Blame view

fvn_integ/fvn_integ.f90 13.7 KB
b93026039   daniau   git-svn-id: https...
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
  module fvn_integ
  use fvn_common
  implicit none
  
  ! Gauss legendre
  interface fvn_gauss_legendre
      module procedure fvn_d_gauss_legendre
  end interface fvn_gauss_legendre
  
  ! Simple Gauss Legendre integration
  interface fvn_gl_integ
      module procedure fvn_d_gl_integ
  end interface fvn_gl_integ
  
  ! Adaptative Gauss Kronrod integration f(x)
  interface fvn_integ_1_gk
      module procedure fvn_d_integ_1_gk
  end interface fvn_integ_1_gk
  
  ! Adaptative Gauss Kronrod integration f(x,y)
  interface fvn_integ_2_gk
      module procedure fvn_d_integ_2_gk
  end interface fvn_integ_2_gk
  
  
  contains
  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  !
  !   Integration
  !
  !   Only double precision coded atm
  !
  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  
  
  subroutine fvn_d_gauss_legendre(n,qx,qw)
  !
  ! This routine compute the n Gauss Legendre abscissas and weights
  ! Adapted from Numerical Recipes routine gauleg
  !
  ! n (in) : number of points
  ! qx(out) : abscissas
  ! qw(out) : weights
  !
  implicit none
  double precision,parameter :: pi=3.141592653589793d0
  integer, intent(in) :: n
  double precision, intent(out) :: qx(n),qw(n)
  
  integer :: m,i,j
  double precision :: z,z1,p1,p2,p3,pp
  m=(n+1)/2
  do i=1,m
      z=cos(pi*(dble(i)-0.25d0)/(dble(n)+0.5d0))
  iloop:  do 
              p1=1.d0
              p2=0.d0
              do j=1,n
                  p3=p2
                  p2=p1
                  p1=((2.d0*dble(j)-1.d0)*z*p2-(dble(j)-1.d0)*p3)/dble(j)
              end do
              pp=dble(n)*(z*p1-p2)/(z*z-1.d0)
              z1=z
              z=z1-p1/pp
              if (dabs(z-z1)<=epsilon(z)) then
                  exit iloop
              end if
          end do iloop
      qx(i)=-z
      qx(n+1-i)=z
      qw(i)=2.d0/((1.d0-z*z)*pp*pp)
      qw(n+1-i)=qw(i)
  end do
  end subroutine
  
  
  
  subroutine fvn_d_gl_integ(f,a,b,n,res)
  !
  ! This is a simple non adaptative integration routine 
  ! using n gauss legendre abscissas and weights
  !
  !   f(in)   : the function to integrate
  !   a(in)   : lower bound
  !   b(in)   : higher bound
  !   n(in)   : number of gauss legendre pairs
  !   res(out): the evaluation of the integral
  !
  double precision,external :: f
  double precision, intent(in) :: a,b
  integer, intent(in):: n
  double precision, intent(out) :: res
  
  double precision, allocatable :: qx(:),qw(:)
  double precision :: xm,xr
  integer :: i
  
  ! First compute n gauss legendre abs and weight
  allocate(qx(n))
  allocate(qw(n))
  call fvn_d_gauss_legendre(n,qx,qw)
  
  xm=0.5d0*(b+a)
  xr=0.5d0*(b-a)
  
  res=0.d0
  
  do i=1,n
      res=res+qw(i)*f(xm+xr*qx(i))
  end do
  
  res=xr*res
  
  deallocate(qw)
  deallocate(qx)
  
  end subroutine
  
  !!!!!!!!!!!!!!!!!!!!!!!!
  !
  ! Simple and double adaptative Gauss Kronrod integration based on
  ! a modified version of quadpack ( http://www.netlib.org/quadpack
  !
  ! Common parameters :
  !
  !       key (in)
  !       epsabs
  !       epsrel
  !
  !
  !!!!!!!!!!!!!!!!!!!!!!!!
  
