Blame view
fvn_sparse/AMD/Source/amd.f
51.4 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 |
C----------------------------------------------------------------------- C AMD: approximate minimum degree, with aggressive absorption C----------------------------------------------------------------------- SUBROUTINE AMD $ (N, PE, IW, LEN, IWLEN, PFREE, NV, NEXT, $ LAST, HEAD, ELEN, DEGREE, NCMPA, W) INTEGER N, IWLEN, PFREE, NCMPA, IW (IWLEN), PE (N), $ DEGREE (N), NV (N), NEXT (N), LAST (N), HEAD (N), $ ELEN (N), W (N), LEN (N) C Given a representation of the nonzero pattern of a symmetric matrix, C A, (excluding the diagonal) perform an approximate minimum C (UMFPACK/MA38-style) degree ordering to compute a pivot order C such that the introduction of nonzeros (fill-in) in the Cholesky C factors A = LL^T are kept low. At each step, the pivot C selected is the one with the minimum UMFPACK/MA38-style C upper-bound on the external degree. C C Aggresive absorption is used to tighten the bound on the degree. C ********************************************************************** C ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** C ********************************************************************** C References: C C [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern C multifrontal method for sparse LU factorization", SIAM J. C Matrix Analysis and Applications, vol. 18, no. 1, pp. C 140-158. Discusses UMFPACK / MA38, which first introduced C the approximate minimum degree used by this routine. C C [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An C approximate degree ordering algorithm," SIAM J. Matrix C Analysis and Applications, vol. 17, no. 4, pp. 886-905, C 1996. Discusses AMD, AMDBAR, and MC47B. C C [3] Alan George and Joseph Liu, "The evolution of the minimum C degree ordering algorithm," SIAM Review, vol. 31, no. 1, C pp. 1-19, 1989. We list below the features mentioned in C that paper that this code includes: C C mass elimination: C Yes. MA27 relied on supervariable detection for mass C elimination. C indistinguishable nodes: C Yes (we call these "supervariables"). This was also in C the MA27 code - although we modified the method of C detecting them (the previous hash was the true degree, C which we no longer keep track of). A supervariable is C a set of rows with identical nonzero pattern. All C variables in a supervariable are eliminated together. C Each supervariable has as its numerical name that of C one of its variables (its principal variable). C quotient graph representation: C Yes. We use the term "element" for the cliques formed C during elimination. This was also in the MA27 code. C The algorithm can operate in place, but it will work C more efficiently if given some "elbow room." C element absorption: C Yes. This was also in the MA27 code. C external degree: C Yes. The MA27 code was based on the true degree. C incomplete degree update and multiple elimination: C No. This was not in MA27, either. Our method of C degree update within MC47B/BD is element-based, not C variable-based. It is thus not well-suited for use C with incomplete degree update or multiple elimination. C----------------------------------------------------------------------- C Authors, and Copyright (C) 1995 by: C Timothy A. Davis, Patrick Amestoy, Iain S. Duff, & John K. Reid. C C Acknowledgements: C This work (and the UMFPACK package) was supported by the C National Science Foundation (ASC-9111263 and DMS-9223088). C The UMFPACK/MA38 approximate degree update algorithm, the C unsymmetric analog which forms the basis of MC47B/BD, was C developed while Tim Davis was supported by CERFACS (Toulouse, C France) in a post-doctoral position. C C Date: September, 1995 C----------------------------------------------------------------------- C----------------------------------------------------------------------- C INPUT ARGUMENTS (unaltered): C----------------------------------------------------------------------- C n: The matrix order. C C Restriction: 1 .le. n .lt. (iovflo/2)-2, where iovflo is C the largest positive integer that your computer can represent. C iwlen: The length of iw (1..iwlen). On input, the matrix is C stored in iw (1..pfree-1). However, iw (1..iwlen) should be C slightly larger than what is required to hold the matrix, at C least iwlen .ge. pfree + n is recommended. Otherwise, C excessive compressions will take place. C *** We do not recommend running this algorithm with *** C *** iwlen .lt. pfree + n. *** C *** Better performance will be obtained if *** C *** iwlen .ge. pfree + n *** C *** or better yet *** C *** iwlen .gt. 1.2 * pfree *** C *** (where pfree is its value on input). *** C The algorithm will not run at all if iwlen .lt. pfree-1. C C Restriction: iwlen .ge. pfree-1 C----------------------------------------------------------------------- C INPUT/OUPUT ARGUMENTS: C----------------------------------------------------------------------- C pe: On input, pe (i) is the index in iw of the start of row i, or C zero if row i has no off-diagonal non-zeros. C C During execution, it is used for both supervariables and C elements: C C * Principal supervariable i: index into iw of the C description of supervariable i. A supervariable C represents one or more rows of the matrix C with identical nonzero pattern. C * Non-principal supervariable i: if i has been absorbed C into another supervariable j, then pe (i) = -j. C That is, j has the same pattern as i. C Note that j might later be absorbed into another C supervariable j2, in which case pe (i) is still -j, C and pe (j) = -j2. C * Unabsorbed element e: the index into iw of the description C of element e, if e has not yet been absorbed by a C subsequent element. Element e is created when C the supervariable of the same name is selected as C the pivot. C * Absorbed element e: if element e is absorbed into element C e2, then pe (e) = -e2. This occurs when the pattern of C e (that is, Le) is found to be a subset of the pattern C of e2 (that is, Le2). If element e is "null" (it has C no nonzeros outside its pivot block), then pe (e) = 0. C C On output, pe holds the assembly tree/forest, which implicitly C represents a pivot order with identical fill-in as the actual C order (via a depth-first search of the tree). C C On output: C If nv (i) .gt. 0, then i represents a node in the assembly tree, C and the parent of i is -pe (i), or zero if i is a root. C If nv (i) = 0, then (i,-pe (i)) represents an edge in a C subtree, the root of which is a node in the assembly tree. C pfree: On input the tail end of the array, iw (pfree..iwlen), C is empty, and the matrix is stored in iw (1..pfree-1). C During execution, additional data is placed in iw, and pfree C is modified so that iw (pfree..iwlen) is always the unused part C of iw. On output, pfree is set equal to the size of iw that C would have been needed for no compressions to occur. If C ncmpa is zero, then pfree (on output) is less than or equal to C iwlen, and the space iw (pfree+1 ... iwlen) was not used. C Otherwise, pfree (on output) is greater than iwlen, and all the C memory in iw was used. C----------------------------------------------------------------------- C INPUT/MODIFIED (undefined on output): C----------------------------------------------------------------------- C len: On input, len (i) holds the number of entries in row i of the C matrix, excluding the diagonal. The contents of len (1..n) C are undefined on output. C iw: On input, iw (1..pfree-1) holds the description of each row i C in the matrix. The matrix must be symmetric, and both upper C and lower triangular parts must be present. The diagonal must C not be present. Row i is held as follows: C C len (i): the length of the row i data structure C iw (pe (i) ... pe (i) + len (i) - 1): C the list of column indices for nonzeros C in row i (simple supervariables), excluding C the diagonal. All supervariables start with C one row/column each (supervariable i is just C row i). C if len (i) is zero on input, then pe (i) is ignored C on input. C C Note that the rows need not be in any particular order, C and there may be empty space between the rows. C C During execution, the supervariable i experiences fill-in. C This is represented by placing in i a list of the elements C that cause fill-in in supervariable i: C C len (i): the length of supervariable i C iw (pe (i) ... pe (i) + elen (i) - 1): C the list of elements that contain i. This list C is kept short by removing absorbed elements. C iw (pe (i) + elen (i) ... pe (i) + len (i) - 1): C the list of supervariables in i. This list C is kept short by removing nonprincipal C variables, and any entry j that is also C contained in at least one of the elements C (j in Le) in the list for i (e in row i). C C When supervariable i is selected as pivot, we create an C element e of the same name (e=i): C C len (e): the length of element e C iw (pe (e) ... pe (e) + len (e) - 1): C the list of supervariables in element e. C C An element represents the fill-in that occurs when supervariable C i is selected as pivot (which represents the selection of row i C and all non-principal variables whose principal variable is i). C We use the term Le to denote the set of all supervariables C in element e. Absorbed supervariables and elements are pruned C from these lists when computationally convenient. C C CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. C The contents of iw are undefined on output. C----------------------------------------------------------------------- C OUTPUT (need not be set on input): C----------------------------------------------------------------------- C nv: During execution, abs (nv (i)) is equal to the number of rows C that are represented by the principal