Blame view

fvn_sparse/UMFPACK/Source/umf_kernel_wrapup.c 12.2 KB
422234dc3   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
  /* ========================================================================== */
  /* === UMF_kernel_wrapup ==================================================== */
  /* ========================================================================== */
  
  /* -------------------------------------------------------------------------- */
  /* UMFPACK Copyright (c) Timothy A. Davis, CISE,                              */
  /* Univ. of Florida.  All Rights Reserved.  See ../Doc/License for License.   */
  /* web: http://www.cise.ufl.edu/research/sparse/umfpack                       */
  /* -------------------------------------------------------------------------- */
  
  /* The matrix is factorized.  Finish the LU data structure. */
  
  #include "umf_internal.h"
  
  GLOBAL void UMF_kernel_wrapup
  (
      NumericType *Numeric,
      SymbolicType *Symbolic,
      WorkType *Work
  )
  {
  
      /* ---------------------------------------------------------------------- */
      /* local variables */
      /* ---------------------------------------------------------------------- */
  
      Entry pivot_value ;
      double d ;
      Entry *D ;
      Int i, k, col, row, llen, ulen, *ip, *Rperm, *Cperm, *Lilen, npiv, lp,
  	*Uilen, *Lip, *Uip, *Cperm_init, up, pivrow, pivcol, *Lpos, *Upos, *Wr,
  	*Wc, *Wp, *Frpos, *Fcpos, *Row_degree, *Col_degree, *Rperm_init,
  	n_row, n_col, n_inner, zero_pivot, nan_pivot, n1 ;
  
  #ifndef NDEBUG
      UMF_dump_matrix (Numeric, Work, FALSE) ;
  #endif
  
      DEBUG0 (("Kernel complete, Starting Kernel wrapup
  ")) ;
      n_row = Symbolic->n_row ;
      n_col = Symbolic->n_col ;
      n_inner = MIN (n_row, n_col) ;
      Rperm = Numeric->Rperm ;
      Cperm = Numeric->Cperm ;
      Lilen = Numeric->Lilen ;
      Uilen = Numeric->Uilen ;
      Upos = Numeric->Upos ;
      Lpos = Numeric->Lpos ;
      Lip = Numeric->Lip ;
      Uip = Numeric->Uip ;
      D = Numeric->D ;
  
      npiv = Work->npiv ;
      Numeric->npiv = npiv ;
      Numeric->ulen = Work->ulen ;
  
      ASSERT (n_row == Numeric->n_row) ;
      ASSERT (n_col == Symbolic->n_col) ;
      DEBUG0 (("Wrap-up: npiv "ID" ulen "ID"
  ", npiv, Numeric->ulen)) ;
      ASSERT (npiv <= n_inner) ;
  
      /* this will be nonzero only if matrix is singular or rectangular */
      ASSERT (IMPLIES (npiv == n_col, Work->ulen == 0)) ;
  
      /* ---------------------------------------------------------------------- */
      /* find the smallest and largest entries in D */
      /* ---------------------------------------------------------------------- */
  
      for (k = 0 ; k < npiv ; k++)
      {
  	pivot_value = D [k] ;
  	ABS (d, pivot_value) ;
  	zero_pivot = SCALAR_IS_ZERO (d) ;
  	nan_pivot = SCALAR_IS_NAN (d) ;
  
  	if (!zero_pivot)
  	{
  	    /* the pivot is nonzero, but might be Inf or NaN */
  	    Numeric->nnzpiv++ ;
  	}
  
  	if (k == 0)
  	{
  	    Numeric->min_udiag = d ;
  	    Numeric->max_udiag = d ;
  	}
  	else
  	{
  	    /* min (abs (diag (U))) behaves as follows:  If any entry is zero,
  	       then the result is zero (regardless of the presence of NaN's).
  	       Otherwise, if any entry is NaN, then the result is NaN.
  	       Otherwise, the result is the smallest absolute value on the
  	       diagonal of U.
  	    */
  
  	    if (SCALAR_IS_NONZERO (Numeric->min_udiag))
  	    {
  		if (zero_pivot || nan_pivot)
  		{
  		    Numeric->min_udiag = d ;
  		}
  		else if (!SCALAR_IS_NAN (Numeric->min_udiag))
  		{
  		    /* d and min_udiag are both non-NaN */
  		    Numeric->min_udiag = MIN (Numeric->min_udiag, d) ;
  		}
  	    }
  
