Blame view
fvn_sparse/AMD/Demo/amd_demo2.out
8.75 KB
422234dc3
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
AMD demo, with a jumbled version of the 24-by-24 Harwell/Boeing matrix, can_24: AMD version 2.2.0, May 31, 2007: approximate minimum degree ordering dense row parameter: 10 (rows with more than max (10 * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes size of AMD integer: 4 Jumbled input matrix: 24-by-24, with 116 entries. Note that for a symmetric matrix such as this one, only the strictly lower or upper triangular parts would need to be passed to AMD, since AMD computes the ordering of A+A'. The diagonal entries are also not needed, since AMD ignores them. This version of the matrix has jumbled columns and duplicate row indices. Column: 0, number of entries: 9, with row indices in Ai [0 ... 8]: row indices: 0 17 18 21 5 12 5 0 13 Column: 1, number of entries: 5, with row indices in Ai [9 ... 13]: row indices: 14 1 8 13 17 Column: 2, number of entries: 6, with row indices in Ai [14 ... 19]: row indices: 2 20 11 6 11 22 Column: 3, number of entries: 8, with row indices in Ai [20 ... 27]: row indices: 3 3 10 7 18 18 15 19 Column: 4, number of entries: 5, with row indices in Ai [28 ... 32]: row indices: 7 9 15 14 16 Column: 5, number of entries: 4, with row indices in Ai [33 ... 36]: row indices: 5 13 6 17 Column: 6, number of entries: 7, with row indices in Ai [37 ... 43]: row indices: 5 0 11 6 12 6 23 Column: 7, number of entries: 9, with row indices in Ai [44 ... 52]: row indices: 3 4 9 7 14 16 15 17 18 Column: 8, number of entries: 5, with row indices in Ai [53 ... 57]: row indices: 1 9 14 14 14 Column: 9, number of entries: 5, with row indices in Ai [58 ... 62]: row indices: 7 13 8 1 17 Column: 10, number of entries: 0, with row indices in Ai [63 ... 62]: row indices: Column: 11, number of entries: 3, with row indices in Ai [63 ... 65]: row indices: 2 12 23 Column: 12, number of entries: 3, with row indices in Ai [66 ... 68]: row indices: 5 11 12 Column: 13, number of entries: 3, with row indices in Ai [69 ... 71]: row indices: 0 13 17 Column: 14, number of entries: 3, with row indices in Ai [72 ... 74]: row indices: 1 9 14 Column: 15, number of entries: 3, with row indices in Ai [75 ... 77]: row indices: 3 15 16 Column: 16, number of entries: 4, with row indices in Ai [78 ... 81]: row indices: 16 4 4 15 Column: 17, number of entries: 4, with row indices in Ai [82 ... 85]: row indices: 13 17 19 17 Column: 18, number of entries: 5, with row indices in Ai [86 ... 90]: row indices: 15 17 19 9 10 Column: 19, number of entries: 6, with row indices in Ai [91 ... 96]: row indices: 17 19 20 0 6 10 Column: 20, number of entries: 4, with row indices in Ai [97 ... 100]: row indices: 22 10 20 21 Column: 21, number of entries: 11, with row indices in Ai [101 ... 111]: row indices: 6 2 10 19 20 11 21 22 22 22 22 Column: 22, number of entries: 0, with row indices in Ai [112 ... 111]: row indices: Column: 23, number of entries: 4, with row indices in Ai [112 ... 115]: row indices: 12 11 12 23 Plot of (jumbled) input matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . . X . . . . . . X . . . . . X . . . . 1: . X . . . . . . X X . . . . X . . . . . . . . . 2: . . X . . . . . . . . X . . . . . . . . . X . . 3: . . . X . . . X . . . . . . . X . . . . . . . . 4: . . . . . . . X . . . . . . . . X . . . . . . . 5: X . . . . X X . . . . . X . . . . . . . . . . . 6: . . X . . X X . . . . . . . . . . . . X . X . . 7: . . . X X . . X . X . . . . . . . . . . . . . . 8: . X . . . . . . . X . . . . . . . . . . . . . . 9: . . . . X . . X X . . . . . X . . . X . . . . . 10: . . . X . . . . . . . . . . . . . . X X X X . . 11: . . X . . . X . . . . . X . . . . . . . . X . X 12: X . . . . . X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X . . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . . . . . . . . . . . . . . . . 19: . . . X . . . . . . . . . . . . . X X X . X . . 