Blame view

fvn_sparse/UMFPACK/Include/umfpack_triplet_to_col.h 10.2 KB
422234dc3   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  /* ========================================================================== */
  /* === umfpack_triplet_to_col =============================================== */
  /* ========================================================================== */
  
  /* -------------------------------------------------------------------------- */
  /* UMFPACK Copyright (c) Timothy A. Davis, CISE,                              */
  /* Univ. of Florida.  All Rights Reserved.  See ../Doc/License for License.   */
  /* web: http://www.cise.ufl.edu/research/sparse/umfpack                       */
  /* -------------------------------------------------------------------------- */
  
  int umfpack_di_triplet_to_col
  (
      int n_row,
      int n_col,
      int nz,
      const int Ti [ ],
      const int Tj [ ],
      const double Tx [ ],
      int Ap [ ],
      int Ai [ ],
      double Ax [ ],
      int Map [ ]
  ) ;
  
  UF_long umfpack_dl_triplet_to_col
  (
      UF_long n_row,
      UF_long n_col,
      UF_long nz,
      const UF_long Ti [ ],
      const UF_long Tj [ ],
      const double Tx [ ],
      UF_long Ap [ ],
      UF_long Ai [ ],
      double Ax [ ],
      UF_long Map [ ]
  ) ;
  
  int umfpack_zi_triplet_to_col
  (
      int n_row,
      int n_col,
      int nz,
      const int Ti [ ],
      const int Tj [ ],
      const double Tx [ ], const double Tz [ ],
      int Ap [ ],
      int Ai [ ],
      double Ax [ ], double Az [ ],
      int Map [ ]
  ) ;
  
  UF_long umfpack_zl_triplet_to_col
  (
      UF_long n_row,
      UF_long n_col,
      UF_long nz,
      const UF_long Ti [ ],
      const UF_long Tj [ ],
      const double Tx [ ], const double Tz [ ],
      UF_long Ap [ ],
      UF_long Ai [ ],
      double Ax [ ], double Az [ ],
      UF_long Map [ ]
  ) ;
  
  /*
  double int Syntax:
  
      #include "umfpack.h"
      int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
      double *Tx, *Ax ;
      status = umfpack_di_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx,
  	Ap, Ai, Ax, Map) ;
  
  double UF_long Syntax:
  
      #include "umfpack.h"
      UF_long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
      double *Tx, *Ax ;
      status = umfpack_dl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx,
  	Ap, Ai, Ax, Map) ;
  
  complex int Syntax:
  
      #include "umfpack.h"
      int n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
      double *Tx, *Tz, *Ax, *Az ;
      status = umfpack_zi_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,
  	Ap, Ai, Ax, Az, Map) ;
  
  UF_long Syntax:
  
      #include "umfpack.h"
      UF_long n_row, n_col, nz, *Ti, *Tj, *Ap, *Ai, status, *Map ;
      double *Tx, *Tz, *Ax, *Az ;
      status = umfpack_zl_triplet_to_col (n_row, n_col, nz, Ti, Tj, Tx, Tz,
  	Ap, Ai, Ax, Az, Map) ;
  
  packed complex Syntax:
  
      Same as above, except Tz and Az are NULL.
  
  Purpose:
  
      Converts a sparse matrix from "triplet" form to compressed-column form.
      Analogous to A = spconvert (Ti, Tj, Tx + Tz*1i) in MATLAB, except that
      zero entries present in the triplet form are present in A.
  
      The triplet form of a matrix is a very simple data structure for basic
      sparse matrix operations.  For example, suppose you wish to factorize a
      matrix A coming from a finite element method, in which A is a sum of
      dense submatrices, A = E1 + E2 + E3 + ... .  The entries in each element
      matrix Ei can be concatenated together in the three triplet arrays, and
      any overlap between the elements will be correctly summed by
      umfpack_*_triplet_to_col.
  