supervariable i. If i is C a nonprincipal variable, then nv (i) = 0. Initially, C nv (i) = 1 for all i. nv (i) .lt. 0 signifies that i is a C principal variable in the pattern Lme of the current pivot C element me. On output, nv (e) holds the true degree of element C e at the time it was created (including the diagonal part). C ncmpa: The number of times iw was compressed. If this is C excessive, then the execution took longer than what could have C been. To reduce ncmpa, try increasing iwlen to be 10% or 20% C larger than the value of pfree on input (or at least C iwlen .ge. pfree + n). The fastest performance will be C obtained when ncmpa is returned as zero. If iwlen is set to C the value returned by pfree on *output*, then no compressions C will occur. C elen: See the description of iw above. At the start of execution, C elen (i) is set to zero. During execution, elen (i) is the C number of elements in the list for supervariable i. When e C becomes an element, elen (e) = -nel is set, where nel is the C current step of factorization. elen (i) = 0 is done when i C becomes nonprincipal. C C For variables, elen (i) .ge. 0 holds until just before the C permutation vectors are computed. For elements, C elen (e) .lt. 0 holds. C C On output elen (1..n) holds the inverse permutation (the same C as the 'INVP' argument in Sparspak). That is, if k = elen (i), C then row i is the kth pivot row. Row i of A appears as the C (elen(i))-th row in the permuted matrix, PAP^T. C last: In a degree list, last (i) is the supervariable preceding i, C or zero if i is the head of the list. In a hash bucket, C last (i) is the hash key for i. last (head (hash)) is also C used as the head of a hash bucket if head (hash) contains a C degree list (see head, below). C C On output, last (1..n) holds the permutation (the same as the C 'PERM' argument in Sparspak). That is, if i = last (k), then C row i is the kth pivot row. Row last (k) of A is the k-th row C in the permuted matrix, PAP^T. C----------------------------------------------------------------------- C LOCAL (not input or output - used only during execution): C----------------------------------------------------------------------- C degree: If i is a supervariable, then degree (i) holds the C current approximation of the external degree of row i (an upper C bound). The external degree is the number of nonzeros in row i, C minus abs (nv (i)) (the diagonal part). The bound is equal to C the external degree if elen (i) is less than or equal to two. C C We also use the term "external degree" for elements e to refer C to |Le \ Lme|. If e is an element, then degree (e) holds |Le|, C which is the degree of the off-diagonal part of the element e C (not including the diagonal part). C head: head is used for degree lists. head (deg) is the first C supervariable in a degree list (all supervariables i in a C degree list deg have the same approximate degree, namely, C deg = degree (i)). If the list deg is empty then C head (deg) = 0. C C During supervariable detection head (hash) also serves as a C pointer to a hash bucket. C If head (hash) .gt. 0, there is a degree list of degree hash. C The hash bucket head pointer is last (head (hash)). C If head (hash) = 0, then the degree list and hash bucket are C both empty. C If head (hash) .lt. 0, then the degree list is empty, and C -head (hash) is the head of the hash bucket. C After supervariable detection is complete, all hash buckets C are empty, and the (last (head (hash)) = 0) condition is C restored for the non-empty degree lists. C next: next (i) is the supervariable following i in a link list, or C zero if i is the last in the list. Used for two kinds of C lists: degree lists and hash buckets (a supervariable can be C in only one kind of list at a time). C w: The flag array w determines the status of elements and C variables, and the external degree of elements. C C for elements: C if w (e) = 0, then the element e is absorbed C if w (e) .ge. wflg, then w (e) - wflg is the size of C the set |Le \ Lme|, in terms of nonzeros (the C sum of abs (nv (i)) for each principal variable i that C is both in the pattern of element e and NOT in the C pattern of the current pivot element, me). C if wflg .gt. w (e) .gt. 0, then e is not absorbed and has C not yet been seen in the scan of the element lists in C the computation of |Le\Lme| in loop 150 below. C C for variables: C during supervariable detection, if w (j) .ne. wflg then j is C not in the pattern of variable i C C The w array is initialized by setting w (i) = 1 for all i, C and by setting wflg = 2. It is reinitialized if wflg becomes C too large (to ensure that wflg+n does not cause integer C overflow). C----------------------------------------------------------------------- C LOCAL INTEGERS: C----------------------------------------------------------------------- INTEGER