Blame view
220222_final/GW/rtl-sdr/src/tuner_e4k.c
24 KB
35833671e
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 |
/* * Elonics E4000 tuner driver * * (C) 2011-2012 by Harald Welte <laforge@gnumonks.org> * (C) 2012 by Sylvain Munaut <tnt@246tNt.com> * (C) 2012 by Hoernchen <la@tfc-server.de> * * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <limits.h> #include <stdint.h> #include <errno.h> #include <string.h> #include <stdio.h> #include <reg_field.h> #include <tuner_e4k.h> #include <rtlsdr_i2c.h> #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) /* If this is defined, the limits are somewhat relaxed compared to what the * vendor claims is possible */ #define OUT_OF_SPEC #define MHZ(x) ((x)*1000*1000) #define KHZ(x) ((x)*1000) uint32_t unsigned_delta(uint32_t a, uint32_t b) { if (a > b) return a - b; else return b - a; } /* look-up table bit-width -> mask */ static const uint8_t width2mask[] = { 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff }; /*********************************************************************** * Register Access */ /*! \brief Write a register of the tuner chip * \param[in] e4k reference to the tuner * \param[in] reg number of the register * \param[in] val value to be written * \returns 0 on success, negative in case of error */ static int e4k_reg_write(struct e4k_state *e4k, uint8_t reg, uint8_t val) { int r; uint8_t data[2]; data[0] = reg; data[1] = val; r = rtlsdr_i2c_write_fn(e4k->rtl_dev, e4k->i2c_addr, data, 2); return r == 2 ? 0 : -1; } /*! \brief Read a register of the tuner chip * \param[in] e4k reference to the tuner * \param[in] reg number of the register * \returns positive 8bit register contents on success, negative in case of error */ static int e4k_reg_read(struct e4k_state *e4k, uint8_t reg) { uint8_t data = reg; if (rtlsdr_i2c_write_fn(e4k->rtl_dev, e4k->i2c_addr, &data, 1) < 1) return -1; if (rtlsdr_i2c_read_fn(e4k->rtl_dev, e4k->i2c_addr, &data, 1) < 1) return -1; return data; } /*! \brief Set or clear some (masked) bits inside a register * \param[in] e4k reference to the tuner * \param[in] reg number of the register * \param[in] mask bit-mask of the value * \param[in] val data value to be written to register * \returns 0 on success, negative in case of error */ static int e4k_reg_set_mask(struct e4k_state *e4k, uint8_t reg, uint8_t mask, uint8_t val) { uint8_t tmp = e4k_reg_read(e4k, reg); if ((tmp & mask) == val) return 0; return e4k_reg_write(e4k, reg, (tmp & ~mask) | (val & mask)); } /*! \brief Write a given field inside a register * \param[in] e4k reference to the tuner * \param[in] field structure describing the field * \param[in] val value to be written * \returns 0 on success, negative in case of error */ static int e4k_field_write(struct e4k_state *e4k, const struct reg_field *field, uint8_t val) { int rc; uint8_t mask; rc = e4k_reg_read(e4k, field->reg); if (rc < 0) return rc; mask = width2mask[field->width] << field->shift; return e4k_reg_set_mask(e4k, field->reg, mask, val << field->shift); } /*! \brief Read a given field inside a register * \param[in] e4k reference to the tuner * \param[in] field structure describing the field * \returns positive value of the field, negative in case of error */ static int e4k_field_read(struct e4k_state *e4k, const struct reg_field *field) { int rc; rc = e4k_reg_read(e4k, field->reg); if (rc < 0) return rc; rc = (rc >> field->shift) & width2mask[field->width]; return rc; } /*********************************************************************** * Filter Control */ static const uint32_t rf_filt_center_uhf[] = { MHZ(360), MHZ(380), MHZ(405), MHZ(425), MHZ(450), MHZ(475), MHZ(505), MHZ(540), MHZ(575), MHZ(615), MHZ(670), MHZ(720), MHZ(760), MHZ(840), MHZ(890), MHZ(970) }; static const uint32_t rf_filt_center_l[] = { MHZ(1300), MHZ(1320), MHZ(1360), MHZ(1410), MHZ(1445), MHZ(1460), MHZ(1490), MHZ(1530), MHZ(1560), MHZ(1590), MHZ(1640), MHZ(1660), MHZ(1680), MHZ(1700), MHZ(1720), MHZ(1750) }; static int closest_arr_idx(const uint32_t *arr, unsigned int arr_size, uint32_t freq) { unsigned int i, bi = 0; uint32_t best_delta = 0xffffffff; /* iterate over the array containing a list of the center * frequencies, selecting the closest one */ for (i = 0; i < arr_size; i++) { uint32_t delta = unsigned_delta(freq, arr[i]); if (delta < best_delta) { best_delta = delta; bi = i; } } return bi; } /* return 4-bit index as to which RF filter to select */ static int choose_rf_filter(enum e4k_band band, uint32_t freq) { int rc; switch (band) { case E4K_BAND_VHF2: case E4K_BAND_VHF3: rc = 0; break; case E4K_BAND_UHF: rc = closest_arr_idx(rf_filt_center_uhf, ARRAY_SIZE(rf_filt_center_uhf), freq); break; case E4K_BAND_L: rc = closest_arr_idx(rf_filt_center_l, ARRAY_SIZE(rf_filt_center_l), freq); break; default: rc = -EINVAL; break; } return rc; } /* \brief Automatically select apropriate RF filter based on e4k state */ int e4k_rf_filter_set(struct e4k_state *e4k) { int rc; rc = choose_rf_filter(e4k->band, e4k->vco.flo); if (rc < 0) return rc; return e4k_reg_set_mask(e4k, E4K_REG_FILT1, 0xF, rc); } /* Mixer Filter */ static const uint32_t mix_filter_bw[] = { KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), KHZ(27000), KHZ(4600), KHZ(4200), KHZ(3800), KHZ(3400), KHZ(3300), KHZ(2700), KHZ(2300), KHZ(1900) }; /* IF RC Filter */ static const uint32_t ifrc_filter_bw[] = { KHZ(21400), KHZ(21000), KHZ(17600), KHZ(14700), KHZ(12400), KHZ(10600), KHZ(9000), KHZ(7700), KHZ(6400), KHZ(5300), KHZ(4400), KHZ(3400), KHZ(2600), KHZ(1800), KHZ(1200), KHZ(1000) }; /* IF Channel Filter */ static const uint32_t ifch_filter_bw[] = { KHZ(5500), KHZ(5300), KHZ(5000), KHZ(4800), KHZ(4600), KHZ(4400), KHZ(4300), KHZ(4100), KHZ(3900), KHZ(3800), KHZ(3700), KHZ(3600), KHZ(3400), KHZ(3300), KHZ(3200), KHZ(3100), KHZ(3000), KHZ(2950), KHZ(2900), KHZ(2800), KHZ(2750), KHZ(2700), KHZ(2600), KHZ(2550), KHZ(2500), KHZ(2450), KHZ(2400), KHZ(2300), KHZ(2280), KHZ(2240), KHZ(2200), KHZ(2150) }; static const uint32_t *if_filter_bw[] = { mix_filter_bw, ifch_filter_bw, ifrc_filter_bw, }; static const uint32_t if_filter_bw_len[] = { ARRAY_SIZE(mix_filter_bw), ARRAY_SIZE(ifch_filter_bw), ARRAY_SIZE(ifrc_filter_bw), }; static const struct reg_field if_filter_fields[] = { { E4K_REG_FILT2, 4, 4, }, { E4K_REG_FILT3, 0, 5, }, { E4K_REG_FILT2, 0, 4, } }; static int find_if_bw(enum e4k_if_filter filter, uint32_t bw) { if (filter >= ARRAY_SIZE(if_filter_bw)) return -EINVAL; return closest_arr_idx(if_filter_bw[filter], if_filter_bw_len[filter], bw); } /*! \brief Set the filter band-width