Blame view

fvn_quadpack/dqk61.f 9.87 KB
06ed2f4ac   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
  !
  !   fvn comment :
  !   Unmodified quadpack routine from http://www.netlib.org/quadpack
  !
        subroutine dqk61(f,a,b,result,abserr,resabs,resasc)
  !***begin prologue  dqk61
  !***date written   800101   (yymmdd)
  !***revision date  830518   (yymmdd)
  !***category no.  h2a1a2
  !***keywords  61-point gauss-kronrod rules
  !***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
  !           de doncker,elise,appl. math. & progr. div. - k.u.leuven
  !***purpose  to compute i = integral of f over (a,b) with error
  !                           estimate
  !                       j = integral of dabs(f) over (a,b)
  !***description
  !
  !        integration rule
  !        standard fortran subroutine
  !        double precision version
  !
  !
  !        parameters
  !         on entry
  !           f      - double precision
  !                    function subprogram defining the integrand
  !                    function f(x). the actual name for f needs to be
  !                    declared e x t e r n a l in the calling program.
  !
  !           a      - double precision
  !                    lower limit of integration
  !
  !           b      - double precision
  !                    upper limit of integration
  !
  !         on return
  !           result - double precision
  !                    approximation to the integral i
  !                    result is computed by applying the 61-point
  !                    kronrod rule (resk) obtained by optimal addition of
  !                    abscissae to the 30-point gauss rule (resg).
  !
  !           abserr - double precision
  !                    estimate of the modulus of the absolute error,
  !                    which should equal or exceed dabs(i-result)
  !
  !           resabs - double precision
  !                    approximation to the integral j
  !
  !           resasc - double precision
  !                    approximation to the integral of dabs(f-i/(b-a))
  !
  !
  !***references  (none)
  !***routines called  d1mach
  !***end prologue  dqk61
  !
        double precision a,dabsc,abserr,b,centr,dabs,dhlgth,dmax1,dmin1, &
         epmach,f,fc,fsum,fval1,fval2,fv1,fv2,hlgth,resabs,resasc, &
         resg,resk,reskh,result,uflow,wg,wgk,xgk
        integer j,jtw,jtwm1
        external f
  !
        dimension fv1(30),fv2(30),xgk(31),wgk(31),wg(15)
  !
  !           the abscissae and weights are given for the
  !           interval (-1,1). because of symmetry only the positive
  !           abscissae and their corresponding weights are given.
  !
  !           xgk   - abscissae of the 61-point kronrod rule
  !                   xgk(2), xgk(4)  ... abscissae of the 30-point
  !                   gauss rule
  !                   xgk(1), xgk(3)  ... optimally added abscissae
  !                   to the 30-point gauss rule
  !
  !           wgk   - weights of the 61-point kronrod rule
  !
  !           wg    - weigths of the 30-point gauss rule
  !
  !
  ! gauss quadrature weights and kronron quadrature abscissae and weights
  ! as evaluated with 80 decimal digit arithmetic by l. w. fullerton,
  ! bell labs, nov. 1981.
  !
        data wg  (  1) / 0.007968192496166605615465883474674d0 /
        data wg  (  2) / 0.018466468311090959142302131912047d0 /
        data wg  (  3) / 0.028784707883323369349719179611292d0 /
        data wg  (  4) / 0.038799192569627049596801936446348d0 /
        data wg  (  5) / 0.048402672830594052902938140422808d0 /
        data wg  (  6) / 0.057493156217619066481721689402056d0 /
        data wg  (  7) / 0.065974229882180495128128515115962d0 /
        data wg  (  8) / 0.073755974737705206268243850022191d0 /
        data wg  (  9) / 0.080755895229420215354694938460530d0 /
        data wg  ( 10) / 0.086899787201082979802387530715126d0 /
        data wg  ( 11) / 0.092122522237786128717632707087619d0 /
        data wg  ( 12) / 0.096368737174644259639468626351810d0 /
        data wg  ( 13) / 0.099593420586795267062780282103569d0 /
        data wg  ( 14) / 0.101762389748405504596428952168554d0 /
        data wg  ( 15) / 0.102852652893558840341285636705415d0 /
  !