      Transposing a matrix in triplet form is simple; just interchange the
      use of Ti and Tj.  You can construct the complex conjugate transpose by
      negating Tz, for the complex versions.
  
      Permuting a matrix in triplet form is also simple.  If you want the matrix
      PAQ, or A (P,Q) in MATLAB notation, where P [k] = i means that row i of
      A is the kth row of PAQ and Q [k] = j means that column j of A is the kth
      column of PAQ, then do the following.  First, create inverse permutations
      Pinv and Qinv such that Pinv [i] = k if P [k] = i and Qinv [j] = k if
      Q [k] = j.  Next, for the mth triplet (Ti [m], Tj [m], Tx [m], Tz [m]),
      replace Ti [m] with Pinv [Ti [m]] and replace Tj [m] with Qinv [Tj [m]].
  
      If you have a column-form matrix with duplicate entries or unsorted
      columns, you can sort it and sum up the duplicates by first converting it
      to triplet form with umfpack_*_col_to_triplet, and then converting it back
      with umfpack_*_triplet_to_col.
  
      Constructing a submatrix is also easy.  Just scan the triplets and remove
      those entries outside the desired subset of 0...n_row-1 and 0...n_col-1,
      and renumber the indices according to their position in the subset.
  
      You can do all these operations on a column-form matrix by first
      converting it to triplet form with umfpack_*_col_to_triplet, doing the
      operation on the triplet form, and then converting it back with
      umfpack_*_triplet_to_col.
  
      The only operation not supported easily in the triplet form is the
      multiplication of two sparse matrices (UMFPACK does not provide this
      operation).
  
      You can print the input triplet form with umfpack_*_report_triplet, and
      the output matrix with umfpack_*_report_matrix.
  
      The matrix may be singular (nz can be zero, and empty rows and/or columns
      may exist).  It may also be rectangular and/or complex.
  
  Returns:
  
      UMFPACK_OK if successful.
      UMFPACK_ERROR_argument_missing if Ap, Ai, Ti, and/or Tj are missing.
      UMFPACK_ERROR_n_nonpositive if n_row <= 0 or n_col <= 0.
      UMFPACK_ERROR_invalid_matrix if nz < 0, or if for any k, Ti [k] and/or
  	Tj [k] are not in the range 0 to n_row-1 or 0 to n_col-1, respectively.
      UMFPACK_ERROR_out_of_memory if unable to allocate sufficient workspace.
  
  Arguments:
  
      Int n_row ;		Input argument, not modified.
      Int n_col ;		Input argument, not modified.
  
  	A is an n_row-by-n_col matrix.  Restriction: n_row > 0 and n_col > 0.
  	All row and column indices in the triplet form must be in the range
  	0 to n_row-1 and 0 to n_col-1, respectively.
  
      Int nz ;		Input argument, not modified.
  
  	The number of entries in the triplet form of the matrix.  Restriction:
  	nz >= 0.
  
      Int Ti [nz] ;	Input argument, not modified.
      Int Tj [nz] ;	Input argument, not modified.
      double Tx [nz] ;	Input argument, not modified.
  			Size 2*nz if Tz or Az are NULL.
      double Tz [nz] ;	Input argument, not modified, for complex versions.
  
  	Ti, Tj, Tx, and Tz hold the "triplet" form of a sparse matrix.  The kth
  	nonzero entry is in row i = Ti [k], column j = Tj [k], and the real part
  	of a_ij is Tx [k].  The imaginary part of a_ij is Tz [k], for complex
  	versions.  The row and column indices i and j must be in the range 0 to
  	n_row-1 and 0 to n_col-1, respectively.  Duplicate entries may be
  	present; they are summed in the output matrix.  This is not an error
  	condition.  The "triplets" may be in any order.  Tx, Tz, Ax, and Az
  	are optional.  Ax is computed only if both Ax and Tx are present
  	(not (double *) NULL).  This is not error condition; the routine can
  	create just the pattern of the output matrix from the pattern of the
  	triplets.
  
