Blame view
fvn_fnlib/cpsi.f
2.68 KB
38581db0c git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
complex function cpsi (zin) c may 1978 edition. w. fullerton, c3, los alamos scientific lab. complex zin, z, z2inv, corr, ccot, clog dimension bern(13) external ccot, r1mach c data bern( 1) / .8333333333 3333333 e-1 / data bern( 2) / -.8333333333 3333333 e-2 / data bern( 3) / .3968253968 2539683 e-2 / data bern( 4) / -.4166666666 6666667 e-2 / data bern( 5) / .7575757575 7575758 e-2 / data bern( 6) / -.2109279609 2796093 e-1 / data bern( 7) / .8333333333 3333333 e-1 / data bern( 8) / -.4432598039 2156863 e0 / data bern( 9) / .3053954330 2701197 e1 / data bern(10) / -.2645621212 1212121 e2 / data bern(11) / .2814601449 2753623 e3 / data bern(12) / -.3454885393 7728938 e4 / data bern(13) / .5482758333 3333333 e5 / c data pi / 3.141592653 589793 e0 / data nterm, bound, dxrel, rmin, rbig / 0, 4*0.0 / c if (nterm.ne.0) go to 10 nterm = -0.30*alog(r1mach(3)) c maybe bound = n*(0.1*eps)**(-1/(2*n-1)) / (pi*exp(1)) bound = 0.1171*float(nterm) * 1 (0.1*r1mach(3))**(-1.0/(2.0*float(nterm)-1.0)) dxrel = sqrt(r1mach(4)) rmin = exp (amax1 (alog(r1mach(1)), -alog(r1mach(2))) + 0.011 ) rbig = 1.0/r1mach(3) c 10 z = zin x = real(z) y = aimag(z) if (y.lt.0.0) z = conjg(z) c corr = (0.0, 0.0) cabsz = cabs(z) if (x.ge.0.0 .and. cabsz.gt.bound) go to 50 if (x.lt.0.0 .and. abs(y).gt.bound) go to 50 c if (cabsz.lt.bound) go to 20 c c use the reflection formula for real(z) negative, cabs(z) large, and c abs(aimag(y)) small. c corr = -pi*ccot(pi*z) z = 1.0 - z go to 50 c c use the recursion relation for cabs(z) small. c 20 if (cabsz.lt.rmin) call seteru ( 1 56hcpsi cpsi called with z so near 0 that cpsi overflows, 1 56, 2, 2) c if (x.ge.(-0.5) .or. abs(y).gt.dxrel) go to 30 if (cabs((z-aint(x-0.5))/x).lt.dxrel) call seteru ( 1 68hcpsi answer lt half precision because z too near negative 2integer, 68, 1, 1) if (y.eq.0.0 .and. x.eq.aint(x)) call seteru ( 1 31hcpsi z is a negative integer, 31, 3, 2) c 30 n = sqrt(bound**2-y**2) - x + 1.0 do 40 i=1,n corr = corr - 1.0/z z = z + 1.0 40 continue c c now evaluate the asymptotic series for suitably large z. c 50 if (cabsz.gt.rbig) cpsi = clog(z) + corr if (cabsz.gt.rbig) go to 70 c cpsi = (0.0, 0.0) z2inv = 1.0/z**2 do 60 i=1,nterm ndx = nterm + 1 - i cpsi = bern(ndx) + z2inv*cpsi 60 continue cpsi = clog(z) - 0.5/z - cpsi*z2inv + corr c 70 if (y.lt.0.0) cpsi = conjg(cpsi) c return end |