20: . . X . . . . . . . . . . . . . . . . X X X . . 21: X . . . . . . . . . . . . . . . . . . . X X . . 22: . . X . . . . . . . . . . . . . . . . . X X . . 23: . . . . . . X . . . . X . . . . . . . . . . . X Plot of symmetric matrix to be ordered by amd_order: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X . . . . X X . . . . . X X . . . X X X . X . . 1: . X . . . . . . X X . . . X X . . X . . . . . . 2: . . X . . . X . . . . X . . . . . . . . X X X . 3: . . . X . . . X . . X . . . . X . . X X . . . . 4: . . . . X . . X . X . . . . X X X . . . . . . . 5: X . . . . X X . . . . . X X . . . X . . . . . . 6: X . X . . X X . . . . X X . . . . . . X . X . X 7: . . . X X . . X . X . . . . X X X X X . . . . . 8: . X . . . . . . X X . . . . X . . . . . . . . . 9: . X . . X . . X X X . . . X X . . X X . . . . . 10: . . . X . . . . . . X . . . . . . . X X X X . . 11: . . X . . . X . . . . X X . . . . . . . . X . X 12: X . . . . X X . . . . X X . . . . . . . . . . X 13: X X . . . X . . . X . . . X . . . X . . . . . . 14: . X . . X . . X X X . . . . X . . . . . . . . . 15: . . . X X . . X . . . . . . . X X . X . . . . . 16: . . . . X . . X . . . . . . . X X . . . . . . . 17: X X . . . X . X . X . . . X . . . X X X . . . . 18: X . . X . . . X . X X . . . . X . X X X . . . . 19: X . . X . . X . . . X . . . . . . X X X X X . . 20: . . X . . . . . . . X . . . . . . . . X X X X . 21: X . X . . . X . . . X X . . . . . . . X X X X . 22: . . X . . . . . . . . . . . . . . . . . X X X . 23: . . . . . . X . . . . X X . . . . . . . . . . X return value from amd_order: 1 (should be 1) AMD version 2.2.0, May 31, 2007, results: status: OK, but jumbled n, dimension of A: 24 nz, number of nonzeros in A: 102 symmetry of A: 0.4000 number of nonzeros on diagonal: 17 nonzeros in pattern of A+A' (excl. diagonal): 136 # dense rows/columns of A+A': 0 memory used, in bytes: 2080 # of memory compactions: 0 The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): 97 nonzeros in L (including diagonal): 121 # divide operations for LDL' or LU: 97 # multiply-subtract operations for LDL': 275 # multiply-subtract operations for LU: 453 max nz. in any column of L (incl. diagonal): 8 chol flop count for real A, sqrt counted as 1 flop: 671 LDL' flop count for real A: 647 LDL' flop count for complex A: 3073 LU flop count for real A (with no pivoting): 1003 LU flop count for complex A (with no pivoting): 4497 Permutation vector: 22 20 10 23 12 5 16 8 14 4 15 7 1 9 13 17 0 2 3 6 11 18 21 19 Inverse permutation vector: 16 12 17 18 9 5 19 11 7 13 2 20 4 14 8 10 6 15 21 23 1 22 0 3 Plot of (symmetrized) permuted matrix pattern: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 0: X X . . . . . . . . . . . . . . . X . . . . X . 1: X X X . . . . . . . . . . . . . . X . . . . X X 2: . X X . . . . . . . . . . . . . . . X . . X X X 3: . . . X X . . . . . . . . . . . . . . X X . . . 4: . . . X X X . . . . . . . . . . X . . X X . . . 5: . . . . X X . . . . . . . . X X X . . X . . . . 6: . . . . . . X . . X X X . . . . . . . . . . . . 7: . . . . . . . X X . . . X X . . . . . . . . . . 8: . . . . . . . X X X . X X X . . . . . . . . . . 9: . . . . . . X . X X X X . X . . . . . . . . . . 10: . . . . . . X . . X X X . . . . . . X . . X . . 11: . . . . . . X . X X X X . X . X . . X . . X . . 12: . . . . . . . X X . . . X X X X . . . . . . . . 13: . . . . . . . X X X . X X X X X . . . . . X . . 14: . . . . . X . . . . . . X X X X X . . . . . . . 15: . . . . . X . . . . . X X X X X X . . . . X . X 16: . . . . X X . . . . . . . . X X X . . X . X X X 17: X X . . . . . . . . . . . . . . . X . X X . X . 18: . . X . . . . . . . X X . . . . . . X . . X . X 19: . . . X X X . . . . . . . . . . X X . X X . X X 20: . . . X X . . . . . . . . . . . . X . X X . X . 21: . . X . . . . . . . X X . X . X X . X . . X . X 22: X X X . . . . . . . . . . . . . X X . X X . X X 23: . X X . . . . . . . . . . . . X X . X X . X X X |