  subroutine fvn_d_integ_1_gk(f,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
  !
  ! Evaluate the integral of function f(x) between a and b
  !
  ! f(in) : the function
  ! a(in) : lower bound
  ! b(in) : higher bound
  ! epsabs(in) : desired absolute error
  ! epsrel(in) : desired relative error
  ! key(in) : gauss kronrod rule
  !                     1:   7 - 15 points
  !                     2:  10 - 21 points
  !                     3:  15 - 31 points
  !                     4:  20 - 41 points
  !                     5:  25 - 51 points
  !                     6:  30 - 61 points
  !
  ! limit(in) : maximum number of subintervals in the partition of the 
  !               given integration interval (a,b). A value of 500 will give the same
  !               behaviour as the imsl routine dqdag
  !
  ! res(out) : estimated integral value
  ! abserr(out) : estimated absolute error
  ! ier(out) : error flag from quadpack routines
  !               0 : no error
  !               1 : maximum number of subdivisions allowed
  !                   has been achieved. one can allow more
  !                   subdivisions by increasing the value of
  !                   limit (and taking the according dimension
  !                   adjustments into account). however, if
  !                   this yield no improvement it is advised
  !                   to analyze the integrand in order to
  !                   determine the integration difficulaties.
  !                   if the position of a local difficulty can
  !                   be determined (i.e.singularity,
  !                   discontinuity within the interval) one
  !                   will probably gain from splitting up the
  !                   interval at this point and calling the
  !                   integrator on the subranges. if possible,
  !                   an appropriate special-purpose integrator
  !                   should be used which is designed for
  !                   handling the type of difficulty involved.
  !               2 : the occurrence of roundoff error is
  !                   detected, which prevents the requested
  !                   tolerance from being achieved.
  !               3 : extremely bad integrand behaviour occurs
  !                   at some points of the integration
  !                   interval.
  !               6 : the input is invalid, because
  !                   (epsabs.le.0 and
  !                   epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
  !                   or limit.lt.1 or lenw.lt.limit*4.
  !                   result, abserr, neval, last are set
  !                   to zero.
  !                   except when lenw is invalid, iwork(1),
  !                   work(limit*2+1) and work(limit*3+1) are
  !                   set to zero, work(1) is set to a and
  !                   work(limit+1) to b.
  
  implicit none
  double precision, external :: f
  double precision, intent(in) :: a,b,epsabs,epsrel
  integer, intent(in) :: key
  integer, intent(in),optional :: limit
  double precision, intent(out) :: res,abserr
  integer, intent(out) :: ier
  
  double precision, allocatable :: work(:)
  integer, allocatable :: iwork(:)
  integer :: lenw,neval,last
  integer :: limitw
  
  ! imsl value for limit is 500
  limitw=500
  if (present(limit)) limitw=limit
  
  lenw=limitw*4
  
  allocate(iwork(limitw))
  allocate(work(lenw))
  
  call dqag(f,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limitw,lenw,last,iwork,work)
  
  deallocate(work)
  deallocate(iwork)
  
  end subroutine
  
  
  
  subroutine fvn_d_integ_2_gk(f,a,b,g,h,epsabs,epsrel,key,res,abserr,ier,limit)
  !
  ! Evaluate the double integral of function f(x,y) for x between a and b and y between g(x) and h(x)
  !
  ! f(in) : the function
  ! a(in) : lower bound
  ! b(in) : higher bound
  ! g(in) : external function describing lower bound for y
  ! h(in) : external function describing higher bound for y
  ! epsabs(in) : desired absolute error
  ! epsrel(in) : desired relative error
  ! key(in) : gauss kronrod rule
  !                     1:   7 - 15 points
  !                     2:  10 - 21 points
  !                     3:  15 - 31 points
  !                     4:  20 - 41 points
  !                     5:  25 - 51 points
  !                     6:  30 - 61 points
  !
  ! limit(in) : maximum number of subintervals in the partition of the 
  !               given integration interval (a,b). A value of 500 will give the same
  !               behaviour as the imsl routine dqdag
  !
  ! res(out) : estimated integral value
  ! abserr(out) : estimated absolute error
  ! ier(out) : error flag from quadpack routines
  !               0 : no error
  !               1 : maximum number of subdivisions allowed
  !                   has been achieved. one can allow more
  !                   subdivisions by increasing the value of
  !                   limit (and taking the according dimension
  !                   adjustments into account). however, if
  !                   this yield no improvement it is advised
  !                   to analyze the integrand in order to
  !                   determine the integration difficulaties.
  !                   if the position of a local difficulty can
  !                   be determined (i.e.singularity,
  !                   discontinuity within the interval) one
  !                   will probably gain from splitting up the
  !                   interval at this point and calling the
  !                   integrator on the subranges. if possible,
  !                   an appropriate special-purpose integrator
  !                   should be used which is designed for
  !                   handling the type of difficulty involved.
  !               2 : the occurrence of roundoff error is
  !                   detected, which prevents the requested
  !                   tolerance from being achieved.
  !               3 : extremely bad integrand behaviour occurs
  !                   at some points of the integration
  !                   interval.
  !               6 : the input is invalid, because
  !                   (epsabs.le.0 and
  !                   epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
  !                   or limit.lt.1 or lenw.lt.limit*4.
  !                   result, abserr, neval, last are set
  !                   to zero.
  !                   except when lenw is invalid, iwork(1),
  !                   work(limit*2+1) and work(limit*3+1) are
  !                   set to zero, work(1) is set to a and
  !                   work(limit+1) to b.
  
  implicit none
  double precision, external:: f,g,h
  double precision, intent(in) :: a,b,epsabs,epsrel
  integer, intent(in) :: key
  integer, intent(in), optional :: limit
  integer, intent(out) :: ier
  double precision, intent(out) :: res,abserr
  
  
  double precision, allocatable :: work(:)
  integer :: limitw
  integer, allocatable :: iwork(:)
  integer :: lenw,neval,last
  