DEG, DEGME, DEXT, DMAX, E, ELENME, ELN, HASH, HMOD, I, $ ILAST, INEXT, J, JLAST, JNEXT, K, KNT1, KNT2, KNT3, $ LENJ, LN, MAXMEM, ME, MEM, MINDEG, NEL, NEWMEM, $ NLEFT, NVI, NVJ, NVPIV, SLENME, WE, WFLG, WNVI, X C deg: the degree of a variable or element C degme: size, |Lme|, of the current element, me (= degree (me)) C dext: external degree, |Le \ Lme|, of some element e C dmax: largest |Le| seen so far C e: an element C elenme: the length, elen (me), of element list of pivotal var. C eln: the length, elen (...), of an element list C hash: the computed value of the hash function C hmod: the hash function is computed modulo hmod = max (1,n-1) C i: a supervariable C ilast: the entry in a link list preceding i C inext: the entry in a link list following i C j: a supervariable C jlast: the entry in a link list preceding j C jnext: the entry in a link list, or path, following j C k: the pivot order of an element or variable C knt1: loop counter used during element construction C knt2: loop counter used during element construction C knt3: loop counter used during compression C lenj: len (j) C ln: length of a supervariable list C maxmem: amount of memory needed for no compressions C me: current supervariable being eliminated, and the C current element created by eliminating that C supervariable C mem: memory in use assuming no compressions have occurred C mindeg: current minimum degree C nel: number of pivots selected so far C newmem: amount of new memory needed for current pivot element C nleft: n - nel, the number of nonpivotal rows/columns remaining C nvi: the number of variables in a supervariable i (= nv (i)) C nvj: the number of variables in a supervariable j (= nv (j)) C nvpiv: number of pivots in current element C slenme: number of variables in variable list of pivotal variable C we: w (e) C wflg: used for flagging the w array. See description of iw. C wnvi: wflg - nv (i) C x: either a supervariable or an element C----------------------------------------------------------------------- C LOCAL POINTERS: C----------------------------------------------------------------------- INTEGER P, P1, P2, P3, PDST, PEND, PJ, PME, PME1, PME2, PN, PSRC C Any parameter (pe (...) or pfree) or local variable C starting with "p" (for Pointer) is an index into iw, C and all indices into iw use variables starting with C "p." The only exception to this rule is the iwlen C input argument. C p: pointer into lots of things C p1: pe (i) for some variable i (start of element list) C p2: pe (i) + elen (i) - 1 for some var. i (end of el. list) C p3: index of first supervariable in clean list C pdst: destination pointer, for compression C pend: end of memory to compress C pj: pointer into an element or variable C pme: pointer into the current element (pme1...pme2) C pme1: the current element, me, is stored in iw (pme1...pme2) C pme2: the end of the current element C pn: pointer into a "clean" variable, also used to compress C psrc: source pointer, for compression C----------------------------------------------------------------------- C FUNCTIONS CALLED: C----------------------------------------------------------------------- INTRINSIC MAX, MIN, MOD C======================================================================= C INITIALIZATIONS C======================================================================= WFLG = 2 MINDEG = 1 NCMPA = 0 NEL = 0 HMOD = MAX (1, N-1) DMAX = 0 MEM = PFREE - 1 MAXMEM = MEM ME = 0 DO 10 I = 1, N LAST (I) = 0 HEAD (I) = 0 NV (I) = 1 W (I) = 1 ELEN (I) = 0 DEGREE (I) = LEN (I) 10 CONTINUE C ---------------------------------------------------------------- C initialize degree lists and eliminate rows with no off-diag. nz. C ---------------------------------------------------------------- DO 20 I = 1, N DEG = DEGREE (I) IF (DEG .GT. 0) THEN C ---------------------------------------------------------- C place i in the degree list corresponding to its degree C ---------------------------------------------------------- INEXT = HEAD (DEG) IF (INEXT .NE. 0) LAST (INEXT) = I NEXT (I) = INEXT HEAD (DEG) = I ELSE C ---------------------------------------------------------- C we have a variable that can be eliminated at once because C there is no off-diagonal non-zero in its row. C ---------------------------------------------------------- NEL = NEL + 1 ELEN (I) = -NEL PE (I) = 0 W (I) = 0 ENDIF 20 CONTINUE C======================================================================= C WHILE (selecting pivots) DO C======================================================================= 30 CONTINUE IF (NEL .LT. N) THEN C======================================================================= C GET PIVOT OF MINIMUM DEGREE C======================================================================= C ------------------------------------------------------------- C find next supervariable for elimination C ------------------------------------------------------------- DO 