of any of the IF filters * \param[in] e4k reference to the tuner chip * \param[in] filter filter to be configured * \param[in] bandwidth bandwidth to be configured * \returns positive actual filter band-width, negative in case of error */ int e4k_if_filter_bw_set(struct e4k_state *e4k, enum e4k_if_filter filter, uint32_t bandwidth) { int bw_idx; const struct reg_field *field; if (filter >= ARRAY_SIZE(if_filter_bw)) return -EINVAL; bw_idx = find_if_bw(filter, bandwidth); field = &if_filter_fields[filter]; return e4k_field_write(e4k, field, bw_idx); } /*! \brief Enables / Disables the channel filter * \param[in] e4k reference to the tuner chip * \param[in] on 1=filter enabled, 0=filter disabled * \returns 0 success, negative errors */ int e4k_if_filter_chan_enable(struct e4k_state *e4k, int on) { return e4k_reg_set_mask(e4k, E4K_REG_FILT3, E4K_FILT3_DISABLE, on ? 0 : E4K_FILT3_DISABLE); } int e4k_if_filter_bw_get(struct e4k_state *e4k, enum e4k_if_filter filter) { const uint32_t *arr; int rc; const struct reg_field *field; if (filter >= ARRAY_SIZE(if_filter_bw)) return -EINVAL; field = &if_filter_fields[filter]; rc = e4k_field_read(e4k, field); if (rc < 0) return rc; arr = if_filter_bw[filter]; return arr[rc]; } /*********************************************************************** * Frequency Control */ #define E4K_FVCO_MIN_KHZ 2600000 /* 2.6 GHz */ #define E4K_FVCO_MAX_KHZ 3900000 /* 3.9 GHz */ #define E4K_PLL_Y 65536 #ifdef OUT_OF_SPEC #define E4K_FLO_MIN_MHZ 50 #define E4K_FLO_MAX_MHZ 2200UL #else #define E4K_FLO_MIN_MHZ 64 #define E4K_FLO_MAX_MHZ 1700 #endif struct pll_settings { uint32_t freq; uint8_t reg_synth7; uint8_t mult; }; static const struct pll_settings pll_vars[] = { {KHZ(72400), (1 << 3) | 7, 48}, {KHZ(81200), (1 << 3) | 6, 40}, {KHZ(108300), (1 << 3) | 5, 32}, {KHZ(162500), (1 << 3) | 4, 24}, {KHZ(216600), (1 << 3) | 3, 16}, {KHZ(325000), (1 << 3) | 2, 12}, {KHZ(350000), (1 << 3) | 1, 8}, {KHZ(432000), (0 << 3) | 3, 8}, {KHZ(667000), (0 << 3) | 2, 6}, {KHZ(1200000), (0 << 3) | 1, 4} }; static int is_fvco_valid(uint32_t fvco_z) { /* check if the resulting fosc is valid */ if (fvco_z/1000 < E4K_FVCO_MIN_KHZ || fvco_z/1000 > E4K_FVCO_MAX_KHZ) { fprintf(stderr, "[E4K] Fvco %u invalid ", fvco_z); return 0; } return 1; } static int is_fosc_valid(uint32_t fosc) { if (fosc < MHZ(16) || fosc > MHZ(30)) { fprintf(stderr, "[E4K] Fosc %u invalid ", fosc); return 0; } return 1; } static int is_z_valid(uint32_t z) { if (z > 255) { fprintf(stderr, "[E4K] Z %u invalid ", z); return 0; } return 1; } /*! \brief Determine if 3-phase mixing shall be used or not */ static int use_3ph_mixing(uint32_t flo) { /* this is a magic number somewhre between VHF and UHF */ if (flo < MHZ(350)) return 1; return 0; } /* \brief compute Fvco based on Fosc, Z and X * \returns positive value (Fvco in Hz), 0 in case of error */ static uint64_t compute_fvco(uint32_t f_osc, uint8_t z, uint16_t x) { uint64_t fvco_z, fvco_x, fvco; /* We use the following transformation in order to * handle the fractional part with integer arithmetic: * Fvco = Fosc * (Z + X/Y) <=> Fvco = Fosc * Z + (Fosc * X)/Y * This avoids X/Y = 0. However, then we would overflow a 32bit * integer, as we cannot hold e.g. 26 MHz * 65536 either. */ fvco_z = (uint64_t)f_osc * z; #if 