Blame view
fvn_interpol/fvn_interpol.f90
22.2 KB
b93026039 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
module fvn_interpol use fvn_common implicit none ! Utility procedure find interval interface fvn_find_interval module procedure fvn_s_find_interval,fvn_d_find_interval end interface fvn_find_interval ! Quadratic 1D interpolation interface fvn_quad_interpol module procedure fvn_s_quad_interpol,fvn_d_quad_interpol end interface fvn_quad_interpol ! Quadratic 2D interpolation interface fvn_quad_2d_interpol module procedure fvn_s_quad_2d_interpol,fvn_d_quad_2d_interpol end interface fvn_quad_2d_interpol ! Quadratic 3D interpolation interface fvn_quad_3d_interpol module procedure fvn_s_quad_3d_interpol,fvn_d_quad_3d_interpol end interface fvn_quad_3d_interpol ! Akima interpolation interface fvn_akima module procedure fvn_s_akima,fvn_d_akima end interface fvn_akima ! Akima evaluation interface fvn_spline_eval module procedure fvn_s_spline_eval,fvn_d_spline_eval end interface fvn_spline_eval contains !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! Quadratic interpolation of tabulated function of 1,2 or 3 variables ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! subroutine fvn_s_find_interval(x,i,xdata,n) implicit none ! This routine find the indice i where xdata(i) <= x < xdata(i+1) ! xdata(n) must contains a set of increasingly ordered values ! if x < xdata(1) i=0 is returned ! if x > xdata(n) i=n is returned ! special case is where x=xdata(n) then n-1 is returned so ! we will not exclude the upper limit ! a simple dichotomy method is used |
f6bacaf83 ChW 11/09: ANSI c... |
53 |
real(kind=sp_kind), intent(in) :: x |
e711bb807 ChW 02/2010 for t... |
54 |
integer(kind=ip_kind), intent(in) :: n |
f6bacaf83 ChW 11/09: ANSI c... |
55 |
real(kind=sp_kind), intent(in), dimension(n) :: xdata |
e711bb807 ChW 02/2010 for t... |
56 |
integer(kind=ip_kind), intent(out) :: i |
b93026039 git-svn-id: https... |
57 |
|
e711bb807 ChW 02/2010 for t... |
58 |
integer(kind=ip_kind) :: imin,imax,imoyen |
b93026039 git-svn-id: https... |
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
! special case is where x=xdata(n) then n-1 is returned so ! we will not exclude the upper limit if (x == xdata(n)) then i=n-1 return end if ! if x < xdata(1) i=0 is returned if (x < xdata(1)) then i=0 return end if ! if x > xdata(n) i=n is returned if (x > xdata(n)) then i=n return end if ! here xdata(1) <= x <= xdata(n) imin=0 imax=n+1 do while((imax-imin) > 1) imoyen=(imax+imin)/2 if (x >= xdata(imoyen)) then imin=imoyen else imax=imoyen end if end do i=imin end subroutine subroutine fvn_d_find_interval(x,i,xdata,n) implicit none ! This routine find the indice i where xdata(i) <= x < xdata(i+1) ! xdata(n) must contains a set of increasingly ordered values ! if x < xdata(1) i=0 is returned ! if x > xdata(n) i=n is returned ! special case is where x=xdata(n) then n-1 is returned so ! we will not exclude the upper limit ! a simple dichotomy method is used |
f6bacaf83 ChW 11/09: ANSI c... |
106 |
real(kind=dp_kind), intent(in) :: x |
e711bb807 ChW 02/2010 for t... |
107 |
integer(kind=ip_kind), intent(in) :: n |
f6bacaf83 ChW 11/09: ANSI c... |
108 |
real(kind=dp_kind), intent(in), dimension(n) :: xdata |
e711bb807 ChW 02/2010 for t... |
109 |
integer(kind=ip_kind), intent(out) :: i |
b93026039 git-svn-id: https... |
110 |
|
e711bb807 ChW 02/2010 for t... |
111 |
integer(kind=ip_kind) :: imin,imax,imoyen |
