Blame view
fvn_fnlib/besjn.f90
2.74 KB
e1aefab23 git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
real(4) function besjn(n,x,factor,big) implicit none ! This function compute the rank n Bessel J function ! using recurrence relation : ! Jn+1(x)=2n/x * Jn(x) - Jn-1(x) ! ! Two optional parameters : ! factor : an integer that is used in Miller's algorithm to determine the ! starting point of iteration. Default value is 40, an increase of this value ! will increase accuracy. Starting point ~ nearest even integer of sqrt(factor*n) ! big : a real that determine the threshold for taking anti overflow counter measure ! default value is 1e10 ! integer :: n real(4) :: x integer, optional :: factor real(4), optional :: big integer :: tfactor real(4) :: tbig,tsmall,som real(4),external :: besj0,besj1 real(4) :: two_on_x,bjnm1,bjn,bjnp1,absx integer :: i,start logical :: iseven ! Initialization of optional parameters tfactor=40 if(present(factor)) tfactor=factor tbig=1e10 if(present(big)) tbig=big tsmall=1./tbig if (n==0) then besjn=besj0(x) return end if if (n==1) then besjn=besj1(x) return end if if (n < 0) then write(*,*) "Error in besjn, n must be >= 0" stop end if absx=abs(x) if (absx == 0.) then besjn=0. else if (absx > float(n)) then ! For x > n upward reccurence is stable two_on_x=2./absx bjnm1=besj0(absx) bjn=besj1(absx) do i=1,n-1 bjnp1=two_on_x*bjn*i-bjnm1 bjnm1=bjn bjn=bjnp1 end do besjn=bjnp1 else ! For x <= n we use Miller's Algorithm ! as upward reccurence is unstable. ! This is adapted from Numerical Recipes ! Principle : use of downward recurrence from an arbitrary ! higher than n value with an arbitrary seed, ! and then use the normalization formula : ! 1=J0+2J2+2J4+2J6+.... two_on_x=2./absx start=2*((n+int(sqrt(float(n*tfactor))))/2) ! even start som=0. iseven=.false. bjnp1=0. bjn=1. do i=start,1,-1 ! begin downward rec bjnm1=two_on_x*bjn*i-bjnp1 bjnp1=bjn bjn=bjnm1 ! Action to prevent overflow if (abs(bjn) > tbig) then bjn=bjn*tsmall bjnp1=bjnp1*tsmall besjn=besjn*tsmall som=som*tsmall end if if (iseven) then som=som+bjn end if iseven= .not. iseven if (i==n) besjn=bjnp1 end do som=2.*som-bjn besjn=besjn/som end if ! if n is odd and x <0 if ((x<0.) .and. (mod(n,2)==1)) besjn=-besjn end function |