        data xgk (  1) / 0.999484410050490637571325895705811d0 /
        data xgk (  2) / 0.996893484074649540271630050918695d0 /
        data xgk (  3) / 0.991630996870404594858628366109486d0 /
        data xgk (  4) / 0.983668123279747209970032581605663d0 /
        data xgk (  5) / 0.973116322501126268374693868423707d0 /
        data xgk (  6) / 0.960021864968307512216871025581798d0 /
        data xgk (  7) / 0.944374444748559979415831324037439d0 /
        data xgk (  8) / 0.926200047429274325879324277080474d0 /
        data xgk (  9) / 0.905573307699907798546522558925958d0 /
        data xgk ( 10) / 0.882560535792052681543116462530226d0 /
        data xgk ( 11) / 0.857205233546061098958658510658944d0 /
        data xgk ( 12) / 0.829565762382768397442898119732502d0 /
        data xgk ( 13) / 0.799727835821839083013668942322683d0 /
        data xgk ( 14) / 0.767777432104826194917977340974503d0 /
        data xgk ( 15) / 0.733790062453226804726171131369528d0 /
        data xgk ( 16) / 0.697850494793315796932292388026640d0 /
        data xgk ( 17) / 0.660061064126626961370053668149271d0 /
        data xgk ( 18) / 0.620526182989242861140477556431189d0 /
        data xgk ( 19) / 0.579345235826361691756024932172540d0 /
        data xgk ( 20) / 0.536624148142019899264169793311073d0 /
        data xgk ( 21) / 0.492480467861778574993693061207709d0 /
        data xgk ( 22) / 0.447033769538089176780609900322854d0 /
        data xgk ( 23) / 0.400401254830394392535476211542661d0 /
        data xgk ( 24) / 0.352704725530878113471037207089374d0 /
        data xgk ( 25) / 0.304073202273625077372677107199257d0 /
        data xgk ( 26) / 0.254636926167889846439805129817805d0 /
        data xgk ( 27) / 0.204525116682309891438957671002025d0 /
        data xgk ( 28) / 0.153869913608583546963794672743256d0 /
        data xgk ( 29) / 0.102806937966737030147096751318001d0 /
        data xgk ( 30) / 0.051471842555317695833025213166723d0 /
        data xgk ( 31) / 0.000000000000000000000000000000000d0 /
  !
        data wgk (  1) / 0.001389013698677007624551591226760d0 /
        data wgk (  2) / 0.003890461127099884051267201844516d0 /
        data wgk (  3) / 0.006630703915931292173319826369750d0 /
        data wgk (  4) / 0.009273279659517763428441146892024d0 /
        data wgk (  5) / 0.011823015253496341742232898853251d0 /
        data wgk (  6) / 0.014369729507045804812451432443580d0 /
        data wgk (  7) / 0.016920889189053272627572289420322d0 /
        data wgk (  8) / 0.019414141193942381173408951050128d0 /
        data wgk (  9) / 0.021828035821609192297167485738339d0 /
        data wgk ( 10) / 0.024191162078080601365686370725232d0 /
        data wgk ( 11) / 0.026509954882333101610601709335075d0 /
        data wgk ( 12) / 0.028754048765041292843978785354334d0 /
        data wgk ( 13) / 0.030907257562387762472884252943092d0 /
        data wgk ( 14) / 0.032981447057483726031814191016854d0 /
        data wgk ( 15) / 0.034979338028060024137499670731468d0 /
        data wgk ( 16) / 0.036882364651821229223911065617136d0 /
        data wgk ( 17) / 0.038678945624727592950348651532281d0 /
        data wgk ( 18) / 0.040374538951535959111995279752468d0 /
        data wgk ( 19) / 0.041969810215164246147147541285970d0 /
        data wgk ( 20) / 0.043452539701356069316831728117073d0 /
        data wgk ( 21) / 0.044814800133162663192355551616723d0 /
        data wgk ( 22) / 0.046059238271006988116271735559374d0 /
        data wgk ( 23) / 0.047185546569299153945261478181099d0 /
        data wgk ( 24) / 0.048185861757087129140779492298305d0 /
        data wgk ( 25) / 0.049055434555029778887528165367238d0 /
        data wgk ( 26) / 0.049795683427074206357811569379942d0 /
        data wgk ( 27) / 0.050405921402782346840893085653585d0 /
        data wgk ( 28) / 0.050881795898749606492297473049805d0 /
        data wgk ( 29) / 0.051221547849258772170656282604944d0 /
        data wgk ( 30) / 0.051426128537459025933862879215781d0 /
        data wgk ( 31) / 0.051494729429451567558340433647099d0 /
  !
