Blame view
fvn_integ/dqag_2d_outer.f
8.7 KB
06ed2f4ac git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
! fvn comment : ! Modified version of the dqag quadpack routine from http://www.netlib.org/quadpack ! ! + The call to xerror is replaced by a simple write(*,*) ! + The external 'f' function is a 2 parameters function f(x,y). The routine ! takes two more parameters 'g' and 'h' which are two external functions : ! g represent the lower bound of the integral for y parameter ! h represent the higher bound of the integral for y parameter ! The routine compute the double integral of function f with x between a and b ! and y between g(x) and h(x) subroutine dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,result, & abserr,neval,ier,limit,lenw,last,iwork,work) !***begin prologue dqag !***date written 800101 (yymmdd) !***revision date 830518 (yymmdd) !***category no. h2a1a1 !***keywords automatic integrator, general-purpose, ! integrand examinator, globally adaptive, ! gauss-kronrod !***author piessens,robert,appl. math. & progr. div - k.u.leuven ! de doncker,elise,appl. math. & progr. div. - k.u.leuven !***purpose the routine calculates an approximation result to a given ! definite integral i = integral of f over (a,b), ! hopefully satisfying following claim for accuracy ! abs(i-result)le.max(epsabs,epsrel*abs(i)). !***description ! ! computation of a definite integral ! standard fortran subroutine ! double precision version ! ! f - double precision ! function subprogam defining the integrand ! function f(x). the actual name for f needs to be ! declared e x t e r n a l in the driver program. ! ! a - double precision ! lower limit of integration ! ! b - double precision ! upper limit of integration ! ! epsabs - double precision ! absolute accoracy requested ! epsrel - double precision ! relative accuracy requested ! if epsabs.le.0 ! and epsrel.lt.max(50*rel.mach.acc.,0.5d-28), ! the routine will end with ier = 6. ! ! key - integer ! key for choice of local integration rule ! a gauss-kronrod pair is used with ! 7 - 15 points if key.lt.2, ! 10 - 21 points if key = 2, ! 15 - 31 points if key = 3, ! 20 - 41 points if key = 4, ! 25 - 51 points if key = 5, ! 30 - 61 points if key.gt.5. ! ! on return ! result - double precision ! approximation to the integral ! ! abserr - double precision ! estimate of the modulus of the absolute error, ! which should equal or exceed abs(i-result) ! ! neval - integer ! number of integrand evaluations ! ! ier - integer ! ier = 0 normal and reliable termination of the ! routine. it is assumed that the requested ! accuracy has been achieved. ! ier.gt.0 abnormal termination of the routine ! the estimates for result and error are ! less reliable. it is assumed that the ! requested accuracy has not been achieved. ! error messages ! ier = 1 maximum number of subdivisions allowed ! has been achieved. one can allow more ! subdivisions by increasing the value of ! limit (and taking the according dimension ! adjustments into account). however, if ! this yield no improvement it is advised ! to analyze the integrand in order to ! determine the integration difficulaties. ! if the position of a local difficulty can ! be determined (i.e.singularity, ! discontinuity within the interval) one ! will probably gain from splitting up the ! interval at this point and calling the ! integrator on the subranges. if possible, ! an appropriate special-purpose integrator ! should be used which is designed for ! handling the type of difficulty involved. ! = 2 the occurrence of roundoff error is ! detected, which prevents the requested ! tolerance from being achieved. ! = 3 extremely bad integrand behaviour occurs ! at some points of the integration ! interval. ! = 6 the input is invalid, because ! (epsabs.le.0 and ! epsrel.lt.max(50*rel.mach.acc.,0.5d-28)) ! or limit.lt.1 or lenw.lt.limit*4. ! result, abserr, neval, last are set ! to zero. ! except when lenw is invalid, iwork(1), ! work(limit*2+1) and work(limit*3+1) are ! set to zero, work(1) is set to a and ! work(limit+1) to b. ! ! dimensioning parameters ! limit - integer ! dimensioning parameter for iwork ! limit determines the maximum number of subintervals ! in the partition of the given integration interval ! (a,b), limit.ge.1. ! if limit.lt.1, the routine will end with ier = 6. ! ! lenw - integer ! dimensioning parameter for work ! lenw must be at least limit*4. ! if lenw.lt.limit*4, the routine will end with ! ier = 6. ! ! last - integer ! on return, last equals the number of subintervals ! produced in the subdiviosion process, which ! determines the number of significant elements ! actually in the work arrays. ! ! work arrays ! iwork - integer ! vector of dimension at least limit, the first k ! elements of which contain pointers to the error ! estimates over the subintervals, such that ! work(limit*3+iwork(1)),... , work(limit*3+iwork(k)) ! form a decreasing sequence with k = last if ! last.le.(limit/2+2), and k = limit+1-last otherwise ! ! work - double precision ! vector of dimension at least lenw ! on return ! work(1), ..., work(last) contain the left end ! points of the subintervals in the partition of ! (a,b), ! work(limit+1), ..., work(limit+last) contain the ! right end points, ! work(limit*2+1), ..., work(limit*2+last) contain ! the integral approximations over the subintervals, ! work(limit*3+1), ..., work(limit*3+last) contain ! the error estimates. ! !***references (none) !***routines called dqage,xerror !***end prologue dqag double precision a,abserr,b,epsabs,epsrel,result,work integer ier,iwork,key,last,lenw,limit,lvl,l1,l2,l3,neval ! dimension iwork(limit),work(lenw) ! double precision,external :: f,g,h ! ! check validity of lenw. ! !***first executable statement dqag ier = 6 neval = 0 last = 0 result = 0.0d+00 abserr = 0.0d+00 if(limit.lt.1.or.lenw.lt.limit*4) go to 10 ! ! prepare call for dqage. ! l1 = limit+1 l2 = limit+l1 l3 = limit+l2 ! call dqage_2d_outer(f,a,b,g,h,epsabs,epsrel,key,limit, & result,abserr,neval,ier,work(1),work(l1),work(l2), & work(l3),iwork,last) ! ! call error handler if necessary. ! lvl = 0 10 if(ier.eq.6) lvl = 1 ! if(ier.ne.0) call xerror(26habnormal return from dqag ,26,ier,lvl) ! we use a simple write for error if (ier.ne.0) then write(*,*) "Abnormal return from dqag_2d_outer" write(*,*) "ier=",ier end if return end subroutine |