */ Int *Qinv = Fr_npivcol ; ASSERT (n_row == n_col && nn == n_row) ; ASSERT (Clen >= (nzaat + nzaat/5 + nn) + 7*nn) ; do_amd (n2, Sp, Si, Wq, Qinv, Sdeg, Clen, Ci, amd_Control, amd_Info, Symbolic, Info) ; /* combine the singleton ordering and the AMD ordering */ combine_ordering (n1, nempty, nn, Cperm_init, Cperm1, Qinv) ; } /* Sdeg no longer needed ] */ /* done using Rperm_init as workspace for Wq ] */ /* Contents of Si and Sp no longer needed, but the space is still needed */ /* ---------------------------------------------------------------------- */ /* use the user's input column ordering (already in Cperm1) */ /* ---------------------------------------------------------------------- */ if (Quser != (Int *) NULL) { for (k = 0 ; k < n_col ; k++) { Cperm_init [k] = Cperm1 [k] ; } } /* ---------------------------------------------------------------------- */ /* use COLAMD to order the matrix */ /* ---------------------------------------------------------------------- */ if (strategy == UMFPACK_STRATEGY_UNSYMMETRIC && Quser == (Int *) NULL) { /* ------------------------------------------------------------------ */ /* copy the matrix into colamd workspace (colamd destroys its input) */ /* ------------------------------------------------------------------ */ /* C = A (Cperm1 (n1+1:end), Rperm1 (n1+1:end)), where Ci is used as * the row indices and Cperm_init (on input) is used as the column * pointers. */ (void) prune_singletons (n1, n_col, Ap, Ai, (double *) NULL, #ifdef COMPLEX (double *) NULL, #endif Cperm1, InvRperm1, Ci, Cperm_init #ifndef NDEBUG , Rperm1, n_row #endif ) ; /* ------------------------------------------------------------------ */ /* set UMF_colamd defaults */ /* ------------------------------------------------------------------ */ UMF_colamd_set_defaults (knobs) ; knobs [COLAMD_DENSE_ROW] = drow ; knobs [COLAMD_DENSE_COL] = dcol ; knobs [COLAMD_AGGRESSIVE] = aggressive ; /* ------------------------------------------------------------------ */ /* check input matrix and find the initial column pre-ordering */ /* ------------------------------------------------------------------ */ /* NOTE: umf_colamd is not given any original empty rows or columns. * Those have already been removed via prune_singletons, above. The * umf_colamd routine has been modified to assume that all rows and * columns have at least one entry in them. It will break if it is * given empty rows or columns (an assertion is triggered when running * in debug mode. */ (void) UMF_colamd ( n_row - n1 - nempty_row, n_col - n1 - nempty_col, Clen, Ci, Cperm_init, knobs, colamd_stats, Fr_npivcol, Fr_nrows, Fr_ncols, Fr_parent, Fr_cols, &nfr, InFront) ; ASSERT (colamd_stats [COLAMD_EMPTY_ROW] == 0) ; ASSERT (colamd_stats [COLAMD_EMPTY_COL] == 0) ; /* # of dense rows will be recomputed below */ Info [UMFPACK_NDENSE_ROW] = colamd_stats [COLAMD_DENSE_ROW] ; Info [UMFPACK_NDENSE_COL] = colamd_stats [COLAMD_DENSE_COL] ; Info [UMFPACK_SYMBOLIC_DEFRAG] = colamd_stats [COLAMD_DEFRAG_COUNT] ; /* re-analyze if any "dense" rows or cols ignored by UMF_colamd */ do_UMF_analyze = colamd_stats [COLAMD_DENSE_ROW] > 0 || colamd_stats [COLAMD_DENSE_COL] > 0 ; /* Combine the singleton and colamd ordering into Cperm_init */ /* Note that colamd returns its inverse permutation in Ci */ combine_ordering (n1, nempty_col, n_col, Cperm_init, Cperm1, Ci) ; /* contents of Ci no longer needed */ #ifndef NDEBUG for (col = 0 ; col < n_col ; col++) { DEBUG1 (("Cperm_init ["ID"] = "ID" ", col, Cperm_init[col])); } /* make sure colamd returned a valid permutation */ ASSERT (Cperm_init != (Int *) NULL) ; ASSERT (UMF_is_permutation (Cperm_init, Ci, n_col, n_col)) ; #endif } else { /* ------------------------------------------------------------------ */ /* do not call colamd - use input Quser or AMD instead */ /* ------------------------------------------------------------------ */ /* The ordering (Quser or Qamd) is already in Cperm_init */ do_UMF_analyze = TRUE ; } Cperm_init [n_col] = EMPTY ; /* unused in Cperm_init */ /* ---------------------------------------------------------------------- */ /* AMD ordering, if it exists, has been copied into Cperm_init */ /* ---------------------------------------------------------------------- */ #ifndef NDEBUG DEBUG3 (("Cperm_init column permutation: ")) ; ASSERT (UMF_is_permutation (Cperm_init, Ci, n_col, n_col)) ; for (k = 0 ; k < n_col ; k++) { DEBUG3 ((ID" ", Cperm_init [k])) ; } /* ensure that empty columns have been placed last in A (:,Cperm_init) */ for (newj = 0 ; newj < n_col ; newj++) { /* empty columns will be last in A (:, Cperm_init (1:n_col)) */ j = Cperm_init [newj] ; ASSERT (IMPLIES (newj >= n_col-nempty_col, Cdeg [j] == 0)) ; ASSERT (IMPLIES (newj < n_col-nempty_col, Cdeg [j] > 0)) ; } #endif /* ---------------------------------------------------------------------- */ /* symbolic factorization (unless colamd has already done it) */ /* ---------------------------------------------------------------------- */ if (do_UMF_analyze) { Int *W, *Bp, *Bi, *Cperm2, ok, *P, Clen2, bsize, Clen0 ; /* ------------------------------------------------------------------ */ /* construct column pre-ordered, pruned submatrix */ /* ------------------------------------------------------------------ */ /* S = column form submatrix after removing singletons and applying * initial column ordering (includes singleton ordering) */ (void) prune_singletons (n1, n_col, Ap, Ai, (double *) NULL, #ifdef COMPLEX (double *) NULL, #endif Cperm_init, InvRperm1, Si, Sp #ifndef NDEBUG , Rperm1, n_row #endif ) ; /* ------------------------------------------------------------------ */ /* Ci [0 .. Clen-1] holds the following work arrays: first Clen0 entries empty space, where Clen0 = Clen - (nn+1 + 2*nn + n_col) and Clen0 >= nz + n_col next nn+1 entries Bp [0..nn] next nn entries Link [0..nn-1] next nn entries W [0..nn-1] last n_col entries Cperm2 [0..n_col-1] We have Clen >= n_col + MAX (nz,n_col) + 3*nn+1 + n_col, So Clen0 >= 2*n_col as required for AMD_postorder and Clen0 >= n_col + nz as required */ Clen0 = Clen - (nn+1 + 2*nn + n_col) ; Bp = Ci + Clen0 ; Link = Bp + (nn+1) ; W = Link + nn ; Cperm2 = W + nn ; ASSERT (Cperm2 + n_col == Ci + Clen) ; ASSERT (Clen0 >= nz + n_col) ; ASSERT (Clen0 >= 2*n_col) ; /* ------------------------------------------------------------------ */ /* P = order that rows will be used in UMF_analyze */ /* ------------------------------------------------------------------ */ /* use W to mark rows, and use Link for row permutation P [ [ */ for (row = 0 ; row < n_row - n1 ; row++) { W [row] = FALSE ; } P = Link ; k = 0 ; for (col = 0 ; col < n_col - n1 ; col++) { /* empty columns are last in S */ for (p = Sp [col] ; p < Sp [col+1] ; p++) { row = Si [p] ; if (!W [row]) { /* this row has just been seen for the first time */ W [row] = TRUE ; P [k++] = row ; } } } /* If the matrix has truly empty rows, then P will not be */ /* complete, and visa versa. The matrix is structurally singular. */ nempty_row = n_row - n1 - k ; if (k < n_row - n1) { /* complete P by putting empty rows last in their natural order, */ /* rather than declaring an error (the matrix is singular) */ for (row = 0 ; row < n_row - n1 ; row++) { if (!W [row]) { /* W [row] = TRUE ; (not required) */ P [k++] = row ; } } } /* contents of W no longer needed ] */ #ifndef NDEBUG DEBUG3 (("Induced row permutation: ")) ; ASSERT (k == n_row - n1) ; ASSERT (UMF_is_permutation (P, W, n_row - n1, n_row - n1)) ; for (k = 0 ; k < n_row - n1 ; k++) { DEBUG3 ((ID" ", P [k])) ; } #endif /* ------------------------------------------------------------------ */ /* B = row-form of the pattern of S (excluding empty columns) */ /* ------------------------------------------------------------------ */ /* Ci [0 .. Clen-1] holds the following work arrays: first Clen2 entries empty space, must be at least >= n_col next max (nz,1) Bi [0..max (nz,1)-1] next nn+1 entries Bp [0..nn] next nn entries Link [0..nn-1] next nn entries W [0..nn-1] last n_col entries Cperm2 [0..n_col-1] This memory usage is accounted for by the UMF_ANALYZE_CLEN macro. */ Clen2 = Clen0 ; snz = Sp [n_col - n1] ; bsize = MAX (snz, 1) ; Clen2 -= bsize ; Bi = Ci + Clen2 ; ASSERT (Clen2 >= n_col) ; (void) UMF_transpose (n_row - n1, n_col - n1 - nempty_col, Sp, Si, (double *) NULL, P, (Int *) NULL, 0, Bp, Bi, (double *) NULL, W, FALSE #ifdef COMPLEX , (double *) NULL, (double *) NULL, FALSE #endif ) ; /* contents of Si and Sp no longer needed */ /* contents of P (same as Link) and W not needed */ /* still need Link and W as work arrays, though ] */ ASSERT (Bp [0] == 0) ; ASSERT (Bp [n_row - n1] == snz) ; /* increment Bp to point into Ci, not Bi */ for (i = 0 ; i <= n_row - n1 ; i++) { Bp [i] += Clen2 ; } ASSERT (Bp [0] == Clen0 - bsize) ; ASSERT (Bp [n_row - n1] <= Clen0) ; /* Ci [0 .. Clen-1] holds the following work arrays: first Clen0 entries Ci [0 .. Clen0-1], where the col indices of B are at the tail end of this part, and Bp [0] = Clen2 >= n_col. Note that Clen0 = Clen2 + max (snz,1). next nn+1 entries Bp [0..nn] next nn entries Link [0..nn-1] next nn entries W [0..nn-1] last n_col entries Cperm2 [0..n_col-1] */ /* ------------------------------------------------------------------ */ /* analyze */ /* ------------------------------------------------------------------ */ /* only analyze the non-empty, non-singleton part of the matrix */ ok = UMF_analyze ( n_row - n1 - nempty_row, n_col - n1 - nempty_col, Ci, Bp, Cperm2, fixQ, W, Link, Fr_ncols, Fr_nrows, Fr_npivcol, Fr_parent, &nfr, &analyze_compactions) ; if (!ok) { /* :: internal error in umf_analyze :: */ Info [UMFPACK_STATUS] = UMFPACK_ERROR_internal_error ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_internal_error) ; } Info [UMFPACK_SYMBOLIC_DEFRAG] += analyze_compactions ; /* ------------------------------------------------------------------ */ /* combine the input permutation and UMF_analyze's permutation */ /* ------------------------------------------------------------------ */ if (!fixQ) { /* Cperm2 is the column etree post-ordering */ ASSERT (UMF_is_permutation (Cperm2, W, n_col-n1-nempty_col, n_col-n1-nempty_col)) ; /* Note that the empty columns remain at the end of Cperm_init */ for (k = 0 ; k < n_col - n1 - nempty_col ; k++) { W [k] = Cperm_init [n1 + Cperm2 [k]] ; } for (k = 0 ; k < n_col - n1 - nempty_col ; k++) { Cperm_init [n1 + k] = W [k] ; } } ASSERT (UMF_is_permutation (Cperm_init, W, n_col, n_col)) ; } /* ---------------------------------------------------------------------- */ /* free some of the workspace */ /* ---------------------------------------------------------------------- */ /* (4) The real workspace, Rs, of size n_row doubles has already been * free'd. An additional workspace of size nz + n_col+1 + n_col integers * is now free'd as well. */ SW->Si = (Int *) UMF_free ((void *) SW->Si) ; SW->Sp = (Int *) UMF_free ((void *) SW->Sp) ; SW->Cperm1 = (Int *) UMF_free ((void *) SW->Cperm1) ; ASSERT (SW->Rs == (double *) NULL) ; /* ---------------------------------------------------------------------- */ /* determine the size of the Symbolic object */ /* ---------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- */ /* determine the size of the Symbolic object */ /* ---------------------------------------------------------------------- */ nchains = 0 ; for (i = 0 ; i < nfr ; i++) { if (Fr_parent [i] != i+1) { nchains++ ; } } Symbolic->nchains = nchains ; Symbolic->nfr = nfr ; Symbolic->esize = (max_rdeg > dense_row_threshold) ? (n_col - n1 - nempty_col) : 0 ; /* true size of Symbolic object */ Info [UMFPACK_SYMBOLIC_SIZE] = UMF_symbolic_usage (n_row, n_col, nchains, nfr, Symbolic->esize, prefer_diagonal) ; /* actual peak memory usage for UMFPACK_symbolic (actual nfr, nchains) */ Info [UMFPACK_SYMBOLIC_PEAK_MEMORY] = SYM_WORK_USAGE (n_col, n_row, Clen) + Info [UMFPACK_SYMBOLIC_SIZE] ; Symbolic->peak_sym_usage = Info [UMFPACK_SYMBOLIC_PEAK_MEMORY] ; DEBUG0 (("Number of fronts: "ID" ", nfr)) ; /* ---------------------------------------------------------------------- */ /* allocate the second part of the Symbolic object (Front_*, Chain_*) */ /* ---------------------------------------------------------------------- */ /* (5) UMF_malloc is called 7 or 8 times, for a total space of * (4*(nfr+1) + 3*(nchains+1) + esize) integers, where nfr is the total * number of frontal matrices and nchains is the total number of frontal * matrix chains, and where nchains <= nfr <= n_col. esize is zero if there * are no dense rows, or n_col-n1-nempty_col otherwise (n1 is the number of * singletons and nempty_col is the number of empty columns). This space is * part of the Symbolic object and is not free'd unless an error occurs. * This is between 7 and about 8n integers when A is square. */ /* Note that Symbolic->Front_* does include the dummy placeholder front */ Symbolic->Front_npivcol = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Front_parent = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Front_1strow = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Front_leftmostdesc = (Int *) UMF_malloc (nfr+1, sizeof (Int)) ; Symbolic->Chain_start = (Int *) UMF_malloc (nchains+1, sizeof (Int)) ; Symbolic->Chain_maxrows = (Int *) UMF_malloc (nchains+1, sizeof (Int)) ; Symbolic->Chain_maxcols = (Int *) UMF_malloc (nchains+1, sizeof (Int)) ; fail = (!Symbolic->Front_npivcol || !Symbolic->Front_parent || !Symbolic->Front_1strow || !Symbolic->Front_leftmostdesc || !Symbolic->Chain_start || !Symbolic->Chain_maxrows || !Symbolic->Chain_maxcols) ; if (Symbolic->esize > 0) { Symbolic->Esize = (Int *) UMF_malloc (Symbolic->esize, sizeof (Int)) ; fail = fail || !Symbolic->Esize ; } if (fail) { DEBUGm4 (("out of memory: rest of symbolic object ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } DEBUG0 (("Symbolic UMF_malloc_count - init_count = "ID" ", UMF_malloc_count - init_count)) ; ASSERT (UMF_malloc_count == init_count + 21 + (SW->Rperm_2by2 != (Int *) NULL) + (Symbolic->Esize != (Int *) NULL)) ; Front_npivcol = Symbolic->Front_npivcol ; Front_parent = Symbolic->Front_parent ; Front_1strow = Symbolic->Front_1strow ; Front_leftmostdesc = Symbolic->Front_leftmostdesc ; Chain_start = Symbolic->Chain_start ; Chain_maxrows = Symbolic->Chain_maxrows ; Chain_maxcols = Symbolic->Chain_maxcols ; Esize = Symbolic->Esize ; /* ---------------------------------------------------------------------- */ /* assign rows to fronts */ /* ---------------------------------------------------------------------- */ /* find InFront, unless colamd has already computed it */ if (do_UMF_analyze) { DEBUGm4 ((">>>>>>>>>Computing Front_1strow from scratch ")) ; /* empty rows go to dummy front nfr */ for (row = 0 ; row < n_row ; row++) { InFront [row] = nfr ; } /* assign the singleton pivot rows to the "empty" front */ for (k = 0 ; k < n1 ; k++) { row = Rperm1 [k] ; InFront [row] = EMPTY ; } DEBUG1 (("Front (EMPTY), singleton nrows "ID" ncols "ID" ", k, k)) ; newj = n1 ; for (i = 0 ; i < nfr ; i++) { fpivcol = Fr_npivcol [i] ; f1rows = 0 ; /* for all pivot columns in front i */ for (kk = 0 ; kk < fpivcol ; kk++, newj++) { j = Cperm_init [newj] ; ASSERT (IMPLIES (newj >= n_col-nempty_col, Ap [j+1] - Ap [j] == 0)); for (p = Ap [j] ; p < Ap [j+1] ; p++) { row = Ai [p] ; if (InFront [row] == nfr) { /* this row belongs to front i */ DEBUG1 ((" Row "ID" in Front "ID" ", row, i)) ; InFront [row] = i ; f1rows++ ; } } } Front_1strow [i] = f1rows ; DEBUG1 ((" Front "ID" has 1strows: "ID" pivcols "ID" ", i, f1rows, fpivcol)) ; } } else { /* COLAMD has already computed InFront, but it is not yet * InFront [row] = front i, where row is an original row. It is * InFront [k-n1] = i for k in the range n1 to n_row-nempty_row, * and where row = Rperm1 [k]. Need to permute InFront. Also compute * # of original rows assembled into each front. * [ use Ci as workspace */ DEBUGm4 ((">>>>>>>>>Computing Front_1strow from colamd's InFront ")) ; for (i = 0 ; i <= nfr ; i++) { Front_1strow [i] = 0 ; } /* assign the singleton pivot rows to "empty" front */ for (k = 0 ; k < n1 ; k++) { row = Rperm1 [k] ; Ci [row] = EMPTY ; } /* assign the non-empty rows to the front that assembled them */ for ( ; k < n_row - nempty_row ; k++) { row = Rperm1 [k] ; i = InFront [k - n1] ; ASSERT (i >= EMPTY && i < nfr) ; if (i != EMPTY) { Front_1strow [i]++ ; } /* use Ci as permuted version of InFront */ Ci [row] = i ; } /* empty rows go to the "dummy" front */ for ( ; k < n_row ; k++) { row = Rperm1 [k] ; Ci [row] = nfr ; } /* permute InFront so that InFront [row] = i if the original row is * in front i */ for (row = 0 ; row < n_row ; row++) { InFront [row] = Ci [row] ; } /* ] no longer need Ci as workspace */ } #ifndef NDEBUG for (row = 0 ; row < n_row ; row++) { if (InFront [row] == nfr) { DEBUG1 ((" Row "ID" in Dummy Front "ID" ", row, nfr)) ; } else if (InFront [row] == EMPTY) { DEBUG1 ((" singleton Row "ID" ", row)) ; } else { DEBUG1 ((" Row "ID" in Front "ID" ", row, nfr)) ; } } #endif /* ---------------------------------------------------------------------- */ /* copy front information into Symbolic object */ /* ---------------------------------------------------------------------- */ k = n1 ; for (i = 0 ; i < nfr ; i++) { fpivcol = Fr_npivcol [i] ; DEBUG1 (("Front "ID" k "ID" npivcol "ID" nrows "ID" ncols "ID" ", i, k, fpivcol, Fr_nrows [i], Fr_ncols [i])) ; k += fpivcol ; /* copy Front info into Symbolic object from SW */ Front_npivcol [i] = fpivcol ; Front_parent [i] = Fr_parent [i] ; } /* assign empty columns to dummy placehold front nfr */ DEBUG1 (("Dummy Cols in Front "ID" : "ID" ", nfr, n_col-k)) ; Front_npivcol [nfr] = n_col - k ; Front_parent [nfr] = EMPTY ; /* ---------------------------------------------------------------------- */ /* find initial row permutation */ /* ---------------------------------------------------------------------- */ /* order the singleton pivot rows */ for (k = 0 ; k < n1 ; k++) { Rperm_init [k] = Rperm1 [k] ; } /* determine the first row in each front (in the new row ordering) */ for (i = 0 ; i < nfr ; i++) { f1rows = Front_1strow [i] ; DEBUG1 (("Front "ID" : npivcol "ID" parent "ID, i, Front_npivcol [i], Front_parent [i])) ; DEBUG1 ((" 1st rows in Front "ID" : "ID" ", i, f1rows)) ; Front_1strow [i] = k ; k += f1rows ; } /* assign empty rows to dummy placehold front nfr */ DEBUG1 (("Rows in Front "ID" (dummy): "ID" ", nfr, n_row-k)) ; Front_1strow [nfr] = k ; DEBUG1 (("nfr "ID" 1strow[nfr] "ID" nrow "ID" ", nfr, k, n_row)) ; /* Use Ci as temporary workspace for F1 */ F1 = Ci ; /* [ of size nfr+1 */ ASSERT (Clen >= 2*n_row + nfr+1) ; for (i = 0 ; i <= nfr ; i++) { F1 [i] = Front_1strow [i] ; } for (row = 0 ; row < n_row ; row++) { i = InFront [row] ; if (i != EMPTY) { newrow = F1 [i]++ ; ASSERT (newrow >= n1) ; Rperm_init [newrow] = row ; } } Rperm_init [n_row] = EMPTY ; /* unused */ #ifndef NDEBUG for (k = 0 ; k < n_row ; k++) { DEBUG2 (("Rperm_init ["ID"] = "ID" ", k, Rperm_init [k])) ; } #endif /* ] done using F1 */ /* ---------------------------------------------------------------------- */ /* find the diagonal map */ /* ---------------------------------------------------------------------- */ /* Rperm_init [newrow] = row gives the row permutation that is implied * by the column permutation, where "row" is a row index of the original * matrix A. It is not dependent on the Rperm_2by2 permutation, which * only redefines the "diagonal". Both are used to construct the * Diagonal_map. Diagonal_map only needs to be defined for * k = n1 to nn - nempty, but go ahead and define it for all of * k = 0 to nn */ if (prefer_diagonal) { Int *Diagonal_map ; ASSERT (n_row == n_col && nn == n_row) ; ASSERT (nempty_row == nempty_col && nempty == nempty_row) ; /* allocate the Diagonal_map */ Symbolic->Diagonal_map = (Int *) UMF_malloc (n_col+1, sizeof (Int)) ; Diagonal_map = Symbolic->Diagonal_map ; if (Diagonal_map == (Int *) NULL) { /* :: out of memory (diagonal map) :: */ DEBUGm4 (("out of memory: Diagonal map ")) ; Info [UMFPACK_STATUS] = UMFPACK_ERROR_out_of_memory ; error (&Symbolic, SW) ; return (UMFPACK_ERROR_out_of_memory) ; } /* use Ci as workspace to compute the inverse of Rperm_init [ */ for (newrow = 0 ; newrow < nn ; newrow++) { oldrow = Rperm_init [newrow] ; ASSERT (oldrow >= 0 && oldrow < nn) ; Ci [oldrow] = newrow ; } if (strategy == UMFPACK_STRATEGY_2BY2) { ASSERT (Rperm_2by2 != (Int *) NULL) ; for (newcol = 0 ; newcol < nn ; newcol++) { oldcol = Cperm_init [newcol] ; /* 2-by-2 pivoting done in S */ oldrow = Rperm_2by2 [oldcol] ; newrow = Ci [oldrow] ; Diagonal_map [newcol] = newrow ; } } else { for (newcol = 0 ; newcol < nn ; newcol++) { oldcol = Cperm_init [newcol] ; /* no 2-by-2 pivoting in S */ oldrow = oldcol ; newrow = Ci [oldrow] ; Diagonal_map [newcol] = newrow ; } } #ifndef NDEBUG DEBUG1 ((" Diagonal map: ")) ; for (newcol = 0 ; newcol < nn ; newcol++) { oldcol = Cperm_init [newcol] ; DEBUG3 (("oldcol "ID" newcol "ID": ", oldcol, newcol)) ; for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { Entry aij ; CLEAR (aij) ; oldrow = Ai [p] ; newrow = Ci [oldrow] ; if (Ax != (double *) NULL) { ASSIGN (aij, Ax, Az, p, SPLIT (Az)) ; } if (oldrow == oldcol) { DEBUG2 ((" old diagonal : oldcol "ID" oldrow "ID" ", oldcol, oldrow)) ; EDEBUG2 (aij) ; DEBUG2 ((" ")) ; } if (newrow == Diagonal_map [newcol]) { DEBUG2 ((" MAP diagonal : newcol "ID" MAProw "ID" ", newcol, Diagonal_map [newrow])) ; EDEBUG2 (aij) ; DEBUG2 ((" ")) ; } } } #endif /* done using Ci as workspace ] */ } /* ---------------------------------------------------------------------- */ /* find the leftmost descendant of each front */ /* ---------------------------------------------------------------------- */ for (i = 0 ; i <= nfr ; i++) { Front_leftmostdesc [i] = EMPTY ; } for (i = 0 ; i < nfr ; i++) { /* start at i and walk up the tree */ DEBUG2 (("Walk up front tree from "ID" ", i)) ; j = i ; while (j != EMPTY && Front_leftmostdesc [j] == EMPTY) { DEBUG3 ((" Leftmost desc of "ID" is "ID" ", j, i)) ; Front_leftmostdesc [j] = i ; j = Front_parent [j] ; DEBUG3 ((" go to j = "ID" ", j)) ; } } /* ---------------------------------------------------------------------- */ /* find the frontal matrix chains and max frontal matrix sizes */ /* ---------------------------------------------------------------------- */ maxnrows = 1 ; /* max # rows in any front */ maxncols = 1 ; /* max # cols in any front */ dmaxfrsize = 1 ; /* max frontal matrix size */ /* start the first chain */ nchains = 0 ; /* number of chains */ Chain_start [0] = 0 ; /* front 0 starts a new chain */ maxrows = 1 ; /* max # rows for any front in current chain */ maxcols = 1 ; /* max # cols for any front in current chain */ DEBUG1 (("Constructing chains: ")) ; for (i = 0 ; i < nfr ; i++) { /* get frontal matrix info */ fpivcol = Front_npivcol [i] ; /* # candidate pivot columns */ fallrows = Fr_nrows [i] ; /* all rows (not just Schur comp) */ fallcols = Fr_ncols [i] ; /* all cols (not just Schur comp) */ parent = Front_parent [i] ; /* parent in column etree */ fpiv = MIN (fpivcol, fallrows) ; /* # pivot rows and cols */ maxrows = MAX (maxrows, fallrows) ; maxcols = MAX (maxcols, fallcols) ; DEBUG1 (("Front: "ID", pivcol "ID", "ID"-by-"ID" parent "ID ", npiv "ID" Chain: maxrows "ID" maxcols "ID" ", i, fpivcol, fallrows, fallcols, parent, fpiv, maxrows, maxcols)) ; if (parent != i+1) { /* this is the end of a chain */ double s ; DEBUG1 ((" End of chain "ID" ", nchains)) ; /* make sure maxrows is an odd number */ ASSERT (maxrows >= 0) ; if (maxrows % 2 == 0) maxrows++ ; DEBUG1 (("Chain maxrows "ID" maxcols "ID" ", maxrows, maxcols)) ; Chain_maxrows [nchains] = maxrows ; Chain_maxcols [nchains] = maxcols ; /* keep track of the maximum front size for all chains */ /* for Info only: */ s = (double) maxrows * (double) maxcols ; dmaxfrsize = MAX (dmaxfrsize, s) ; /* for the subsequent numerical factorization */ maxnrows = MAX (maxnrows, maxrows) ; maxncols = MAX (maxncols, maxcols) ; DEBUG1 (("Chain dmaxfrsize %g ", dmaxfrsize)) ; /* start the next chain */ nchains++ ; Chain_start [nchains] = i+1 ; maxrows = 1 ; maxcols = 1 ; } } /* for Info only: */ dmaxfrsize = ceil (dmaxfrsize) ; DEBUGm1 (("dmaxfrsize %30.20g Int_MAX "ID" ", dmaxfrsize, Int_MAX)) ; ASSERT (Symbolic->nchains == nchains) ; /* For allocating objects in umfpack_numeric (does not include all possible * pivots, particularly pivots from prior fronts in the chain. Need to add * nb to these to get the # of columns in the L block, for example. This * is the largest row dimension and largest column dimension of any frontal * matrix. maxnrows is always odd. */ Symbolic->maxnrows = maxnrows ; Symbolic->maxncols = maxncols ; DEBUGm3 (("maxnrows "ID" maxncols "ID" ", maxnrows, maxncols)) ; /* ---------------------------------------------------------------------- */ /* find the initial element sizes */ /* ---------------------------------------------------------------------- */ if (max_rdeg > dense_row_threshold) { /* there are one or more dense rows in the input matrix */ /* count the number of dense rows in each column */ /* use Ci as workspace for inverse of Rperm_init [ */ ASSERT (Esize != (Int *) NULL) ; for (newrow = 0 ; newrow < n_row ; newrow++) { oldrow = Rperm_init [newrow] ; ASSERT (oldrow >= 0 && oldrow < nn) ; Ci [oldrow] = newrow ; } for (col = n1 ; col < n_col - nempty_col ; col++) { oldcol = Cperm_init [col] ; esize = Cdeg [oldcol] ; ASSERT (esize > 0) ; for (p = Ap [oldcol] ; p < Ap [oldcol+1] ; p++) { oldrow = Ai [p] ; newrow = Ci [oldrow] ; if (newrow >= n1 && Rdeg [oldrow] > dense_row_threshold) { esize-- ; } } ASSERT (esize >= 0) ; Esize [col - n1] = esize ; } /* done using Ci as workspace ] */ } /* If there are no dense rows, then Esize [col-n1] is identical to * Cdeg [col], once Cdeg is permuted below */ /* ---------------------------------------------------------------------- */ /* permute Cdeg and Rdeg according to initial column and row permutation */ /* ---------------------------------------------------------------------- */ /* use Ci as workspace [ */ for (k = 0 ; k < n_col ; k++) { Ci [k] = Cdeg [Cperm_init [k]] ; } for (k = 0 ; k < n_col ; k++) { Cdeg [k] = Ci [k] ; } for (k = 0 ; k < n_row ; k++) { Ci [k] = Rdeg [Rperm_init [k]] ; } for (k = 0 ; k < n_row ; k++) { Rdeg [k] = Ci [k] ; } /* done using Ci as workspace ] */ /* ---------------------------------------------------------------------- */ /* simulate UMF_kernel_init */ /* ---------------------------------------------------------------------- */ /* count elements and tuples at tail, LU factors of singletons, and * head and tail markers */ dlnz = n_inner ; /* upper limit of nz in L (incl diag) */ dunz = dlnz ; /* upper limit of nz in U (incl diag) */ /* head marker */ head_usage = 1 ; dhead_usage = 1 ; /* tail markers: */ tail_usage = 2 ; dtail_usage = 2 ; /* allocate the Rpi and Rpx workspace for UMF_kernel_init (incl. headers) */ tail_usage += UNITS (Int *, n_row+1) + UNITS (Entry *, n_row+1) + 2 ; dtail_usage += DUNITS (Int *, n_row+1) + DUNITS (Entry *, n_row+1) + 2 ; DEBUG1 (("Symbolic usage after Rpi/Rpx allocation: head "ID" tail "ID" ", head_usage, tail_usage)) ; /* LU factors for singletons, at the head of memory */ for (k = 0 ; k < n1 ; k++) { lnz = Cdeg [k] - 1 ; unz = Rdeg [k] - 1 ; dlnz += lnz ; dunz += unz ; DEBUG1 (("singleton k "ID" pivrow "ID" pivcol "ID" lnz "ID" unz "ID" ", k, Rperm_init [k], Cperm_init [k], lnz, unz)) ; head_usage += UNITS (Int, lnz) + UNITS (Entry, lnz) + UNITS (Int, unz) + UNITS (Entry, unz) ; dhead_usage += DUNITS (Int, lnz) + DUNITS (Entry, lnz) + DUNITS (Int, unz) + DUNITS (Entry, unz) ; } DEBUG1 (("Symbolic init head usage: "ID" for LU singletons ",head_usage)) ; /* column elements: */ for (k = n1 ; k < n_col - nempty_col; k++) { esize = Esize ? Esize [k-n1] : Cdeg [k] ; DEBUG2 ((" esize: "ID" ", esize)) ; ASSERT (esize >= 0) ; if (esize > 0) { tail_usage += GET_ELEMENT_SIZE (esize, 1) + 1 ; dtail_usage += DGET_ELEMENT_SIZE (esize, 1) + 1 ; } } /* dense row elements */ if (Esize) { Int nrow_elements = 0 ; for (k = n1 ; k < n_row - nempty_row ; k++) { rdeg = Rdeg [k] ; if (rdeg > dense_row_threshold) { tail_usage += GET_ELEMENT_SIZE (1, rdeg) + 1 ; dtail_usage += GET_ELEMENT_SIZE (1, rdeg) + 1 ; nrow_elements++ ; } } Info [UMFPACK_NDENSE_ROW] = nrow_elements ; } DEBUG1 (("Symbolic usage: "ID" = head "ID" + tail "ID" after els ", head_usage + tail_usage, head_usage, tail_usage)) ; /* compute the tuple lengths */ if (Esize) { /* row tuples */ for (row = n1 ; row < n_row ; row++) { rdeg = Rdeg [row] ; tlen = (rdeg > dense_row_threshold) ? 