b93026039 git-svn-id: https... |
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
! special case is where x=xdata(n) then n-1 is returned so ! we will not exclude the upper limit if (x == xdata(n)) then i=n-1 return end if ! if x < xdata(1) i=0 is returned if (x < xdata(1)) then i=0 return end if ! if x > xdata(n) i=n is returned if (x > xdata(n)) then i=n return end if ! here xdata(1) <= x <= xdata(n) imin=0 imax=n+1 do while((imax-imin) > 1) imoyen=(imax+imin)/2 if (x >= xdata(imoyen)) then imin=imoyen else imax=imoyen end if end do i=imin end subroutine function fvn_s_quad_interpol(x,n,xdata,ydata) implicit none ! This function evaluate the value of a function defined by a set of points ! and values, using a quadratic interpolation ! xdata must be increasingly ordered ! x must be within xdata(1) and xdata(n) to actually do interpolation ! otherwise extrapolation is done |
e711bb807 ChW 02/2010 for t... |
157 |
integer(kind=ip_kind), intent(in) :: n |
f6bacaf83 ChW 11/09: ANSI c... |
158 159 160 |
real(kind=sp_kind), intent(in), dimension(n) :: xdata,ydata real(kind=sp_kind), intent(in) :: x real(kind=sp_kind) :: fvn_s_quad_interpol |
b93026039 git-svn-id: https... |
161 |
|
e711bb807 ChW 02/2010 for t... |
162 |
integer(kind=ip_kind) :: iinf,base,i,j |
f6bacaf83 ChW 11/09: ANSI c... |
163 |
real(kind=sp_kind) :: p |
b93026039 git-svn-id: https... |
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
call fvn_s_find_interval(x,iinf,xdata,n) ! Settings for extrapolation if (iinf==0) then ! TODO -> Lower bound extrapolation warning iinf=1 end if if (iinf==n) then ! TODO -> Higher bound extrapolation warning iinf=n-1 end if ! The three points we will use are iinf-1,iinf and iinf+1 with the ! exception of the first interval, where iinf=1 we will use 1,2 and 3 if (iinf==1) then base=0 else base=iinf-2 end if ! The three points we will use are : ! xdata/ydata(base+1),xdata/ydata(base+2),xdata/ydata(base+3) ! Straight forward Lagrange polynomial fvn_s_quad_interpol=0. do i=1,3 ! polynome i p=ydata(base+i) do j=1,3 if (j /= i) then p=p*(x-xdata(base+j))/(xdata(base+i)-xdata(base+j)) end if end do fvn_s_quad_interpol=fvn_s_quad_interpol+p end do end function function fvn_d_quad_interpol(x,n,xdata,ydata) implicit none ! This function evaluate the value of a function defined by a set of points ! and values, using a quadratic interpolation ! xdata must be increasingly ordered ! x must be within xdata(1) and xdata(n) to actually do interpolation ! otherwise extrapolation is done |
e711bb807 ChW 02/2010 for t... |
212 |
integer(kind=ip_kind), intent(in) :: n |
f6bacaf83 ChW 11/09: ANSI c... |
213 214 215 |
real(kind=dp_kind), intent(in), dimension(n) :: xdata,ydata real(kind=dp_kind), intent(in) :: x real(kind=dp_kind) :: fvn_d_quad_interpol |
b93026039 git-svn-id: https... |
216 |
|
e711bb807 ChW 02/2010 for t... |
217 |
integer(kind=ip_kind) :: iinf,base,i,j |
f6bacaf83 ChW 11/09: ANSI c... |
218 |
real(kind=dp_kind) :: p |
b93026039 git-svn-id: https... |
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
