Blame view
fvn_sparse/UMFPACK/MATLAB/umfpack_btf.m
4.09 KB
422234dc3 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
function x = umfpack_btf (A, b, Control) %UMFPACK_BTF factorize A using a block triangular form % % Example: % x = umfpack_btf (A, b, Control) % % solve Ax=b by first permuting the matrix A to block triangular form via dmperm % and then using UMFPACK to factorize each diagonal block. Adjacent 1-by-1 % blocks are merged into a single upper triangular block, and solved via % MATLAB's \ operator. The Control parameter is optional (Type umfpack_details % and umfpack_report for details on its use). A must be square. % % See also umfpack, umfpack2, umfpack_details, dmperm % Copyright 1995-2007 by Timothy A. Davis. if (nargin < 2) help umfpack_btf error ('Usage: x = umfpack_btf (A, b, Control)') ; end [m n] = size (A) ; if (m ~= n) help umfpack_btf error ('umfpack_btf: A must be square') ; end m1 = size (b,1) ; if (m1 ~= n) help umfpack_btf error ('umfpack_btf: b has the wrong dimensions') ; end if (nargin < 3) Control = umfpack2 ; end %------------------------------------------------------------------------------- % find the block triangular form %------------------------------------------------------------------------------- [p,q,r] = dmperm (A) ; nblocks = length (r) - 1 ; %------------------------------------------------------------------------------- % solve the system %------------------------------------------------------------------------------- if (nblocks == 1 | sprank (A) < n) %#ok %--------------------------------------------------------------------------- % matrix is irreducible or structurally singular %--------------------------------------------------------------------------- x = umfpack_solve (A, '\', b, Control) ; else %--------------------------------------------------------------------------- % A (p,q) is in block triangular form %--------------------------------------------------------------------------- b = b (p,:) ; A = A (p,q) ; x = zeros (size (b)) ; %--------------------------------------------------------------------------- % merge adjacent singletons into a single upper triangular block %--------------------------------------------------------------------------- [r, nblocks, is_triangular] = merge_singletons (r) ; %--------------------------------------------------------------------------- % solve the system: x (q) = A\b %--------------------------------------------------------------------------- for k = nblocks:-1:1 % get the kth block k1 = r (k) ; k2 = r (k+1) - 1 ; % solve the system x (k1:k2,:) = solver (A (k1:k2, k1:k2), b (k1:k2,:), ... is_triangular (k), Control) ; % off-diagonal block back substitution b (1:k1-1,:) = b (1:k1-1,:) - A (1:k1-1, k1:k2) * x (k1:k2,:) ; end x (q,:) = x ; end %------------------------------------------------------------------------------- % merge_singletons %------------------------------------------------------------------------------- function [r, nblocks, is_triangular] = merge_singletons (r) % % Given r from [p,q,r] = dmperm (A), where A is square, return a modified r that % reflects the merger of adjacent singletons into a single upper triangular % block. is_triangular (k) is 1 if the kth block is upper triangular. nblocks % is the number of new blocks. nblocks = length (r) - 1 ; bsize = r (2:nblocks+1) - r (1:nblocks) ; t = [0 (bsize == 1)] ; z = (t (1:nblocks) == 0 & t (2:nblocks+1) == 1) | t (2:nblocks+1) == 0 ; y = [(find (z)) nblocks+1] ; r = r (y) ; nblocks = length (y) - 1 ; is_triangular = y (2:nblocks+1) - y (1:nblocks) > 1 ; %------------------------------------------------------------------------------- % solve Ax=b, but check for small and/or triangular systems %------------------------------------------------------------------------------- function x = solver (A, b, is_triangular, Control) if (is_triangular) % back substitution only x = A \ b ; elseif (size (A,1) < 4) % a very small matrix, solve it as a dense linear system x = full (A) \ b ; else % solve it as a sparse linear system x = umfpack_solve (A, '\', b, Control) ; end |