1 : rdeg ; tail_usage += 1 + UNITS (Tuple, TUPLES (tlen)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (tlen)) ; } /* column tuples */ for (col = n1 ; col < n_col - nempty_col ; col++) { /* tlen is 1 plus the number of dense rows in this column */ esize = Esize [col - n1] ; tlen = (esize > 0) + (Cdeg [col] - esize) ; tail_usage += 1 + UNITS (Tuple, TUPLES (tlen)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (tlen)) ; } for ( ; col < n_col ; col++) { tail_usage += 1 + UNITS (Tuple, TUPLES (0)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (0)) ; } } else { /* row tuples */ for (row = n1 ; row < n_row ; row++) { tlen = Rdeg [row] ; tail_usage += 1 + UNITS (Tuple, TUPLES (tlen)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (tlen)) ; } /* column tuples */ for (col = n1 ; col < n_col ; col++) { tail_usage += 1 + UNITS (Tuple, TUPLES (1)) ; dtail_usage += 1 + DUNITS (Tuple, TUPLES (1)) ; } } Symbolic->num_mem_init_usage = head_usage + tail_usage ; DEBUG1 (("Symbolic usage: "ID" = head "ID" + tail "ID" final ", Symbolic->num_mem_init_usage, head_usage, tail_usage)) ; ASSERT (UMF_is_permutation (Rperm_init, Ci, n_row, n_row)) ; /* initial head and tail usage in Numeric->Memory */ dmax_usage = dhead_usage + dtail_usage ; dmax_usage = MAX (Symbolic->num_mem_init_usage, ceil (dmax_usage)) ; Info [UMFPACK_VARIABLE_INIT_ESTIMATE] = dmax_usage ; /* In case Symbolic->num_mem_init_usage overflows, keep as a double, too */ Symbolic->dnum_mem_init_usage = dmax_usage ; /* free the Rpi and Rpx workspace */ tail_usage -= UNITS (Int *, n_row+1) + UNITS (Entry *, n_row+1) ; dtail_usage -= DUNITS (Int *, n_row+1) + DUNITS (Entry *, n_row+1) ; /* ---------------------------------------------------------------------- */ /* simulate UMF_kernel, assuming unsymmetric pivoting */ /* ---------------------------------------------------------------------- */ /* Use Ci as temporary workspace for link lists [ */ Link = Ci ; for (i = 0 ; i < nfr ; i++) { Link [i] = EMPTY ; } flops = 0 ; /* flop count upper bound */ for (chain = 0 ; chain < nchains ; chain++) { double fsize ; f1 = Chain_start [chain] ; f2 = Chain_start [chain+1] - 1 ; /* allocate frontal matrix working array (C, L, and U) */ dr = Chain_maxrows [chain] ; dc = Chain_maxcols [chain] ; fsize = nb*nb /* LU is nb-by-nb */ + dr*nb /* L is dr-by-nb */ + nb*dc /* U is nb-by-dc, stored by rows */ + dr*dc ; /* C is dr by dc */ dtail_usage += DUNITS (Entry, fsize) ; dmax_usage = MAX (dmax_usage, dhead_usage + dtail_usage) ; for (i = f1 ; i <= f2 ; i++) { /* get frontal matrix info */ fpivcol = Front_npivcol [i] ; /* # candidate pivot columns */ fallrows = Fr_nrows [i] ; /* all rows (not just Schur comp*/ fallcols = Fr_ncols [i] ; /* all cols (not just Schur comp*/ parent = Front_parent [i] ; /* parent in column etree */ fpiv = MIN (fpivcol, fallrows) ; /* # pivot rows and cols */ f = (double) fpiv ; r = fallrows - fpiv ; /* # rows in Schur comp. */ c = fallcols - fpiv ; /* # cols in Schur comp. */ /* assemble all children of front i in column etree */ for (child = Link [i] ; child != EMPTY ; child = Link [child]) { ASSERT (child >= 0 && child < i) ; ASSERT (Front_parent [child] == i) ; /* free the child element and remove it from tuple lists */ cp = MIN (Front_npivcol [child], Fr_nrows [child]) ; cr = Fr_nrows [child] - cp ; cc = Fr_ncols [child] - cp ; ASSERT (cp >= 0 && cr >= 0 && cc >= 0) ; dtail_usage -= ELEMENT_SIZE (cr, cc) ; } /* The flop count computed here is "canonical". */ /* factorize the frontal matrix */ flops += DIV_FLOPS * (f*r + (f-1)*f/2) /* scale pivot columns */ /* f outer products: */ + MULTSUB_FLOPS * (f*r*c + (r+c)*(f-1)*f/2 + (f-1)*f*(2*f-1)/6); /* count nonzeros and memory usage in double precision */ dlf = (f*f-f)/2 + f*r ; /* nz in L below diagonal */ duf = (f*f-f)/2 + f*c ; /* nz in U above diagonal */ dlnz += dlf ; dunz += duf ; /* store f columns of L and f rows of U */ dhead_usage += DUNITS (Entry, dlf + duf) /* numerical values (excl diag) */ + DUNITS (Int, r + c + f) ; /* indices (compressed) */ if (parent != EMPTY) { /* create new element and place in tuple lists */ dtail_usage += ELEMENT_SIZE (r, c) ; /* place in link list of parent */ Link [i] = Link [parent] ; Link [parent] = i ; } /* keep track of peak Numeric->Memory usage */ dmax_usage = MAX (dmax_usage, dhead_usage + dtail_usage) ; } /* free the current frontal matrix */ dtail_usage -= DUNITS (Entry, fsize) ; } dhead_usage = ceil (dhead_usage) ; dmax_usage = ceil (dmax_usage) ; Symbolic->num_mem_size_est = dhead_usage ; Symbolic->num_mem_usage_est = dmax_usage ; Symbolic->lunz_bound = dlnz + dunz - n_inner ; /* ] done using Ci as workspace for Link array */ /* ---------------------------------------------------------------------- */ /* estimate total memory usage in UMFPACK_numeric */ /* ---------------------------------------------------------------------- */ UMF_set_stats ( Info, Symbolic, dmax_usage, /* estimated peak size of Numeric->Memory */ dhead_usage, /* estimated final size of Numeric->Memory */ flops, /* estimated "true flops" */ dlnz, /* estimated nz in L */ dunz, /* estimated nz in U */ dmaxfrsize, /* estimated largest front size */ (double) n_col, /* worst case Numeric->Upattern size */ (double) n_inner, /* max possible pivots to be found */ (double) maxnrows, /* estimated largest #rows in front */ (double) maxncols, /* estimated largest #cols in front */ TRUE, /* assume scaling is to be performed */ prefer_diagonal, ESTIMATE) ; /* ---------------------------------------------------------------------- */ #ifndef NDEBUG for (i = 0 ; i < nchains ; i++) { DEBUG2 (("Chain "ID" start "ID" end "ID" maxrows "ID" maxcols "ID" ", i, Chain_start [i], Chain_start [i+1] - 1, Chain_maxrows [i], Chain_maxcols [i])) ; UMF_dump_chain (Chain_start [i], Fr_parent, Fr_npivcol, Fr_nrows, Fr_ncols, nfr) ; } fpivcol = 0 ; for (i = 0 ; i < nfr ; i++) { fpivcol = MAX (fpivcol, Front_npivcol [i]) ; } DEBUG0 (("Max pivot cols in any front: "ID" ", fpivcol)) ; DEBUG1 (("Largest front: maxnrows "ID" maxncols "ID" dmaxfrsize %g ", maxnrows, maxncols, dmaxfrsize)) ; #endif /* ---------------------------------------------------------------------- */ /* UMFPACK_symbolic was successful, return the object handle */ /* ---------------------------------------------------------------------- */ Symbolic->valid = SYMBOLIC_VALID ; *SymbolicHandle = (void *) Symbolic ; /* ---------------------------------------------------------------------- */ /* free workspace */ /* ---------------------------------------------------------------------- */ /* (6) The last of the workspace is free'd. The final Symbolic object * consists of 12 to 14 allocated objects. Its final total size is lies * roughly between 4*n and 13*n for a square matrix, which is all that is * left of the memory allocated by this routine. If an error occurs, the * entire Symbolic object is free'd when this routine returns (the error * return routine, below). */ free_work (SW) ; DEBUG0 (("(3)Symbolic UMF_malloc_count - init_count = "ID" ", UMF_malloc_count - init_count)) ; ASSERT (UMF_malloc_count == init_count + 12 + (Symbolic->Esize != (Int *) NULL) + (Symbolic->Diagonal_map != (Int *) NULL)) ; /* ---------------------------------------------------------------------- */ /* get the time used by UMFPACK_*symbolic */ /* ---------------------------------------------------------------------- */ umfpack_toc (stats) ; Info [UMFPACK_SYMBOLIC_WALLTIME] = stats [0] ; Info [UMFPACK_SYMBOLIC_TIME] = stats [1] ; return (UMFPACK_OK) ; } /* ========================================================================== */ /* === free_work ============================================================ */ /* ========================================================================== */ PRIVATE void free_work ( SWType *SW ) { if (SW) { SW->Rperm_2by2 = (Int *) UMF_free ((void *) SW->Rperm_2by2) ; SW->InvRperm1 = (Int *) UMF_free ((void *) SW->InvRperm1) ; SW->Rs = (double *) UMF_free ((void *) SW->Rs) ; SW->Si = (Int *) UMF_free ((void *) SW->Si) ; SW->Sp = (Int *) UMF_free ((void *) SW->Sp) ; SW->Ci = (Int *) UMF_free ((void *) SW->Ci) ; SW->Front_npivcol = (Int *) UMF_free ((void *) SW->Front_npivcol); SW->Front_nrows = (Int *) UMF_free ((void *) SW->Front_nrows) ; SW->Front_ncols = (Int *) UMF_free ((void *) SW->Front_ncols) ; SW->Front_parent = (Int *) UMF_free ((void *) SW->Front_parent) ; SW->Front_cols = (Int *) UMF_free ((void *) SW->Front_cols) ; SW->Cperm1 = (Int *) UMF_free ((void *) SW->Cperm1) ; SW->Rperm1 = (Int *) UMF_free ((void *) SW->Rperm1) ; SW->InFront = (Int *) UMF_free ((void *) SW->InFront) ; } } /* ========================================================================== */ /* === error ================================================================ */ /* ========================================================================== */ /* Error return from UMFPACK_symbolic. Free all allocated memory. */ PRIVATE void error ( SymbolicType **Symbolic, SWType *SW ) { free_work (SW) ; UMFPACK_free_symbolic ((void **) Symbolic) ; ASSERT (UMF_malloc_count == init_count) ; } |