  	If Az or Tz are NULL, then both real
  	and imaginary parts are contained in Tx[0..2*nz-1], with Tx[2*k]
  	and Tx[2*k+1] being the real and imaginary part of the kth entry.
  
      Int Ap [n_col+1] ;	Output argument.
  
  	Ap is an integer array of size n_col+1 on input.  On output, Ap holds
  	the "pointers" for the column form of the sparse matrix A.  Column j of
  	the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)].  The first
  	entry, Ap [0], is zero, and Ap [j] <= Ap [j+1] holds for all j in the
  	range 0 to n_col-1.  The value nz2 = Ap [n_col] is thus the total
  	number of entries in the pattern of the matrix A.  Equivalently, the
  	number of duplicate triplets is nz - Ap [n_col].
  
      Int Ai [nz] ;	Output argument.
  
  	Ai is an integer array of size nz on input.  Note that only the first
  	Ap [n_col] entries are used.
  
  	The nonzero pattern (row indices) for column j is stored in
  	Ai [(Ap [j]) ... (Ap [j+1]-1)].  The row indices in a given column j
  	are in ascending order, and no duplicate row indices are present.
  	Row indices are in the range 0 to n_col-1 (the matrix is 0-based).
  
      double Ax [nz] ;	Output argument.  Size 2*nz if Tz or Az are NULL.
      double Az [nz] ;	Output argument for complex versions.
  
  	Ax and Az (for the complex versions) are double arrays of size nz on
  	input.  Note that only the first Ap [n_col] entries are used
  	in both arrays.
  
  	Ax is optional; if Tx and/or Ax are not present (a (double *) NULL
  	pointer), then Ax is not computed.  If present, Ax holds the
  	numerical values of the the real part of the sparse matrix A and Az
  	holds the imaginary parts.  The nonzero pattern (row indices) for
  	column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and the
  	corresponding numerical values are stored in
  	Ax [(Ap [j]) ... (Ap [j+1]-1)].  The imaginary parts are stored in
  	Az [(Ap [j]) ... (Ap [j+1]-1)], for the complex versions.
  
  	If Az or Tz are NULL, then both real
  	and imaginary parts are returned in Ax[0..2*nz2-1], with Ax[2*k]
  	and Ax[2*k+1] being the real and imaginary part of the kth entry.
  
      int Map [nz] ;	Optional output argument.
  
  	If Map is present (a non-NULL pointer to an Int array of size nz), then
  	on output it holds the position of the triplets in the column-form
  	matrix.  That is, suppose p = Map [k], and the k-th triplet is i=Ti[k],
  	j=Tj[k], and aij=Tx[k].  Then i=Ai[p], and aij will have been summed
  	into Ax[p] (or simply aij=Ax[p] if there were no duplicate entries also
  	in row i and column j).  Also, Ap[j] <= p < Ap[j+1].  The Map array is
  	not computed if it is (Int *) NULL.  The Map array is useful for
  	converting a subsequent triplet form matrix with the same pattern as the
  	first one, without calling this routine.  If Ti and Tj do not change,
  	then Ap, and Ai can be reused from the prior call to
  	umfpack_*_triplet_to_col.  You only need to recompute Ax (and Az for the
  	split complex version).  This code excerpt properly sums up all
  	duplicate values (for the real version):
  
  	    for (p = 0 ; p < Ap [n_col] ; p++) Ax [p] = 0 ;
  	    for (k = 0 ; k < nz ; k++) Ax [Map [k]] += Tx [k] ;
  
  	This feature is useful (along with the reuse of the Symbolic object) if
  	you need to factorize a sequence of triplet matrices with identical
  	nonzero pattern (the order of the triplets in the Ti,Tj,Tx arrays must
  	also remain unchanged).  It is faster than calling this routine for
  	each matrix, and requires no workspace.
  */