Blame view
fvn_integ/dqk61.f90
9.87 KB
06ed2f4ac git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
! ! fvn comment : ! Unmodified quadpack routine from http://www.netlib.org/quadpack ! subroutine dqk61(f,a,b,result,abserr,resabs,resasc) !***begin prologue dqk61 !***date written 800101 (yymmdd) !***revision date 830518 (yymmdd) !***category no. h2a1a2 !***keywords 61-point gauss-kronrod rules !***author piessens,robert,appl. math. & progr. div. - k.u.leuven ! de doncker,elise,appl. math. & progr. div. - k.u.leuven !***purpose to compute i = integral of f over (a,b) with error ! estimate ! j = integral of dabs(f) over (a,b) !***description ! ! integration rule ! standard fortran subroutine ! double precision version ! ! ! parameters ! on entry ! f - double precision ! function subprogram defining the integrand ! function f(x). the actual name for f needs to be ! declared e x t e r n a l in the calling program. ! ! a - double precision ! lower limit of integration ! ! b - double precision ! upper limit of integration ! ! on return ! result - double precision ! approximation to the integral i ! result is computed by applying the 61-point ! kronrod rule (resk) obtained by optimal addition of ! abscissae to the 30-point gauss rule (resg). ! ! abserr - double precision ! estimate of the modulus of the absolute error, ! which should equal or exceed dabs(i-result) ! ! resabs - double precision ! approximation to the integral j ! ! resasc - double precision ! approximation to the integral of dabs(f-i/(b-a)) ! ! !***references (none) !***routines called d1mach !***end prologue dqk61 ! double precision a,dabsc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1, & epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, & resg,resk,reskh,result,uflow,wg,wgk,xgk integer j,jtw,jtwm1 external f ! dimension fv1(30),fv2(30),xgk(31),wgk(31),wg(15) ! ! the abscissae and weights are given for the ! interval (-1,1). because of symmetry only the positive ! abscissae and their corresponding weights are given. ! ! xgk - abscissae of the 61-point kronrod rule ! xgk(2), xgk(4) ... abscissae of the 30-point ! gauss rule ! xgk(1), xgk(3) ... optimally added abscissae ! to the 30-point gauss rule ! ! wgk - weights of the 61-point kronrod rule ! ! wg - weigths of the 30-point gauss rule ! ! ! gauss quadrature weights and kronron quadrature abscissae and weights ! as evaluated with 80 decimal digit arithmetic by l. w. fullerton, ! bell labs, nov. 1981. ! data wg ( 1) / 0.007968192496166605615465883474674d0 / data wg ( 2) / 0.018466468311090959142302131912047d0 / data wg ( 3) / 0.028784707883323369349719179611292d0 / data wg ( 4) / 0.038799192569627049596801936446348d0 / data wg ( 5) / 0.048402672830594052902938140422808d0 / data wg ( 6) / 0.057493156217619066481721689402056d0 / data wg ( 7) / 0.065974229882180495128128515115962d0 / data wg ( 8) / 0.073755974737705206268243850022191d0 / data wg ( 9) / 0.080755895229420215354694938460530d0 / data wg ( 10) / 0.086899787201082979802387530715126d0 / data wg ( 11) / 0.092122522237786128717632707087619d0 / data wg ( 12) / 0.096368737174644259639468626351810d0 / data wg ( 13) / 0.099593420586795267062780282103569d0 / data wg ( 14) / 0.101762389748405504596428952168554d0 / data wg ( 15) / 0.102852652893558840341285636705415d0 / ! data xgk ( 1) / 0.999484410050490637571325895705811d0 / data xgk ( 2) / 0.996893484074649540271630050918695d0 / data xgk ( 3) / 0.991630996870404594858628366109486d0 / data xgk ( 4) / 0.983668123279747209970032581605663d0 / data xgk ( 5) / 0.973116322501126268374693868423707d0 / data xgk ( 6) / 0.960021864968307512216871025581798d0 / data xgk ( 7) / 0.944374444748559979415831324037439d0 / data xgk ( 8) / 0.926200047429274325879324277080474d0 / data xgk ( 9) / 0.905573307699907798546522558925958d0 / data xgk ( 10) / 0.882560535792052681543116462530226d0 / data xgk ( 11) / 0.857205233546061098958658510658944d0 / data xgk ( 12) / 0.829565762382768397442898119732502d0 / data xgk ( 13) / 0.799727835821839083013668942322683d0 / data xgk ( 14) / 0.767777432104826194917977340974503d0 / data xgk ( 15) / 0.733790062453226804726171131369528d0 / data xgk ( 16) / 0.697850494793315796932292388026640d0 / data xgk ( 17) / 0.660061064126626961370053668149271d0 / data xgk ( 18) / 0.620526182989242861140477556431189d0 / data xgk ( 19) / 0.579345235826361691756024932172540d0 / data xgk ( 20) / 0.536624148142019899264169793311073d0 / data xgk ( 21) / 0.492480467861778574993693061207709d0 / data xgk ( 22) / 0.447033769538089176780609900322854d0 / data xgk ( 23) / 0.400401254830394392535476211542661d0 / data xgk ( 24) / 0.352704725530878113471037207089374d0 / data xgk ( 25) / 0.304073202273625077372677107199257d0 / data xgk ( 26) / 0.254636926167889846439805129817805d0 / data xgk ( 27) / 0.204525116682309891438957671002025d0 / data xgk ( 28) / 0.153869913608583546963794672743256d0 / data xgk ( 29) / 0.102806937966737030147096751318001d0 / data xgk ( 30) / 0.051471842555317695833025213166723d0 / data xgk ( 31) / 0.000000000000000000000000000000000d0 / ! data wgk ( 1) / 0.001389013698677007624551591226760d0 / data wgk ( 2) / 0.003890461127099884051267201844516d0 / data wgk ( 3) / 0.006630703915931292173319826369750d0 / data wgk ( 4) / 0.009273279659517763428441146892024d0 / data wgk ( 5) / 0.011823015253496341742232898853251d0 / data wgk ( 6) / 0.014369729507045804812451432443580d0 / data wgk ( 7) / 0.016920889189053272627572289420322d0 / data wgk ( 8) / 0.019414141193942381173408951050128d0 / data wgk ( 9) / 0.021828035821609192297167485738339d0 / data wgk ( 10) / 0.024191162078080601365686370725232d0 / data wgk ( 11) / 0.026509954882333101610601709335075d0 / data wgk ( 12) / 0.028754048765041292843978785354334d0 / data wgk ( 13) / 0.030907257562387762472884252943092d0 / data wgk ( 14) / 0.032981447057483726031814191016854d0 / data wgk ( 15) / 0.034979338028060024137499670731468d0 / data wgk ( 16) / 0.036882364651821229223911065617136d0 / data wgk ( 17) / 0.038678945624727592950348651532281d0 / data wgk ( 18) / 0.040374538951535959111995279752468d0 / data wgk ( 19) / 0.041969810215164246147147541285970d0 / data wgk ( 20) / 0.043452539701356069316831728117073d0 / data wgk ( 21) / 0.044814800133162663192355551616723d0 / data wgk ( 22) / 0.046059238271006988116271735559374d0 / data wgk ( 23) / 0.047185546569299153945261478181099d0 / data wgk ( 24) / 0.048185861757087129140779492298305d0 / data wgk ( 25) / 0.049055434555029778887528165367238d0 / data wgk ( 26) / 0.049795683427074206357811569379942d0 / data wgk ( 27) / 0.050405921402782346840893085653585d0 / data wgk ( 28) / 0.050881795898749606492297473049805d0 / data wgk ( 29) / 0.051221547849258772170656282604944d0 / data wgk ( 30) / 0.051426128537459025933862879215781d0 / data wgk ( 31) / 0.051494729429451567558340433647099d0 / ! ! list of major variables ! ----------------------- ! ! centr - mid point of the interval ! hlgth - half-length of the interval ! dabsc - abscissa ! fval* - function value ! resg - result of the 30-point gauss rule ! resk - result of the 61-point kronrod rule ! reskh - approximation to the mean value of f ! over (a,b), i.e. to i/(b-a) ! ! machine dependent constants ! --------------------------- ! ! epmach is the largest relative spacing. ! uflow is the smallest positive magnitude. ! epmach = d1mach(4) uflow = d1mach(1) ! centr = 0.5d+00*(b+a) hlgth = 0.5d+00*(b-a) dhlgth = dabs(hlgth) ! ! compute the 61-point kronrod approximation to the ! integral, and estimate the absolute error. ! !***first executable statement dqk61 resg = 0.0d+00 fc = f(centr) resk = wgk(31)*fc resabs = dabs(resk) do 10 j=1,15 jtw = j*2 dabsc = hlgth*xgk(jtw) fval1 = f(centr-dabsc) fval2 = f(centr+dabsc) fv1(jtw) = fval1 fv2(jtw) = fval2 fsum = fval1+fval2 resg = resg+wg(j)*fsum resk = resk+wgk(jtw)*fsum resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2)) 10 continue do 15 j=1,15 jtwm1 = j*2-1 dabsc = hlgth*xgk(jtwm1) fval1 = f(centr-dabsc) fval2 = f(centr+dabsc) fv1(jtwm1) = fval1 fv2(jtwm1) = fval2 fsum = fval1+fval2 resk = resk+wgk(jtwm1)*fsum resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2)) 15 continue reskh = resk*0.5d+00 resasc = wgk(31)*dabs(fc-reskh) do 20 j=1,30 resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh)) 20 continue result = resk*hlgth resabs = resabs*dhlgth resasc = resasc*dhlgth abserr = dabs((resk-resg)*hlgth) if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) & abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00) if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 & ((epmach*0.5d+02)*resabs,abserr) return end subroutine |