call fvn_d_find_interval(x,iinf,xdata,n) ! Settings for extrapolation if (iinf==0) then ! TODO -> Lower bound extrapolation warning iinf=1 end if if (iinf==n) then ! TODO Higher bound extrapolation warning iinf=n-1 end if ! The three points we will use are iinf-1,iinf and iinf+1 with the ! exception of the first interval, where iinf=1 we will use 1,2 and 3 if (iinf==1) then base=0 else base=iinf-2 end if ! The three points we will use are : ! xdata/ydata(base+1),xdata/ydata(base+2),xdata/ydata(base+3) ! Straight forward Lagrange polynomial fvn_d_quad_interpol=0. do i=1,3 ! polynome i p=ydata(base+i) do j=1,3 if (j /= i) then p=p*(x-xdata(base+j))/(xdata(base+i)-xdata(base+j)) end if end do fvn_d_quad_interpol=fvn_d_quad_interpol+p end do end function function fvn_s_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata) implicit none ! This function evaluate the value of a two variable function defined by a ! set of points and values, using a quadratic interpolation ! xdata and ydata must be increasingly ordered ! the couple (x,y) must be as x within xdata(1) and xdata(nx) and ! y within ydata(1) and ydata(ny) to actually do interpolation ! otherwise extrapolation is done |
e711bb807 ChW 02/2010 for t... |
268 |
integer(kind=ip_kind), intent(in) :: nx,ny |
f6bacaf83 ChW 11/09: ANSI c... |
269 270 271 272 273 |
real(kind=sp_kind), intent(in) :: x,y real(kind=sp_kind), intent(in), dimension(nx) :: xdata real(kind=sp_kind), intent(in), dimension(ny) :: ydata real(kind=sp_kind), intent(in), dimension(nx,ny) :: zdata real(kind=sp_kind) :: fvn_s_quad_2d_interpol |
e711bb807 ChW 02/2010 for t... |
274 |
integer(kind=ip_kind) :: ixinf,iyinf,basex,basey,i |
f6bacaf83 ChW 11/09: ANSI c... |
275 |
real(kind=sp_kind),dimension(3) :: ztmp |
b93026039 git-svn-id: https... |
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
!real(kind=4), external :: fvn_s_quad_interpol call fvn_s_find_interval(x,ixinf,xdata,nx) call fvn_s_find_interval(y,iyinf,ydata,ny) ! Settings for extrapolation if (ixinf==0) then ! TODO -> Lower x bound extrapolation warning ixinf=1 end if if (ixinf==nx) then ! TODO -> Higher x bound extrapolation warning ixinf=nx-1 end if if (iyinf==0) then ! TODO -> Lower y bound extrapolation warning iyinf=1 end if if (iyinf==ny) then ! TODO -> Higher y bound extrapolation warning iyinf=ny-1 end if ! The three points we will use are iinf-1,iinf and iinf+1 with the ! exception of the first interval, where iinf=1 we will use 1,2 and 3 if (ixinf==1) then basex=0 else basex=ixinf-2 end if if (iyinf==1) then basey=0 else basey=iyinf-2 end if ! First we make 3 interpolations for x at y(base+1),y(base+2),y(base+3) ! stored in ztmp(1:3) do i=1,3 ztmp(i)=fvn_s_quad_interpol(x,nx,xdata,zdata(:,basey+i)) end do ! Then we make an interpolation for y using previous interpolations fvn_s_quad_2d_interpol=fvn_s_quad_interpol(y,3,ydata(basey+1:basey+3),ztmp) end function function fvn_d_quad_2d_interpol(x,y,nx,xdata,ny,ydata,zdata) implicit none ! This function evaluate the value of a two variable function defined by a ! set of points and values, using a quadratic interpolation ! xdata and ydata must be increasingly ordered ! the couple (x,y) must be as x within xdata(1) and xdata(nx) and ! y within ydata(1) and ydata(ny) to actually do interpolation ! otherwise extrapolation is done |
e711bb807 ChW 02/2010 for t... |
335 |
integer(kind=ip_kind), intent(in) :: nx,ny |
f6bacaf83 ChW 11/09: ANSI c... |
336 337 338 339 340 |
real(kind=dp_kind), intent(in) :: x,y real(kind=dp_kind), intent(in), dimension(nx) :: xdata real(kind=dp_kind), intent(in), dimension(ny) :: ydata real(kind=dp_kind), intent(in), dimension(nx,ny) :: zdata real(kind=dp_kind) :: fvn_d_quad_2d_interpol |
e711bb807 ChW 02/2010 for t... |
341 |
integer(kind=ip_kind) :: ixinf,iyinf,basex,basey,i |
f6bacaf83 ChW 11/09: ANSI c... |
342 |
real(kind=dp_kind),dimension(3) :: ztmp |
