Blame view
fvn_fnlib/dcbrt.f
1.19 KB
38581db0c git-svn-id: https... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
double precision function dcbrt (x) c june 1977 edition. w. fullerton, c3, los alamos scientific lab. double precision x, cbrt2(5), y, cbrtsq, d9pak, d1mach external d1mach, d9pak c data cbrt2(1) / 0.6299605249 4743658238 3605303639 11 d0 / data cbrt2(2) / 0.7937005259 8409973737 5852819636 15 d0 / data cbrt2(3) / 1.0 d0 / data cbrt2(4) / 1.2599210498 9487316476 7210607278 23 d0 / data cbrt2(5) / 1.5874010519 6819947475 1705639272 31 d0 / c data niter / 0 / c if (niter.eq.0) niter = 1.443*alog(-.106*alog(0.1*sngl(d1mach(3))) 1 ) + 1.0 c dcbrt = 0.d0 if (x.eq.0.d0) return c call d9upak (dabs(x), y, n) ixpnt = n/3 irem = n - 3*ixpnt + 3 c c the approximation below is a generalized chebyshev series converted c to polynomial form. the approx is nearly best in the sense of c relative error with 4.085 digits accuracy. c z = y dcbrt = .439581e0 + z*(.928549e0 + z*(-.512653e0 + z*.144586e0)) c do 10 iter=1,niter cbrtsq = dcbrt*dcbrt dcbrt = dcbrt + (y-dcbrt*cbrtsq)/(3.d0*cbrtsq) 10 continue c dcbrt = d9pak (cbrt2(irem)*dsign(dcbrt,x), ixpnt) return c end |