40 DEG = MINDEG, N ME = HEAD (DEG) IF (ME .GT. 0) GOTO 50 40 CONTINUE 50 CONTINUE MINDEG = DEG C ------------------------------------------------------------- C remove chosen variable from link list C ------------------------------------------------------------- INEXT = NEXT (ME) IF (INEXT .NE. 0) LAST (INEXT) = 0 HEAD (DEG) = INEXT C ------------------------------------------------------------- C me represents the elimination of pivots nel+1 to nel+nv(me). C place me itself as the first in this set. It will be moved C to the nel+nv(me) position when the permutation vectors are C computed. C ------------------------------------------------------------- ELENME = ELEN (ME) ELEN (ME) = - (NEL + 1) NVPIV = NV (ME) NEL = NEL + NVPIV C======================================================================= C CONSTRUCT NEW ELEMENT C======================================================================= C ------------------------------------------------------------- C At this point, me is the pivotal supervariable. It will be C converted into the current element. Scan list of the C pivotal supervariable, me, setting tree pointers and C constructing new list of supervariables for the new element, C me. p is a pointer to the current position in the old list. C ------------------------------------------------------------- C flag the variable "me" as being in Lme by negating nv (me) NV (ME) = -NVPIV DEGME = 0 IF (ELENME .EQ. 0) THEN C ---------------------------------------------------------- C construct the new element in place C ---------------------------------------------------------- PME1 = PE (ME) PME2 = PME1 - 1 DO 60 P = PME1, PME1 + LEN (ME) - 1 I = IW (P) NVI = NV (I) IF (NVI .GT. 0) THEN C ---------------------------------------------------- C i is a principal variable not yet placed in Lme. C store i in new list C ---------------------------------------------------- DEGME = DEGME + NVI C flag i as being in Lme by negating nv (i) NV (I) = -NVI PME2 = PME2 + 1 IW (PME2) = I C ---------------------------------------------------- C remove variable i from degree list. C ---------------------------------------------------- ILAST = LAST (I) INEXT = NEXT (I) IF (INEXT .NE. 0) LAST (INEXT) = ILAST IF (ILAST .NE. 0) THEN NEXT (ILAST) = INEXT ELSE C i is at the head of the degree list HEAD (DEGREE (I)) = INEXT ENDIF ENDIF 60 CONTINUE C this element takes no new memory in iw: NEWMEM = 0 ELSE C ---------------------------------------------------------- C construct the new element in empty space, iw (pfree ...) C ---------------------------------------------------------- P = PE (ME) PME1 = PFREE SLENME = LEN (ME) - ELENME DO 120 KNT1 = 1, ELENME + 1 IF (KNT1 .GT. ELENME) THEN C search the supervariables in me. E = ME PJ = P LN = SLENME ELSE C search the elements in me. E = IW (P) P = P + 1 PJ = PE (E) LN = LEN (E) ENDIF C ------------------------------------------------------- C search for different supervariables and add them to the C new list, compressing when necessary. this loop is C executed once for each element in the list and once for C all the supervariables in the list. C ------------------------------------------------------- DO 110 KNT2 = 1, LN I = IW (PJ) PJ = PJ + 1 NVI = NV (I) IF (NVI .GT. 0) THEN C ------------------------------------------------- C compress iw, if necessary C ------------------------------------------------- IF (PFREE .GT. IWLEN) THEN C prepare for compressing iw by adjusting C pointers and lengths so that the lists being C searched in the inner and outer loops contain C only the remaining entries. PE (ME) = P LEN (ME) = LEN (ME) - KNT1 IF (LEN (ME) .EQ. 0) THEN C nothing left of supervariable me PE (ME) = 0 ENDIF PE (E) = PJ LEN (E) = LN - KNT2 IF (LEN (E) .EQ. 0) THEN C nothing left of element e PE (E) = 0 ENDIF NCMPA = NCMPA + 1 C store first item in pe C set first entry to -item DO 70 J = 1, N PN = PE (J) IF (PN .GT. 0) THEN PE (J) = IW (PN) IW (PN) = -J ENDIF 70 CONTINUE C psrc/pdst point to source/destination PDST = 1 PSRC = 1 PEND = PME1 - 1 C while loop: 80 CONTINUE IF (PSRC .LE. PEND) THEN C search for next negative entry J = -IW (PSRC) PSRC = PSRC + 1 IF (J .GT. 0) THEN IW (PDST) = PE (J) PE (J) = PDST PDST = PDST + 1 C copy from source to destination LENJ = LEN (J) DO 90 KNT3 = 0, LENJ - 2 IW (PDST + KNT3) = IW (PSRC + KNT3) 90 CONTINUE PDST = PDST + LENJ - 1 PSRC = PSRC + LENJ - 1 ENDIF GOTO 80 ENDIF C move the new partially-constructed element P1 = PDST DO 100 PSRC = PME1, PFREE - 1 IW (PDST) = IW (PSRC) PDST = PDST + 1 100 CONTINUE PME1 = P1 PFREE = PDST PJ = PE (E) P = PE (ME) ENDIF C ------------------------------------------------- C i is a principal variable not yet placed in Lme C store i in new list C ------------------------------------------------- DEGME = DEGME + NVI C flag i as being in Lme by negating nv (i) NV (I) = -NVI IW (PFREE) = I