0 if (!is_fvco_valid(fvco_z)) return 0; #endif fvco_x = ((uint64_t)f_osc * x) / E4K_PLL_Y; fvco = fvco_z + fvco_x; return fvco; } static uint32_t compute_flo(uint32_t f_osc, uint8_t z, uint16_t x, uint8_t r) { uint64_t fvco = compute_fvco(f_osc, z, x); if (fvco == 0) return -EINVAL; return fvco / r; } static int e4k_band_set(struct e4k_state *e4k, enum e4k_band band) { int rc; switch (band) { case E4K_BAND_VHF2: case E4K_BAND_VHF3: case E4K_BAND_UHF: e4k_reg_write(e4k, E4K_REG_BIAS, 3); break; case E4K_BAND_L: e4k_reg_write(e4k, E4K_REG_BIAS, 0); break; } /* workaround: if we don't reset this register before writing to it, * we get a gap between 325-350 MHz */ rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, 0); rc = e4k_reg_set_mask(e4k, E4K_REG_SYNTH1, 0x06, band << 1); if (rc >= 0) e4k->band = band; return rc; } /*! \brief Compute PLL parameters for givent target frequency * \param[out] oscp Oscillator parameters, if computation successful * \param[in] fosc Clock input frequency applied to the chip (Hz) * \param[in] intended_flo target tuning frequency (Hz) * \returns actual PLL frequency, as close as possible to intended_flo, * 0 in case of error */ uint32_t e4k_compute_pll_params(struct e4k_pll_params *oscp, uint32_t fosc, uint32_t intended_flo) { uint32_t i; uint8_t r = 2; uint64_t intended_fvco, remainder; uint64_t z = 0; uint32_t x; int flo; int three_phase_mixing = 0; oscp->r_idx = 0; if (!is_fosc_valid(fosc)) return 0; for(i = 0; i < ARRAY_SIZE(pll_vars); ++i) { if(intended_flo < pll_vars[i].freq) { three_phase_mixing = (pll_vars[i].reg_synth7 & 0x08) ? 1 : 0; oscp->r_idx = pll_vars[i].reg_synth7; r = pll_vars[i].mult; break; } } //fprintf(stderr, "[E4K] Fint=%u, R=%u ", intended_flo, r); /* flo(max) = 1700MHz, R(max) = 48, we need 64bit! */ intended_fvco = (uint64_t)intended_flo * r; /* compute integral component of multiplier */ z = intended_fvco / fosc; /* compute fractional part. this will not overflow, * as fosc(max) = 30MHz and z(max) = 255 */ remainder = intended_fvco - (fosc * z); /* remainder(max) = 30MHz, E4K_PLL_Y = 65536 -> 64bit! */ x = (remainder * E4K_PLL_Y) / fosc; /* x(max) as result of this computation is 65536 */ flo = compute_flo(fosc, z, x, r); oscp->fosc = fosc; oscp->flo = flo; oscp->intended_flo = intended_flo; oscp->r = r; // oscp->r_idx = pll_vars[i].reg_synth7 & 0x0; oscp->threephase = three_phase_mixing; oscp->x = x; oscp->z = z; return flo; } int e4k_tune_params(struct e4k_state *e4k, struct e4k_pll_params *p) { /* program R + 3phase/2phase */ e4k_reg_write(e4k, E4K_REG_SYNTH7, p->r_idx); /* program Z */ e4k_reg_write(e4k, E4K_REG_SYNTH3, p->z); /* program X */ e4k_reg_write(e4k, E4K_REG_SYNTH4, p->x & 0xff); e4k_reg_write(e4k, E4K_REG_SYNTH5, p->x >> 8); /* we're in auto calibration mode, so there's no need to trigger it */ memcpy(&e4k->vco, p, sizeof(e4k->vco)); /* set the band */ if (e4k->vco.flo < MHZ(140)) e4k_band_set(e4k, E4K_BAND_VHF2); else if (e4k->vco.flo < MHZ(350)) e4k_band_set(e4k, E4K_BAND_VHF3); else if (e4k->vco.flo < MHZ(1135)) e4k_band_set(e4k, E4K_BAND_UHF); else e4k_band_set(e4k, E4K_BAND_L); /* select and set proper RF filter */ e4k_rf_filter_set(e4k); return e4k->vco.flo; } /*! \brief High-level tuning API, just specify frquency * * This function will