  	    /*
  	       max (abs (diag (U))) behaves as follows:  If any entry is NaN
  	       then the result is NaN.  Otherise, the result is the largest
  	       absolute value on the diagonal of U.
  	    */
  
  	    if (nan_pivot)
  	    {
  		Numeric->max_udiag = d ;
  	    }
  	    else if (!SCALAR_IS_NAN (Numeric->max_udiag))
  	    {
  		/* d and max_udiag are both non-NaN */
  		Numeric->max_udiag = MAX (Numeric->max_udiag, d) ;
  	    }
  	}
      }
  
      /* ---------------------------------------------------------------------- */
      /* check if matrix is singular or rectangular */
      /* ---------------------------------------------------------------------- */
  
      Col_degree = Cperm ;	/* for NON_PIVOTAL_COL macro */
      Row_degree = Rperm ;	/* for NON_PIVOTAL_ROW macro */
  
      if (npiv < n_row)
      {
  	/* finalize the row permutation */
  	k = npiv ;
  	DEBUGm3 (("Singular pivot rows "ID" to "ID"
  ", k, n_row-1)) ;
  	for (row = 0 ; row < n_row ; row++)
  	{
  	    if (NON_PIVOTAL_ROW (row))
  	    {
  		Rperm [row] = ONES_COMPLEMENT (k) ;
  		DEBUGm3 (("Singular row "ID" is k: "ID" pivot row
  ", row, k)) ;
  		ASSERT (!NON_PIVOTAL_ROW (row)) ;
  		Lpos [row] = EMPTY ;
  		Uip [row] = EMPTY ;
  		Uilen [row] = 0 ;
  		k++ ;
  	    }
  	}
  	ASSERT (k == n_row) ;
      }
  
      if (npiv < n_col)
      {
  	/* finalize the col permutation */
  	k = npiv ;
  	DEBUGm3 (("Singular pivot cols "ID" to "ID"
  ", k, n_col-1)) ;
  	for (col = 0 ; col < n_col ; col++)
  	{
  	    if (NON_PIVOTAL_COL (col))
  	    {
  		Cperm [col] = ONES_COMPLEMENT (k) ;
  		DEBUGm3 (("Singular col "ID" is k: "ID" pivot row
  ", col, k)) ;
  		ASSERT (!NON_PIVOTAL_COL (col)) ;
  		Upos [col] = EMPTY ;
  		Lip [col] = EMPTY ;
  		Lilen [col] = 0 ;
  		k++ ;
  	    }
  	}
  	ASSERT (k == n_col) ;
      }
  
      if (npiv < n_inner)
      {
  	/* finalize the diagonal of U */
  	DEBUGm3 (("Diag of U is zero, "ID" to "ID"
  ", npiv, n_inner-1)) ;
  	for (k = npiv ; k < n_inner ; k++)
  	{
  	    CLEAR (D [k]) ;
  	}
      }
  
      /* save the pattern of the last row of U */
      if (Numeric->ulen > 0)
      {
  	DEBUGm3 (("Last row of U is not empty
  ")) ;
  	Numeric->Upattern = Work->Upattern ;
  	Work->Upattern = (Int *) NULL ;
      }
  
      DEBUG2 (("Nnzpiv: "ID"  npiv "ID"
  ", Numeric->nnzpiv, npiv)) ;
      ASSERT (Numeric->nnzpiv <= npiv) ;
      if (Numeric->nnzpiv < n_inner && !SCALAR_IS_NAN (Numeric->min_udiag))
      {
  	/* the rest of the diagonal is zero, so min_udiag becomes 0,
  	 * unless it is already NaN. */
  	Numeric->min_udiag = 0.0 ;
      }
  
      /* ---------------------------------------------------------------------- */
      /* size n_row, n_col workspaces that can be used here: */
      /* ---------------------------------------------------------------------- */
  
      Frpos = Work->Frpos ;	/* of size n_row+1 */
      Fcpos = Work->Fcpos ;	/* of size n_col+1 */
      Wp = Work->Wp ;		/* of size MAX(n_row,n_col)+1 */
      /* Work->Upattern ;		cannot be used (in Numeric) */
      Wr = Work->Lpattern ;	/* of size n_row+1 */
      Wc = Work->Wrp ;		/* of size n_col+1 or bigger */
  