b93026039 git-svn-id: https... |
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
!real(kind=8), external :: fvn_d_quad_interpol call fvn_d_find_interval(x,ixinf,xdata,nx) call fvn_d_find_interval(y,iyinf,ydata,ny) ! Settings for extrapolation if (ixinf==0) then ! TODO -> Lower x bound extrapolation warning ixinf=1 end if if (ixinf==nx) then ! TODO -> Higher x bound extrapolation warning ixinf=nx-1 end if if (iyinf==0) then ! TODO -> Lower y bound extrapolation warning iyinf=1 end if if (iyinf==ny) then ! TODO -> Higher y bound extrapolation warning iyinf=ny-1 end if ! The three points we will use are iinf-1,iinf and iinf+1 with the ! exception of the first interval, where iinf=1 we will use 1,2 and 3 if (ixinf==1) then basex=0 else basex=ixinf-2 end if if (iyinf==1) then basey=0 else basey=iyinf-2 end if ! First we make 3 interpolations for x at y(base+1),y(base+2),y(base+3) ! stored in ztmp(1:3) do i=1,3 ztmp(i)=fvn_d_quad_interpol(x,nx,xdata,zdata(:,basey+i)) end do ! Then we make an interpolation for y using previous interpolations fvn_d_quad_2d_interpol=fvn_d_quad_interpol(y,3,ydata(basey+1:basey+3),ztmp) end function function fvn_s_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata) implicit none ! This function evaluate the value of a 3 variables function defined by a ! set of points and values, using a quadratic interpolation ! xdata, ydata and zdata must be increasingly ordered ! The triplet (x,y,z) must be within xdata,ydata and zdata to actually ! perform an interpolation, otherwise extrapolation is done |
e711bb807 ChW 02/2010 for t... |
401 |
integer(kind=ip_kind), intent(in) :: nx,ny,nz |
f6bacaf83 ChW 11/09: ANSI c... |
402 403 404 405 406 407 |
real(kind=sp_kind), intent(in) :: x,y,z real(kind=sp_kind), intent(in), dimension(nx) :: xdata real(kind=sp_kind), intent(in), dimension(ny) :: ydata real(kind=sp_kind), intent(in), dimension(nz) :: zdata real(kind=sp_kind), intent(in), dimension(nx,ny,nz) :: tdata real(kind=sp_kind) :: fvn_s_quad_3d_interpol |
e711bb807 ChW 02/2010 for t... |
408 |
integer(kind=ip_kind) :: ixinf,iyinf,izinf,basex,basey,basez,i,j |
b93026039 git-svn-id: https... |
409 |
!real(kind=4), external :: fvn_s_quad_interpol,fvn_s_quad_2d_interpol |
f6bacaf83 ChW 11/09: ANSI c... |
410 |
real(kind=sp_kind),dimension(3,3) :: ttmp |
b93026039 git-svn-id: https... |
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
call fvn_s_find_interval(x,ixinf,xdata,nx) call fvn_s_find_interval(y,iyinf,ydata,ny) call fvn_s_find_interval(z,izinf,zdata,nz) ! Settings for extrapolation if (ixinf==0) then ! TODO -> Lower x bound extrapolation warning ixinf=1 end if if (ixinf==nx) then ! TODO -> Higher x bound extrapolation warning ixinf=nx-1 end if if (iyinf==0) then ! TODO -> Lower y bound extrapolation warning iyinf=1 end if if (iyinf==ny) then ! TODO -> Higher y bound extrapolation warning iyinf=ny-1 end if if (izinf==0) then ! TODO -> Lower z bound extrapolation warning izinf=1 end if if (izinf==nz) then ! TODO -> Higher z bound extrapolation warning izinf=nz-1 end if ! The three points we will use are iinf-1,iinf and iinf+1 with the ! exception of the first interval, where iinf=1 we will use 1,2 and 3 if (ixinf==1) then basex=0 else basex=ixinf-2 end if if (iyinf==1) then basey=0 else basey=iyinf-2 end if if (izinf==1) then basez=0 else basez=izinf-2 end if ! We first make 9 one dimensional interpolation on variable x. ! results are stored in ttmp do i=1,3 