compute matching PLL parameters, program them into the * hardware and set the band as well as RF filter. * * \param[in] e4k reference to tuner * \param[in] freq frequency in Hz * \returns actual tuned frequency, negative in case of error */ int e4k_tune_freq(struct e4k_state *e4k, uint32_t freq) { uint32_t rc; struct e4k_pll_params p; /* determine PLL parameters */ rc = e4k_compute_pll_params(&p, e4k->vco.fosc, freq); if (!rc) return -EINVAL; /* actually tune to those parameters */ rc = e4k_tune_params(e4k, &p); /* check PLL lock */ rc = e4k_reg_read(e4k, E4K_REG_SYNTH1); if (!(rc & 0x01)) { fprintf(stderr, "[E4K] PLL not locked for %u Hz! ", freq); return -1; } return 0; } /*********************************************************************** * Gain Control */ static const int8_t if_stage1_gain[] = { -3, 6 }; static const int8_t if_stage23_gain[] = { 0, 3, 6, 9 }; static const int8_t if_stage4_gain[] = { 0, 1, 2, 2 }; static const int8_t if_stage56_gain[] = { 3, 6, 9, 12, 15, 15, 15, 15 }; static const int8_t *if_stage_gain[] = { 0, if_stage1_gain, if_stage23_gain, if_stage23_gain, if_stage4_gain, if_stage56_gain, if_stage56_gain }; static const uint8_t if_stage_gain_len[] = { 0, ARRAY_SIZE(if_stage1_gain), ARRAY_SIZE(if_stage23_gain), ARRAY_SIZE(if_stage23_gain), ARRAY_SIZE(if_stage4_gain), ARRAY_SIZE(if_stage56_gain), ARRAY_SIZE(if_stage56_gain) }; static const struct reg_field if_stage_gain_regs[] = { { 0, 0, 0 }, { E4K_REG_GAIN3, 0, 1 }, { E4K_REG_GAIN3, 1, 2 }, { E4K_REG_GAIN3, 3, 2 }, { E4K_REG_GAIN3, 5, 2 }, { E4K_REG_GAIN4, 0, 3 }, { E4K_REG_GAIN4, 3, 3 } }; static const int32_t lnagain[] = { -50, 0, -25, 1, 0, 4, 25, 5, 50, 6, 75, 7, 100, 8, 125, 9, 150, 10, 175, 11, 200, 12, 250, 13, 300, 14, }; static const int32_t enhgain[] = { 10, 30, 50, 70 }; int e4k_set_lna_gain(struct e4k_state *e4k, int32_t gain) { uint32_t i; for(i = 0; i < ARRAY_SIZE(lnagain)/2; ++i) { if(lnagain[i*2] == gain) { e4k_reg_set_mask(e4k, E4K_REG_GAIN1, 0xf, lnagain[i*2+1]); return gain; } } return -EINVAL; } int e4k_set_enh_gain(struct e4k_state *e4k, int32_t gain) { uint32_t i; for(i = 0; i < ARRAY_SIZE(enhgain); ++i) { if(enhgain[i] == gain) { e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, E4K_AGC11_LNA_GAIN_ENH | (i << 1)); return gain; } } e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0); /* special case: 0 = off*/ if(0 == gain) return 0; else return -EINVAL; } int e4k_enable_manual_gain(struct e4k_state *e4k, uint8_t manual) { if (manual) { /* Set LNA mode to manual */ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL); /* Set Mixer Gain Control to manual */ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0); } else { /* Set LNA mode to auto */ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_IF_SERIAL_LNA_AUTON); /* Set Mixer Gain Control to auto */ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 1); e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, 0); } return 0; } static int find_stage_gain(uint8_t stage, int8_t val) { const int8_t *arr; int i; if (stage >= ARRAY_SIZE(if_stage_gain)) return -EINVAL; arr = if_stage_gain[stage]; for (i = 0; i < if_stage_gain_len[stage]; i++) { if (arr[i] == val) return i; } return -EINVAL; } /*! \brief Set the gain of one of the IF gain stages * \param [e4k] handle to the tuner chip * \param [stage] number of the stage (1..6) * \param [value] gain value in dB * \returns 0 on success, negative in case of error */ int e4k_if_gain_set(struct e4k_state *e4k, uint8_t stage, int8_t value) { int rc; uint8_t mask; const struct reg_field *field; rc = find_stage_gain(stage, value); if (rc < 0) return rc; /* compute the bit-mask for the given gain field */ field = &if_stage_gain_regs[stage]; mask = width2mask[field->width] << field->shift; return e4k_reg_set_mask(e4k, field->reg, mask, rc << field->shift); } int e4k_mixer_gain_set(struct e4k_state *e4k, int8_t value) { uint8_t bit; switch (value) { case 4: bit = 0; break; case 12: bit = 1; break; default: return -EINVAL; } return e4k_reg_set_mask(e4k, E4K_REG_GAIN2, 1, bit); } int e4k_commonmode_set(struct e4k_state *e4k, int8_t value) { if(value < 0) return -EINVAL; else if(value > 7) return -EINVAL; return e4k_reg_set_mask(e4k, E4K_REG_DC7, 7, value); } /*********************************************************************** * DC Offset */ int e4k_manual_dc_offset(struct e4k_state *e4k, int8_t iofs, int8_t irange, int8_t qofs, int8_t qrange) { int res; if((iofs < 0x00) || (iofs > 0x3f)) return -EINVAL; if((irange < 0x00) || (irange > 0x03)) return -EINVAL; if((qofs < 0x00) || (qofs > 0x3f)) return -EINVAL; if((qrange < 0x00) || (qrange > 0x03)) return -EINVAL; res = e4k_reg_set_mask(e4k, E4K_REG_DC2, 0x3f, iofs); if(res < 0) return res; res = e4k_reg_set_mask(e4k, E4K_REG_DC3, 0x3f, qofs); if(res < 0) return res; res = e4k_reg_set_mask(e4k, E4K_REG_DC4, 0x33, (qrange << 4) | irange); return res; } /*! \brief Perform a DC offset calibration right now * \param [e4k] handle to the tuner chip */ int e4k_dc_offset_calibrate(struct e4k_state *e4k) { /* make sure the DC range detector is enabled */ e4k_reg_set_mask(e4k, E4K_REG_DC5, E4K_DC5_RANGE_DET_EN, E4K_DC5_RANGE_DET_EN); return e4k_reg_write(e4k, E4K_REG_DC1, 0x01); } static const int8_t if_gains_max[] = { 0, 6, 9, 9, 2, 15, 15 }; struct gain_comb { int8_t mixer_gain; int8_t if1_gain; uint8_t reg; }; static const struct gain_comb dc_gain_comb[] = { { 4, -3, 0x50 }, { 4, 6, 0x51 }, { 12, -3, 0x52 }, { 12, 6, 0x53 }, }; #define TO_LUT(offset, range) (offset | (range << 6)) int e4k_dc_offset_gen_table(struct e4k_state *e4k) { uint32_t i; /* FIXME: read ont current gain values and write them back * before returning to the caller */ /* disable auto mixer gain */ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0); /* set LNA/IF gain to full manual */ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL); /* set all 'other' gains to maximum */ for (i = 2; i <= 6; i++) e4k_if_gain_set(e4k, i, if_gains_max[i]); /* iterate over all mixer + if_stage_1 gain combinations */ for (i = 0; i < ARRAY_SIZE(dc_gain_comb); i++) { uint8_t offs_i, offs_q, range, range_i, range_q; /* set the combination of mixer / if1 gain */ e4k_mixer_gain_set(e4k, dc_gain_comb[i].mixer_gain); e4k_if_gain_set(e4k, 1, dc_gain_comb[i].if1_gain); /* perform actual calibration */ e4k_dc_offset_calibrate(e4k); /* extract I/Q offset and range values */ offs_i = e4k_reg_read(e4k, E4K_REG_DC2) & 0x3f; offs_q = e4k_reg_read(e4k, E4K_REG_DC3) & 0x3f; range = e4k_reg_read(e4k, E4K_REG_DC4); range_i = range & 0x3; range_q = (range >> 4) & 0x3; fprintf(stderr, "[E4K] Table %u I=%u/%u, Q=%u/%u ", i, range_i, offs_i, range_q, offs_q); /* write into the table */ e4k_reg_write(e4k, dc_gain_comb[i].reg, TO_LUT(offs_q, range_q)); e4k_reg_write(e4k, dc_gain_comb[i].reg + 0x10, TO_LUT(offs_i, range_i)); } return 0; } /*********************************************************************** * Standby */ /*! \brief Enable/disable standby mode */ int e4k_standby(struct e4k_state *e4k, int enable) { e4k_reg_set_mask(e4k, E4K_REG_MASTER1, E4K_MASTER1_NORM_STBY, enable ? 0 : E4K_MASTER1_NORM_STBY); return 0; } /*********************************************************************** * Initialization */ static int magic_init(struct e4k_state *e4k) { e4k_reg_write(e4k, 0x7e, 0x01); e4k_reg_write(e4k, 0x7f, 0xfe); e4k_reg_write(e4k, 0x82, 0x00); e4k_reg_write(e4k, 0x86, 0x50); /* polarity A */ e4k_reg_write(e4k, 0x87, 0x20); e4k_reg_write(e4k, 0x88, 0x01); e4k_reg_write(e4k, 0x9f, 0x7f); e4k_reg_write(e4k, 0xa0, 0x07); return 0; } /*! \brief Initialize the E4K tuner */ int e4k_init(struct e4k_state *e4k) { /* make a dummy i2c read or write command, will not be ACKed! */ e4k_reg_read(e4k, 0); /* Make sure we reset everything and clear POR indicator */ e4k_reg_write(e4k, E4K_REG_MASTER1, E4K_MASTER1_RESET | E4K_MASTER1_NORM_STBY | E4K_MASTER1_POR_DET ); /* Configure clock input */ e4k_reg_write(e4k, E4K_REG_CLK_INP, 0x00); /* Disable clock output */ e4k_reg_write(e4k, E4K_REG_REF_CLK, 0x00); e4k_reg_write(e4k, E4K_REG_CLKOUT_PWDN, 0x96); /* Write some magic values into registers */ magic_init(e4k); #if 0 /* Set common mode voltage a bit higher for more margin 850 mv */ e4k_commonmode_set(e4k, 4); /* Initialize DC offset lookup tables */ e4k_dc_offset_gen_table(e4k); /* Enable time variant DC correction */ e4k_reg_write(e4k, E4K_REG_DCTIME1, 0x01); e4k_reg_write(e4k, E4K_REG_DCTIME2, 0x01); #endif /* Set LNA mode to manual */ e4k_reg_write(e4k, E4K_REG_AGC4, 0x10); /* High threshold */ e4k_reg_write(e4k, E4K_REG_AGC5, 0x04); /* Low threshold */ e4k_reg_write(e4k, E4K_REG_AGC6, 0x1a); /* LNA calib + loop rate */ e4k_reg_set_mask(e4k, E4K_REG_AGC1, E4K_AGC1_MOD_MASK, E4K_AGC_MOD_SERIAL); /* Set Mixer Gain Control to manual */ e4k_reg_set_mask(e4k, E4K_REG_AGC7, E4K_AGC7_MIX_GAIN_AUTO, 0); #if 0 /* Enable LNA Gain enhancement */ e4k_reg_set_mask(e4k, E4K_REG_AGC11, 0x7, E4K_AGC11_LNA_GAIN_ENH | (2 << 1)); /* Enable automatic IF gain mode switching */ e4k_reg_set_mask(e4k, E4K_REG_AGC8, 0x1, E4K_AGC8_SENS_LIN_AUTO); #endif /* Use auto-gain as default */ e4k_enable_manual_gain(e4k, 0); /* Select moderate gain levels */ e4k_if_gain_set(e4k, 1, 6); e4k_if_gain_set(e4k, 2, 0); e4k_if_gain_set(e4k, 3, 0); e4k_if_gain_set(e4k, 4, 0); e4k_if_gain_set(e4k, 5, 9); e4k_if_gain_set(e4k, 6, 9); /* Set the most narrow filter we can possibly use */ e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_MIX, KHZ(1900)); e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_RC, KHZ(1000)); e4k_if_filter_bw_set(e4k, E4K_IF_FILTER_CHAN, KHZ(2150)); e4k_if_filter_chan_enable(e4k, 1); /* Disable time variant DC correction and LUT */ e4k_reg_set_mask(e4k, E4K_REG_DC5, 0x03, 0); e4k_reg_set_mask(e4k, E4K_REG_DCTIME1, 0x03, 0); e4k_reg_set_mask(e4k, E4K_REG_DCTIME2, 0x03, 0); return 0; } |