      /* ---------------------------------------------------------------------- */
      /* construct Rperm from inverse permutations */
      /* ---------------------------------------------------------------------- */
  
      /* use Frpos for temporary copy of inverse row permutation [ */
  
      for (pivrow = 0 ; pivrow < n_row ; pivrow++)
      {
  	k = Rperm [pivrow] ;
  	ASSERT (k < 0) ;
  	k = ONES_COMPLEMENT (k) ;
  	ASSERT (k >= 0 && k < n_row) ;
  	Wp [k] = pivrow ;
  	Frpos [pivrow] = k ;
      }
      for (k = 0 ; k < n_row ; k++)
      {
  	Rperm [k] = Wp [k] ;
      }
  
      /* ---------------------------------------------------------------------- */
      /* construct Cperm from inverse permutation */
      /* ---------------------------------------------------------------------- */
  
      /* use Fcpos for temporary copy of inverse column permutation [ */
  
      for (pivcol = 0 ; pivcol < n_col ; pivcol++)
      {
  	k = Cperm [pivcol] ;
  	ASSERT (k < 0) ;
  	k = ONES_COMPLEMENT (k) ;
  	ASSERT (k >= 0 && k < n_col) ;
  	Wp [k] = pivcol ;
  	/* save a copy of the inverse column permutation in Fcpos */
  	Fcpos [pivcol] = k ;
      }
      for (k = 0 ; k < n_col ; k++)
      {
  	Cperm [k] = Wp [k] ;
      }
  
  #ifndef NDEBUG
      for (k = 0 ; k < n_col ; k++)
      {
  	col = Cperm [k] ;
  	ASSERT (col >= 0 && col < n_col) ;
  	ASSERT (Fcpos [col] == k) ;		/* col is the kth pivot */
      }
      for (k = 0 ; k < n_row ; k++)
      {
  	row = Rperm [k] ;
  	ASSERT (row >= 0 && row < n_row) ;
  	ASSERT (Frpos [row] == k) ;		/* row is the kth pivot */
      }
  #endif
  
  #ifndef NDEBUG
      UMF_dump_lu (Numeric) ;
  #endif
  
      /* ---------------------------------------------------------------------- */
      /* permute Lpos, Upos, Lilen, Lip, Uilen, and Uip */
      /* ---------------------------------------------------------------------- */
  
      for (k = 0 ; k < npiv ; k++)
      {
  	pivrow = Rperm [k] ;
  	Wr [k] = Uilen [pivrow] ;
  	Wp [k] = Uip [pivrow] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	Uilen [k] = Wr [k] ;
  	Uip [k] = Wp [k] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	pivrow = Rperm [k] ;
  	Wp [k] = Lpos [pivrow] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	Lpos [k] = Wp [k] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	pivcol = Cperm [k] ;
  	Wc [k] = Lilen [pivcol] ;
  	Wp [k] = Lip [pivcol] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	Lilen [k] = Wc [k] ;
  	Lip [k] = Wp [k] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	pivcol = Cperm [k] ;
  	Wp [k] = Upos [pivcol] ;
      }
  
      for (k = 0 ; k < npiv ; k++)
      {
  	Upos [k] = Wp [k] ;
      }
  
      /* ---------------------------------------------------------------------- */
      /* terminate the last Uchain and last Lchain */
      /* ---------------------------------------------------------------------- */
  
      Upos [npiv] = EMPTY ;
      Lpos [npiv] = EMPTY ;
      Uip [npiv] = EMPTY ;
      Lip [npiv] = EMPTY ;
      Uilen [npiv] = 0 ;
      Lilen [npiv] = 0 ;
  