do j=1,3 ttmp(i,j)=fvn_s_quad_interpol(x,nx,xdata,tdata(:,basey+i,basez+j)) end do end do ! We then make a 2 dimensionnal interpolation on variables y and z fvn_s_quad_3d_interpol=fvn_s_quad_2d_interpol(y,z, & 3,ydata(basey+1:basey+3),3,zdata(basez+1:basez+3),ttmp) end function function fvn_d_quad_3d_interpol(x,y,z,nx,xdata,ny,ydata,nz,zdata,tdata) implicit none ! This function evaluate the value of a 3 variables function defined by a ! set of points and values, using a quadratic interpolation ! xdata, ydata and zdata must be increasingly ordered ! The triplet (x,y,z) must be within xdata,ydata and zdata to actually ! perform an interpolation, otherwise extrapolation is done |
e711bb807 ChW 02/2010 for t... |
488 |
integer(kind=ip_kind), intent(in) :: nx,ny,nz |
f6bacaf83 ChW 11/09: ANSI c... |
489 490 491 492 493 494 |
real(kind=dp_kind), intent(in) :: x,y,z real(kind=dp_kind), intent(in), dimension(nx) :: xdata real(kind=dp_kind), intent(in), dimension(ny) :: ydata real(kind=dp_kind), intent(in), dimension(nz) :: zdata real(kind=dp_kind), intent(in), dimension(nx,ny,nz) :: tdata real(kind=dp_kind) :: fvn_d_quad_3d_interpol |
e711bb807 ChW 02/2010 for t... |
495 |
integer(kind=ip_kind) :: ixinf,iyinf,izinf,basex,basey,basez,i,j |
b93026039 git-svn-id: https... |
496 |
!real(kind=8), external :: fvn_d_quad_interpol,fvn_d_quad_2d_interpol |
f6bacaf83 ChW 11/09: ANSI c... |
497 |
real(kind=dp_kind),dimension(3,3) :: ttmp |
b93026039 git-svn-id: https... |
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
call fvn_d_find_interval(x,ixinf,xdata,nx) call fvn_d_find_interval(y,iyinf,ydata,ny) call fvn_d_find_interval(z,izinf,zdata,nz) ! Settings for extrapolation if (ixinf==0) then ! TODO -> Lower x bound extrapolation warning ixinf=1 end if if (ixinf==nx) then ! TODO -> Higher x bound extrapolation warning ixinf=nx-1 end if if (iyinf==0) then ! TODO -> Lower y bound extrapolation warning iyinf=1 end if if (iyinf==ny) then ! TODO -> Higher y bound extrapolation warning iyinf=ny-1 end if if (izinf==0) then ! TODO -> Lower z bound extrapolation warning izinf=1 end if if (izinf==nz) then ! TODO -> Higher z bound extrapolation warning izinf=nz-1 end if ! The three points we will use are iinf-1,iinf and iinf+1 with the ! exception of the first interval, where iinf=1 we will use 1,2 and 3 if (ixinf==1) then basex=0 else basex=ixinf-2 end if if (iyinf==1) then basey=0 else basey=iyinf-2 end if if (izinf==1) then basez=0 else basez=izinf-2 end if ! We first make 9 one dimensional interpolation on variable x. ! results are stored in ttmp do i=1,3 do j=1,3 ttmp(i,j)=fvn_d_quad_interpol(x,nx,xdata,tdata(:,basey+i,basez+j)) end do end do ! We then make a 2 dimensionnal interpolation on variables y and z fvn_d_quad_3d_interpol=fvn_d_quad_2d_interpol(y,z, & 3,ydata(basey+1:basey+3),3,zdata(basez+1:basez+3),ttmp) end function !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! ! Akima spline interpolation and spline evaluation ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! Single precision subroutine fvn_s_akima(n,x,y,br,co) implicit none integer, intent(in) :: n real, intent(in) :: x(n) real, intent(in) :: y(n) real, intent(out) :: br(n) real, intent(out) :: co(4,n) real, allocatable :: var(:),z(:) real :: wi_1,wi integer :: i real :: dx,a,b ! br is just a copy of x br(:)=x(:) allocate(var(n+3)) allocate(z(n)) ! evaluate the variations do i=1, n-1 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) end do var(n+2)=2.e0*var(n+1)-var(n) var(n+3)=2.e0*var(n+2)-var(n+1) var(2)=2.e0*var(3)-var(4) var(1)=2.e0*var(2)-var(3) do i = 1, n wi_1=abs(var(i+3)-var(i+2)) wi=abs(var(i+1)-var(i)) if ((wi_1+wi).eq.0.e0) then z(i)=(var(i+2)+var(i+1))/2.e0 else z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) end if end do do i=1, n-1 dx=x(i+1)-x(i) a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd co(1,i)=y(i) co(2,i)=z(i) !co(3,i)=-(a-3.