PFREE = PFREE + 1 C ------------------------------------------------- C remove variable i from degree link list C ------------------------------------------------- ILAST = LAST (I) INEXT = NEXT (I) IF (INEXT .NE. 0) LAST (INEXT) = ILAST IF (ILAST .NE. 0) THEN NEXT (ILAST) = INEXT ELSE C i is at the head of the degree list HEAD (DEGREE (I)) = INEXT ENDIF ENDIF 110 CONTINUE IF (E .NE. ME) THEN C set tree pointer and flag to indicate element e is C absorbed into new element me (the parent of e is me) PE (E) = -ME W (E) = 0 ENDIF 120 CONTINUE PME2 = PFREE - 1 C this element takes newmem new memory in iw (possibly zero) NEWMEM = PFREE - PME1 MEM = MEM + NEWMEM MAXMEM = MAX (MAXMEM, MEM) ENDIF C ------------------------------------------------------------- C me has now been converted into an element in iw (pme1..pme2) C ------------------------------------------------------------- C degme holds the external degree of new element DEGREE (ME) = DEGME PE (ME) = PME1 LEN (ME) = PME2 - PME1 + 1 C ------------------------------------------------------------- C make sure that wflg is not too large. With the current C value of wflg, wflg+n must not cause integer overflow C ------------------------------------------------------------- IF (WFLG + N .LE. WFLG) THEN DO 130 X = 1, N IF (W (X) .NE. 0) W (X) = 1 130 CONTINUE WFLG = 2 ENDIF C======================================================================= C COMPUTE (w (e) - wflg) = |Le\Lme| FOR ALL ELEMENTS C======================================================================= C ------------------------------------------------------------- C Scan 1: compute the external degrees of previous elements C with respect to the current element. That is: C (w (e) - wflg) = |Le \ Lme| C for each element e that appears in any supervariable in Lme. C The notation Le refers to the pattern (list of C supervariables) of a previous element e, where e is not yet C absorbed, stored in iw (pe (e) + 1 ... pe (e) + iw (pe (e))). C The notation Lme refers to the pattern of the current element C (stored in iw (pme1..pme2)). If (w (e) - wflg) becomes C zero, then the element e will be absorbed in scan 2. C ------------------------------------------------------------- DO 150 PME = PME1, PME2 I = IW (PME) ELN = ELEN (I) IF (ELN .GT. 0) THEN C note that nv (i) has been negated to denote i in Lme: NVI = -NV (I) WNVI = WFLG - NVI DO 140 P = PE (I), PE (I) + ELN - 1 E = IW (P) WE = W (E) IF (WE .GE. WFLG) THEN C unabsorbed element e has been seen in this loop WE = WE - NVI ELSE IF (WE .NE. 0) THEN C e is an unabsorbed element C this is the first we have seen e in all of Scan 1 WE = DEGREE (E) + WNVI ENDIF W (E) = WE 140 CONTINUE ENDIF 150 CONTINUE C======================================================================= C DEGREE UPDATE AND ELEMENT ABSORPTION C======================================================================= C ------------------------------------------------------------- C Scan 2: for each i in Lme, sum up the degree of Lme (which C is degme), plus the sum of the external degrees of each Le C for the elements e appearing within i, plus the C supervariables in i. Place i in hash list. C ------------------------------------------------------------- DO 180 PME = PME1, PME2 I = IW (PME) P1 = PE (I) P2 = P1 + ELEN (I) - 1 PN = P1 HASH = 0 DEG = 0 C ---------------------------------------------------------- C scan the element list associated with supervariable i C ---------------------------------------------------------- DO 160 P = P1, P2 E = IW (P) C dext = | Le \ Lme | DEXT = W (E) - WFLG IF (DEXT .GT. 0) THEN DEG = DEG + DEXT IW (PN) = E PN = PN + 1 HASH = HASH + E ELSE IF (DEXT .EQ. 0) THEN C aggressive absorption: e is not adjacent to me, but C the |Le \ Lme| is 0, so absorb it into me PE (E) = -ME W (E) = 0 ELSE C element e has already been absorbed, due to C regular absorption, in do loop 120 above. Ignore it. CONTINUE ENDIF 160 CONTINUE C count the number of elements in i (including me): ELEN (I) = PN - P1 + 1 C ---------------------------------------------------------- C scan the supervariables in the list associated with i C ---------------------------------------------------------- P3 = PN DO 170 P = P2 + 1, P1 + LEN (I) - 1 J = IW (P) NVJ = NV (J) IF (NVJ .GT. 0) THEN C j is unabsorbed, and not in Lme. C add to degree and add to new list DEG = DEG + NVJ IW (PN) = J PN = PN + 1 HASH = HASH + J ENDIF 170 CONTINUE C ---------------------------------------------------------- C update the degree and check for mass elimination C ---------------------------------------------------------- IF (DEG .EQ. 0) THEN C ------------------------------------------------------- C mass elimination C ------------------------------------------------------- C There is nothing left of this node except for an C edge to the current pivot element. elen (i) is 1, C and there are no variables