  ! imsl value for limit is 500
  limitw=500
  if (present(limit)) limitw=limit
  
  lenw=limitw*4
  allocate(work(lenw))
  allocate(iwork(limitw))
  
  call dqag_2d_outer(f,a,b,g,h,epsabs,epsrel,key,res,abserr,neval,ier,limitw,lenw,last,iwork,work)
  
  deallocate(iwork)
  deallocate(work)
  end subroutine
  
  
  
  subroutine fvn_d_integ_2_inner_gk(f,x,a,b,epsabs,epsrel,key,res,abserr,ier,limit)
  !
  ! Evaluate the single integral of function f(x,y) for y between a and b with a
  ! given x value
  !
  ! This function is used for the evaluation of the double integral fvn_d_integ_2_gk
  !
  ! f(in) : the function
  ! x(in) : x
  ! a(in) : lower bound
  ! b(in) : higher bound
  ! epsabs(in) : desired absolute error
  ! epsrel(in) : desired relative error
  ! key(in) : gauss kronrod rule
  !                     1:   7 - 15 points
  !                     2:  10 - 21 points
  !                     3:  15 - 31 points
  !                     4:  20 - 41 points
  !                     5:  25 - 51 points
  !                     6:  30 - 61 points
  !
  ! limit(in) : maximum number of subintervals in the partition of the 
  !               given integration interval (a,b). A value of 500 will give the same
  !               behaviour as the imsl routine dqdag
  !
  ! res(out) : estimated integral value
  ! abserr(out) : estimated absolute error
  ! ier(out) : error flag from quadpack routines
  !               0 : no error
  !               1 : maximum number of subdivisions allowed
  !                   has been achieved. one can allow more
  !                   subdivisions by increasing the value of
  !                   limit (and taking the according dimension
  !                   adjustments into account). however, if
  !                   this yield no improvement it is advised
  !                   to analyze the integrand in order to
  !                   determine the integration difficulaties.
  !                   if the position of a local difficulty can
  !                   be determined (i.e.singularity,
  !                   discontinuity within the interval) one
  !                   will probably gain from splitting up the
  !                   interval at this point and calling the
  !                   integrator on the subranges. if possible,
  !                   an appropriate special-purpose integrator
  !                   should be used which is designed for
  !                   handling the type of difficulty involved.
  !               2 : the occurrence of roundoff error is
  !                   detected, which prevents the requested
  !                   tolerance from being achieved.
  !               3 : extremely bad integrand behaviour occurs
  !                   at some points of the integration
  !                   interval.
  !               6 : the input is invalid, because
  !                   (epsabs.le.0 and
  !                   epsrel.lt.max(50*rel.mach.acc.,0.5d-28))
  !                   or limit.lt.1 or lenw.lt.limit*4.
  !                   result, abserr, neval, last are set
  !                   to zero.
  !                   except when lenw is invalid, iwork(1),
  !                   work(limit*2+1) and work(limit*3+1) are
  !                   set to zero, work(1) is set to a and
  !                   work(limit+1) to b.
  
  implicit none
  double precision, external:: f
  double precision, intent(in) :: x,a,b,epsabs,epsrel
  integer, intent(in) :: key
  integer, intent(in),optional :: limit
  integer, intent(out) :: ier
  double precision, intent(out) :: res,abserr
  
  
  double precision, allocatable :: work(:)
  integer :: limitw
  integer, allocatable :: iwork(:)
  integer :: lenw,neval,last
  
  ! imsl value for limit is 500
  limitw=500
  if (present(limit)) limitw=limit
  
  lenw=limitw*4
  allocate(work(lenw))
  allocate(iwork(limitw))
  
  call dqag_2d_inner(f,x,a,b,epsabs,epsrel,key,res,abserr,neval,ier,limitw,lenw,last,iwork,work)
  
  deallocate(iwork)
  deallocate(work)
  end subroutine
  
  
  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  ! Include the modified quadpack files
  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  include "dqag_2d_inner.f"
  include "dqk15_2d_inner.f"
  include "dqk31_2d_outer.f"
  include "dqk31_2d_inner.f"
  include "dqage.f"
  include "dqk15.f"
  include "dqk21.f"
  include "dqk31.f"
  include "dqk41.f"
  include "dqk51.f"
  include "dqk61.f"
  include "dqk41_2d_outer.f"
  include "dqk41_2d_inner.f"
  include "dqag_2d_outer.f"
  include "dqpsrt.f"
  include "dqag.f"
  include "dqage_2d_outer.f"
  include "dqage_2d_inner.f"
  include "dqk51_2d_outer.f"
  include "dqk51_2d_inner.f"
  include "dqk61_2d_outer.f"
  include "dqk21_2d_outer.f"
  include "dqk61_2d_inner.f"
  include "dqk21_2d_inner.f"
  include "dqk15_2d_outer.f"
  
  
  end module fvn_integ