*b)/dx**2 ! méthode wd !co(4,i)=(a-2.*b)/dx**3 ! méthode wd co(3,i)=(3.e0*var(i+2)-2.e0*z(i)-z(i+1))/dx ! méthode JP Moreau co(4,i)=(z(i)+z(i+1)-2.e0*var(i+2))/dx**2 ! ! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6 ! etrangement la fonction csval corrige et donne la bonne valeur ... end do co(1,n)=y(n) co(2,n)=z(n) co(3,n)=0.e0 co(4,n)=0.e0 deallocate(z) deallocate(var) end subroutine ! Double precision subroutine fvn_d_akima(n,x,y,br,co) implicit none integer, intent(in) :: n double precision, intent(in) :: x(n) double precision, intent(in) :: y(n) double precision, intent(out) :: br(n) double precision, intent(out) :: co(4,n) double precision, allocatable :: var(:),z(:) double precision :: wi_1,wi integer :: i double precision :: dx,a,b ! br is just a copy of x br(:)=x(:) allocate(var(n+3)) allocate(z(n)) ! evaluate the variations do i=1, n-1 var(i+2)=(y(i+1)-y(i))/(x(i+1)-x(i)) end do var(n+2)=2.d0*var(n+1)-var(n) var(n+3)=2.d0*var(n+2)-var(n+1) var(2)=2.d0*var(3)-var(4) var(1)=2.d0*var(2)-var(3) do i = 1, n wi_1=dabs(var(i+3)-var(i+2)) wi=dabs(var(i+1)-var(i)) if ((wi_1+wi).eq.0.d0) then z(i)=(var(i+2)+var(i+1))/2.d0 else z(i)=(wi_1*var(i+1)+wi*var(i+2))/(wi_1+wi) end if end do do i=1, n-1 dx=x(i+1)-x(i) a=(z(i+1)-z(i))*dx ! coeff intermediaires pour calcul wd b=y(i+1)-y(i)-z(i)*dx ! coeff intermediaires pour calcul wd co(1,i)=y(i) co(2,i)=z(i) !co(3,i)=-(a-3.*b)/dx**2 ! méthode wd !co(4,i)=(a-2.*b)/dx**3 ! méthode wd co(3,i)=(3.d0*var(i+2)-2.d0*z(i)-z(i+1))/dx ! méthode JP Moreau co(4,i)=(z(i)+z(i+1)-2.d0*var(i+2))/dx**2 ! ! les coefficients donnés par imsl sont co(3,i)*2 et co(4,i)*6 ! etrangement la fonction csval corrige et donne la bonne valeur ... end do co(1,n)=y(n) co(2,n)=z(n) co(3,n)=0.d0 co(4,n)=0.d0 deallocate(z) deallocate(var) end subroutine ! ! Single precision spline evaluation ! function fvn_s_spline_eval(x,n,br,co) implicit none real, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated integer, intent(in) :: n ! number of intervals real, intent(in) :: br(n+1) ! breakpoints real, intent(in) :: co(4,n+1) ! spline coeeficients real :: fvn_s_spline_eval integer :: i real :: dx if (x<=br(1)) then i=1 else if (x>=br(n+1)) then i=n else i=1 do while(x>=br(i)) i=i+1 end do i=i-1 end if dx=x-br(i) fvn_s_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 end function ! Double precision spline evaluation function fvn_d_spline_eval(x,n,br,co) implicit none double precision, intent(in) :: x ! x must be br(1)<= x <= br(n+1) otherwise value is extrapolated integer, intent(in) :: n ! number of intervals double precision, intent(in) :: br(n+1) ! breakpoints double precision, intent(in) :: co(4,n+1) ! spline coeeficients double precision :: fvn_d_spline_eval integer :: i double precision :: dx if (x<=br(1)) then i=1 else if (x>=br(n+1)) then i=n else i=1 do while(x>=br(i)) i=i+1 end do i=i-1 end if dx=x-br(i) fvn_d_spline_eval=co(1,i)+co(2,i)*dx+co(3,i)*dx**2+co(4,i)*dx**3 end function |
e711bb807 ChW 02/2010 for t... |
758 |
end module fvn_interpol |