  !           list of major variables
  !           -----------------------
  !
  !           centr  - mid point of the interval
  !           hlgth  - half-length of the interval
  !           dabsc  - abscissa
  !           fval*  - function value
  !           resg   - result of the 30-point gauss rule
  !           resk   - result of the 61-point kronrod rule
  !           reskh  - approximation to the mean value of f
  !                    over (a,b), i.e. to i/(b-a)
  !
  !           machine dependent constants
  !           ---------------------------
  !
  !           epmach is the largest relative spacing.
  !           uflow is the smallest positive magnitude.
  !
        epmach = d1mach(4)
        uflow = d1mach(1)
  !
        centr = 0.5d+00*(b+a)
        hlgth = 0.5d+00*(b-a)
        dhlgth = dabs(hlgth)
  !
  !           compute the 61-point kronrod approximation to the
  !           integral, and estimate the absolute error.
  !
  !***first executable statement  dqk61
        resg = 0.0d+00
        fc = f(centr)
        resk = wgk(31)*fc
        resabs = dabs(resk)
        do 10 j=1,15
          jtw = j*2
          dabsc = hlgth*xgk(jtw)
          fval1 = f(centr-dabsc)
          fval2 = f(centr+dabsc)
          fv1(jtw) = fval1
          fv2(jtw) = fval2
          fsum = fval1+fval2
          resg = resg+wg(j)*fsum
          resk = resk+wgk(jtw)*fsum
          resabs = resabs+wgk(jtw)*(dabs(fval1)+dabs(fval2))
     10 continue
        do 15 j=1,15
          jtwm1 = j*2-1
          dabsc = hlgth*xgk(jtwm1)
          fval1 = f(centr-dabsc)
          fval2 = f(centr+dabsc)
          fv1(jtwm1) = fval1
          fv2(jtwm1) = fval2
          fsum = fval1+fval2
          resk = resk+wgk(jtwm1)*fsum
          resabs = resabs+wgk(jtwm1)*(dabs(fval1)+dabs(fval2))
    15    continue
        reskh = resk*0.5d+00
        resasc = wgk(31)*dabs(fc-reskh)
        do 20 j=1,30
          resasc = resasc+wgk(j)*(dabs(fv1(j)-reskh)+dabs(fv2(j)-reskh))
     20 continue
        result = resk*hlgth
        resabs = resabs*dhlgth
        resasc = resasc*dhlgth
        abserr = dabs((resk-resg)*hlgth)
        if(resasc.ne.0.0d+00.and.abserr.ne.0.0d+00) &
         abserr = resasc*dmin1(0.1d+01,(0.2d+03*abserr/resasc)**1.5d+00)
        if(resabs.gt.uflow/(0.5d+02*epmach)) abserr = dmax1 &
         ((epmach*0.5d+02)*resabs,abserr)
        return
        end subroutine