      /* ---------------------------------------------------------------------- */
      /* convert U to the new pivot order */
      /* ---------------------------------------------------------------------- */
  
      n1 = Symbolic->n1 ;
  
      for (k = 0 ; k < n1 ; k++)
      {
  	/* this is a singleton row of U */
  	ulen = Uilen [k] ;
  	DEBUG4 (("K "ID" New U.  ulen "ID" Singleton 1
  ", k, ulen)) ;
  	if (ulen > 0)
  	{
  	    up = Uip [k] ;
  	    ip = (Int *) (Numeric->Memory + up) ;
  	    for (i = 0 ; i < ulen ; i++)
  	    {
  		col = *ip ;
  		DEBUG4 ((" old col "ID" new col "ID"
  ", col, Fcpos [col]));
  		ASSERT (col >= 0 && col < n_col) ;
  		*ip++ = Fcpos [col] ;
  	    }
  	}
      }
  
      for (k = n1 ; k < npiv ; k++)
      {
  	up = Uip [k] ;
  	if (up < 0)
  	{
  	    /* this is the start of a new Uchain (with a pattern) */
  	    ulen = Uilen [k] ;
  	    DEBUG4 (("K "ID" New U.  ulen "ID" End_Uchain 1
  ", k, ulen)) ;
  	    if (ulen > 0)
  	    {
  		up = -up ;
  		ip = (Int *) (Numeric->Memory + up) ;
  		for (i = 0 ; i < ulen ; i++)
  		{
  		    col = *ip ;
  		    DEBUG4 ((" old col "ID" new col "ID"
  ", col, Fcpos [col]));
  		    ASSERT (col >= 0 && col < n_col) ;
  		    *ip++ = Fcpos [col] ;
  		}
  	    }
  	}
      }
  
      ulen = Numeric->ulen ;
      if (ulen > 0)
      {
  	/* convert last pivot row of U to the new pivot order */
  	DEBUG4 (("K "ID" (last)
  ", k)) ;
  	for (i = 0 ; i < ulen ; i++)
  	{
  	    col = Numeric->Upattern [i] ;
  	    DEBUG4 (("    old col "ID" new col "ID"
  ", col, Fcpos [col])) ;
  	    Numeric->Upattern [i] = Fcpos [col] ;
  	}
      }
  
      /* Fcpos no longer needed ] */
  
      /* ---------------------------------------------------------------------- */
      /* convert L to the new pivot order */
      /* ---------------------------------------------------------------------- */
  
      for (k = 0 ; k < n1 ; k++)
      {
  	llen = Lilen [k] ;
  	DEBUG4 (("K "ID" New L.  llen "ID" Singleton col
  ", k, llen)) ;
  	if (llen > 0)
  	{
  	    lp = Lip [k] ;
  	    ip = (Int *) (Numeric->Memory + lp) ;
  	    for (i = 0 ; i < llen ; i++)
  	    {
  		row = *ip ;
  		DEBUG4 (("    old row "ID" new row "ID"
  ", row, Frpos [row])) ;
  		ASSERT (row >= 0 && row < n_row) ;
  		*ip++ = Frpos [row] ;
  	    }
  	}
      }
  
      for (k = n1 ; k < npiv ; k++)
      {
  	llen = Lilen [k] ;
  	DEBUG4 (("K "ID" New L.  llen "ID" 
  ", k, llen)) ;
  	if (llen > 0)
  	{
  	    lp = Lip [k] ;
  	    if (lp < 0)
  	    {
  		/* this starts a new Lchain */
  		lp = -lp ;
  	    }
  	    ip = (Int *) (Numeric->Memory + lp) ;
  	    for (i = 0 ; i < llen ; i++)
  	    {
  		row = *ip ;
  		DEBUG4 (("    old row "ID" new row "ID"
  ", row, Frpos [row])) ;
  		ASSERT (row >= 0 && row < n_row) ;
  		*ip++ = Frpos [row] ;
  	    }
  	}
      }
  
      /* Frpos no longer needed ] */
  
      /* ---------------------------------------------------------------------- */
      /* combine symbolic and numeric permutations */
      /* ---------------------------------------------------------------------- */
  
      Cperm_init = Symbolic->Cperm_init ;
      Rperm_init = Symbolic->Rperm_init ;
  
      for (k = 0 ; k < n_row ; k++)
      {
  	Rperm [k] = Rperm_init [Rperm [k]] ;
      }
  
      for (k = 0 ; k < n_col ; k++)
      {
  	Cperm [k] = Cperm_init [Cperm [k]] ;
      }
  
      /* Work object will be freed immediately upon return (to UMF_kernel */
      /* and then to UMFPACK_numeric). */
  }