adjacent to node i. C Absorb i into the current pivot element, me. PE (I) = -ME NVI = -NV (I) DEGME = DEGME - NVI NVPIV = NVPIV + NVI NEL = NEL + NVI NV (I) = 0 ELEN (I) = 0 ELSE C ------------------------------------------------------- C update the upper-bound degree of i C ------------------------------------------------------- C the following degree does not yet include the size C of the current element, which is added later: DEGREE (I) = MIN (DEGREE (I), DEG) C ------------------------------------------------------- C add me to the list for i C ------------------------------------------------------- C move first supervariable to end of list IW (PN) = IW (P3) C move first element to end of element part of list IW (P3) = IW (P1) C add new element to front of list. IW (P1) = ME C store the new length of the list in len (i) LEN (I) = PN - P1 + 1 C ------------------------------------------------------- C place in hash bucket. Save hash key of i in last (i). C ------------------------------------------------------- HASH = MOD (HASH, HMOD) + 1 J = HEAD (HASH) IF (J .LE. 0) THEN C the degree list is empty, hash head is -j NEXT (I) = -J HEAD (HASH) = -I ELSE C degree list is not empty C use last (head (hash)) as hash head NEXT (I) = LAST (J) LAST (J) = I ENDIF LAST (I) = HASH ENDIF 180 CONTINUE DEGREE (ME) = DEGME C ------------------------------------------------------------- C Clear the counter array, w (...), by incrementing wflg. C ------------------------------------------------------------- DMAX = MAX (DMAX, DEGME) WFLG = WFLG + DMAX C make sure that wflg+n does not cause integer overflow IF (WFLG + N .LE. WFLG) THEN DO 190 X = 1, N IF (W (X) .NE. 0) W (X) = 1 190 CONTINUE WFLG = 2 ENDIF C at this point, w (1..n) .lt. wflg holds C======================================================================= C SUPERVARIABLE DETECTION C======================================================================= DO 250 PME = PME1, PME2 I = IW (PME) IF (NV (I) .LT. 0) THEN C i is a principal variable in Lme C ------------------------------------------------------- C examine all hash buckets with 2 or more variables. We C do this by examing all unique hash keys for super- C variables in the pattern Lme of the current element, me C ------------------------------------------------------- HASH = LAST (I) C let i = head of hash bucket, and empty the hash bucket J = HEAD (HASH) IF (J .EQ. 0) GOTO 250 IF (J .LT. 0) THEN C degree list is empty I = -J HEAD (HASH) = 0 ELSE C degree list is not empty, restore last () of head I = LAST (J) LAST (J) = 0 ENDIF IF (I .EQ. 0) GOTO 250 C while loop: 200 CONTINUE IF (NEXT (I) .NE. 0) THEN C ---------------------------------------------------- C this bucket has one or more variables following i. C scan all of them to see if i can absorb any entries C that follow i in hash bucket. Scatter i into w. C ---------------------------------------------------- LN = LEN (I) ELN = ELEN (I) C do not flag the first element in the list (me) DO 210 P = PE (I) + 1, PE (I) + LN - 1 W (IW (P)) = WFLG 210 CONTINUE C ---------------------------------------------------- C scan every other entry j following i in bucket C ---------------------------------------------------- JLAST = I J = NEXT (I) C while loop: 220 CONTINUE IF (J .NE. 0) THEN C ------------------------------------------------- C check if j and i have identical nonzero pattern C ------------------------------------------------- IF (LEN (J) .NE. LN) THEN C i and j do not have same size data structure GOTO 240 ENDIF IF (ELEN (J) .NE. ELN) THEN C i and j do not have same number of adjacent el GOTO 240 ENDIF C do not flag the first element in the list (me) DO 230 P = PE (J) + 1, PE (J) + LN - 1 IF (W (IW (P)) .NE. WFLG) THEN C an entry (iw(p)) is in j but not in i GOTO 240 ENDIF 230 CONTINUE C ------------------------------------------------- C found it! j can be absorbed into i C ------------------------------------------------- PE (J) = -I C both nv (i) and nv (j) are negated since they C are in Lme, and the absolute values of each C are the number of variables in i and j: NV (I) = NV (I) + NV (J) NV (J) = 0 ELEN (J) = 0 C delete j from hash bucket J = NEXT (J) NEXT (JLAST) = J GOTO 220 C ------------------------------------------------- 240 CONTINUE C j cannot be absorbed into i C ------------------------------------------------- JLAST = J J = NEXT (J) GOTO 220 ENDIF C ---------------------------------------------------- C no more variables can be absorbed into i C go to next i in bucket and clear flag array C ---------------------------------------------------- WFLG = WFLG + 1 I = NEXT (I) IF (I .NE. 0) GOTO 200 ENDIF ENDIF 250 CONTINUE C======================================================================= C RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVAR. FROM ELEMENT C======================================================================= P = PME1 NLEFT = N - NEL DO 260 PME = PME1, PME2 I = IW (PME) NVI = -NV (I) IF (NVI .GT. 0) THEN C i is a principal variable in Lme C restore nv (i) to signify that i is principal NV (I) = NVI C ------------------------------------------------------- C compute the external degree (add size of current elem) C ------------------------------------------------------- DEG = MIN (DEGREE (I) + DEGME - NVI, NLEFT - NVI) C ------------------------------------------------------- C place the supervariable at the head of the degree list C ------------------------------------------------------- INEXT = HEAD (DEG) IF (INEXT .NE. 0) LAST (INEXT) = I NEXT (I) = INEXT LAST (I) = 0 HEAD (DEG) = I C ------------------------------------------------------- C save the new degree, and find the minimum degree C ------------------------------------------------------- MINDEG = MIN (MINDEG, DEG) DEGREE (I) = DEG C ------------------------------------------------------- C place the supervariable in the element pattern C ------------------------------------------------------- IW (P) = I P = P + 1 ENDIF 260 CONTINUE C======================================================================= C FINALIZE THE NEW ELEMENT C======================================================================= NV (ME) = NVPIV + DEGME C nv (me) is now the degree of pivot (including diagonal part) C save the length of the list for the new element me LEN (ME) = P - PME1 IF (LEN (ME) .EQ. 0) THEN C there is nothing left of the current pivot element PE (ME) = 0 W (ME) = 0 ENDIF IF (NEWMEM .NE. 0) THEN C element was not constructed in place: deallocate part C of it (final size is less than or equal to newmem, C since newly nonprincipal variables have been removed). PFREE = P MEM = MEM - NEWMEM + LEN (ME) ENDIF C======================================================================= C END WHILE (selecting pivots) GOTO 30 ENDIF C======================================================================= C======================================================================= C COMPUTE THE PERMUTATION VECTORS C======================================================================= C ---------------------------------------------------------------- C The time taken by the following code is O(n). At this C point, elen (e) = -k has been done for all elements e, C and elen (i) = 0 has been done for all nonprincipal C variables i. At this point, there are no principal C supervariables left, and all elements are absorbed. C ---------------------------------------------------------------- C ---------------------------------------------------------------- C compute the ordering of unordered nonprincipal variables C ---------------------------------------------------------------- DO 290 I = 1, N IF (ELEN (I) .EQ. 0) THEN C ---------------------------------------------------------- C i is an un-ordered row. Traverse the tree from i until C reaching an element, e. The element, e, was the C principal supervariable of i and all nodes in the path C from i to when e was selected as pivot. C ---------------------------------------------------------- J = -PE (I) C while (j is a variable) do: 270 CONTINUE IF (ELEN (J) .GE. 0) THEN J = -PE (J) GOTO 270 ENDIF E = J C ---------------------------------------------------------- C get the current pivot ordering of e C ---------------------------------------------------------- K = -ELEN (E) C ---------------------------------------------------------- C traverse the path again from i to e, and compress the C path (all nodes point to e). Path compression allows C this code to compute in O(n) time. Order the unordered C nodes in the path, and place the element e at the end. C ---------------------------------------------------------- J = I C while (j is a variable) do: 280 CONTINUE IF (ELEN (J) .GE. 0) THEN JNEXT = -PE (J) PE (J) = -E IF (ELEN (J) .EQ. 0) THEN C j is an unordered row ELEN (J) = K K = K + 1 ENDIF J = JNEXT GOTO 280 ENDIF C leave elen (e) negative, so we know it is an element ELEN (E) = -K ENDIF 290 CONTINUE C ---------------------------------------------------------------- C reset the inverse permutation (elen (1..n)) to be positive, C and compute the permutation (last (1..n)). C ---------------------------------------------------------------- DO 300 I = 1, N K = ABS (ELEN (I)) LAST (K) = I ELEN (I) = K 300 CONTINUE C======================================================================= C RETURN THE MEMORY USAGE IN IW C======================================================================= C If maxmem is less than or equal to iwlen, then no compressions C occurred, and iw (maxmem+1 ... iwlen) was unused. Otherwise C compressions did occur, and iwlen would have had to have been C greater than or equal to maxmem for no compressions to occur. C Return the value of maxmem in the pfree argument. PFREE = MAXMEM RETURN END |